Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = very-high-energy gamma-ray astronomy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 489 KB  
Review
Multi-TeV Gamma Rays from GRB 221009A: Challenges for Emission Mechanisms, EBL Opacity, and Fundamental Physics
by Hassan Abdalla
Galaxies 2025, 13(4), 95; https://doi.org/10.3390/galaxies13040095 - 19 Aug 2025
Viewed by 2616
Abstract
The detection of gamma-ray burst GRB 221009A has attracted significant attention due to its record brightness and first-ever detection of multi-TeV γ-rays from a GRB. Located at redshift z=0.151, this event is relatively nearby by GRB standards yet remains [...] Read more.
The detection of gamma-ray burst GRB 221009A has attracted significant attention due to its record brightness and first-ever detection of multi-TeV γ-rays from a GRB. Located at redshift z=0.151, this event is relatively nearby by GRB standards yet remains cosmologically distant, making the survival of multi-TeV photons surprising. The Large High Altitude Air Shower Observatory detected photons with energies up to ∼13 TeV during the early afterglow phase, challenging standard EBL models. We investigate whether several theoretical frameworks can explain this anomalous emission: reduced EBL opacity due to cosmic voids along the line of sight, novel emission mechanisms within the GRB environment, secondary γ-ray production through cosmic-ray cascades, and new physics scenarios involving Lorentz invariance violation or axion-like particles. Our analysis reveals areas of consensus regarding the exceptional nature of this event, while highlighting ongoing theoretical tensions about the dominant physical processes. We discuss the limitations of current models and identify specific observational signatures that future multi-wavelength and multi-messenger observations could provide to discriminate between competing explanations. The continued study of similar events with next-generation facilities will be crucial for resolving these theoretical challenges and advancing our understanding of extreme particle acceleration processes in astrophysical environments. Full article
Show Figures

Figure 1

33 pages, 7875 KB  
Review
A Very-High-Energy Gamma-Ray View of the Transient Sky
by Alessandro Carosi and Alicia López-Oramas
Universe 2024, 10(4), 163; https://doi.org/10.3390/universe10040163 - 29 Mar 2024
Cited by 2 | Viewed by 2896
Abstract
The development of the latest generation of Imaging Atmospheric Cherenkov Telescopes (IACTs) over recent decades has led to the discovery of new extreme astrophysical phenomena in the very-high-energy (VHE, E > 100 GeV) gamma-ray regime. Time-domain and multi-messenger astronomy are inevitably connected to [...] Read more.
The development of the latest generation of Imaging Atmospheric Cherenkov Telescopes (IACTs) over recent decades has led to the discovery of new extreme astrophysical phenomena in the very-high-energy (VHE, E > 100 GeV) gamma-ray regime. Time-domain and multi-messenger astronomy are inevitably connected to the physics of transient VHE emitters, which show unexpected (and mostly unpredictable) flaring or exploding episodes at different timescales. These transients often share the physical processes responsible for the production of the gamma-ray emission, through cosmic-ray acceleration, magnetic reconnection, jet production and/or outflows, and shocks interactions. In this review, we present an up-to-date overview of the VHE transients field, spanning from novae to supernovae, neutrino counterparts or fast radio bursts, among others, and we outline the expectations for future facilities. Full article
(This article belongs to the Special Issue Recent Advances in Gamma Ray Astrophysics and Future Perspectives)
Show Figures

Figure 1

10 pages, 7483 KB  
Article
Searching for Short-Timescale Transients in Gamma-ray Telescope Data
by Annanay Jaitly, Dmitriy Kostunin and Karin Cescon
Galaxies 2023, 11(4), 88; https://doi.org/10.3390/galaxies11040088 - 24 Jul 2023
Cited by 1 | Viewed by 1769
Abstract
Astrophysical sources show variability in their emissions over a range of timescales, with transients such as fast radio bursts (FRBs) and magnetar giant flares (MGFs) showing variability on timescales as short as a few milliseconds. Recent advances in gamma-ray astronomy such as telescopes’ [...] Read more.
Astrophysical sources show variability in their emissions over a range of timescales, with transients such as fast radio bursts (FRBs) and magnetar giant flares (MGFs) showing variability on timescales as short as a few milliseconds. Recent advances in gamma-ray astronomy such as telescopes’ high temporal resolution and relatively high uptime, combined with follow-up programs between different facilities, should allow serendipitous observations of burst-like phenomena. Even so, no very-high-energy gamma-ray counterparts for FRBs have been detected so far, and there is a general lack of software tools suited to search for such phenomena. We present a tool capable of searching gamma-ray telescope data for transient phenomena over arbitrary timescales—it is based on the Gammapy package and recursively scans the given field of view for clusters of events within user-defined time and angular-separation intervals. The generalized implementation allows for its application in many other cases and multiple gamma-ray telescopes. The main features and methodology of the developed tool are presented here, along with an analysis of the open gamma ray telescope data performed using it. Full article
(This article belongs to the Special Issue The New Era of Real-Time Multi-Messenger Astronomy)
Show Figures

Figure 1

25 pages, 788 KB  
Article
Higgs Field-Induced Triboluminescence in Binary Black Hole Mergers
by Mariam Chitishvili, Merab Gogberashvili, Rostislav Konoplich and Alexander S. Sakharov
Universe 2023, 9(7), 301; https://doi.org/10.3390/universe9070301 - 22 Jun 2023
Cited by 5 | Viewed by 2550
Abstract
We conjecture that the Higgs potential can be significantly modified when it is in close proximity to the horizon of an astrophysical black hole, leading to the destabilization of the electroweak vacuum. In this situation, the black hole should be encompassed by a [...] Read more.
We conjecture that the Higgs potential can be significantly modified when it is in close proximity to the horizon of an astrophysical black hole, leading to the destabilization of the electroweak vacuum. In this situation, the black hole should be encompassed by a shell consisting of a “bowling substance” of the nucleating new-phase bubbles. In a binary black-hole merger, just before the coalescence, the nucleated bubbles can be prevented from falling under their seeding horizons, as they are simultaneously attracted by the gravitational potential of the companion. For a short time, the unstable vacuum will be “sandwiched” between two horizons of the binary black hole, and therefore the bubbles may collide and form micro-black holes, which are rapidly evaporated by thermal emission of Hawking radiation of all Standard Model species. This evaporation, being triggered by a gravitational wave signal from the binary black-hole merger, can manifest itself in observations of gamma rays and very-high-energy neutrinos, which makes it a perfect physics case for multi-messenger astronomical observations. Full article
(This article belongs to the Section High Energy Nuclear and Particle Physics)
Show Figures

Figure 1

24 pages, 6429 KB  
Review
The Crab Pulsar and Nebula as Seen in Gamma-Rays
by Elena Amato and Barbara Olmi
Universe 2021, 7(11), 448; https://doi.org/10.3390/universe7110448 - 19 Nov 2021
Cited by 31 | Viewed by 4399
Abstract
Slightly more than 30 years ago, Whipple detection of the Crab Nebula was the start of Very High Energy gamma-ray astronomy. Since then, gamma-ray observations of this source have continued to provide new surprises and challenges to theories, with the detection of fast [...] Read more.
Slightly more than 30 years ago, Whipple detection of the Crab Nebula was the start of Very High Energy gamma-ray astronomy. Since then, gamma-ray observations of this source have continued to provide new surprises and challenges to theories, with the detection of fast variability, pulsed emission up to unexpectedly high energy, and the very recent detection of photons with energy exceeding 1 PeV. In this article, we review the impact of gamma-ray observations on our understanding of this extraordinary accelerator. Full article
Show Figures

Figure 1

14 pages, 1162 KB  
Review
Evolution of Data Formats in Very-High-Energy Gamma-Ray Astronomy
by Cosimo Nigro, Tarek Hassan and Laura Olivera-Nieto
Universe 2021, 7(10), 374; https://doi.org/10.3390/universe7100374 - 8 Oct 2021
Cited by 27 | Viewed by 3701
Abstract
Most major scientific results produced by ground-based gamma-ray telescopes in the last 30 years have been obtained by expert members of the collaborations operating these instruments. This is due to the proprietary data and software policies adopted by these collaborations. However, the advent [...] Read more.
Most major scientific results produced by ground-based gamma-ray telescopes in the last 30 years have been obtained by expert members of the collaborations operating these instruments. This is due to the proprietary data and software policies adopted by these collaborations. However, the advent of the next generation of telescopes and their operation as observatories open to the astronomical community, along with a generally increasing demand for open science, confront gamma-ray astronomers with the challenge of sharing their data and analysis tools. As a consequence, in the last few years, the development of open-source science tools has progressed in parallel with the endeavour to define a standardised data format for astronomical gamma-ray data. The latter constitutes the main topic of this review. Common data specifications provide equally important benefits to the current and future generation of gamma-ray instruments: they allow the data from different instruments, including legacy data from decommissioned telescopes, to be easily combined and analysed within the same software framework. In addition, standardised data accessible to the public, and analysable with open-source software, grant fully-reproducible results. In this article, we provide an overview of the evolution of the data format for gamma-ray astronomical data, focusing on its progression from private and diverse specifications to prototypical open and standardised ones. The latter have already been successfully employed in a number of publications paving the way to the analysis of data from the next generation of gamma-ray instruments, and to an open and reproducible way of conducting gamma-ray astronomy. Full article
Show Figures

Figure 1

8 pages, 1696 KB  
Article
Advances in CdZnTeSe for Radiation Detector Applications
by Utpal N. Roy, Giuseppe S. Camarda, Yonggang Cui and Ralph B. James
Radiation 2021, 1(2), 123-130; https://doi.org/10.3390/radiation1020011 - 25 Apr 2021
Cited by 30 | Viewed by 6880
Abstract
Detection of X- and gamma-rays is essential to a wide range of applications from medical imaging to high energy physics, astronomy, and homeland security. Cadmium zinc telluride (CZT) is the most widely used material for room-temperature detector applications and has been fulfilling the [...] Read more.
Detection of X- and gamma-rays is essential to a wide range of applications from medical imaging to high energy physics, astronomy, and homeland security. Cadmium zinc telluride (CZT) is the most widely used material for room-temperature detector applications and has been fulfilling the requirements for growing detection demands over the last three decades. However, CZT still suffers from the presence of a high density of performance-limiting defects, such as sub-grain boundary networks and Te inclusions. Cadmium zinc telluride selenide (CZTS) is an emerging material with compelling properties that mitigate some of the long-standing issues seen in CZT. This new quaternary is free from sub-grain boundary networks and possesses very few Te inclusions. In addition, the material offers a high degree of compositional homogeneity. The advancement of CZTS has accelerated through investigations of the material properties and virtual Frisch-grid (VFG) detector performance. The excellent material quality with highly reduced performance-limiting defects elevates the importance of CZTS as a potential replacement to CZT at a substantially lower cost. Full article
Show Figures

Figure 1

Back to TopTop