Advances in CdZnTeSe for Radiation Detector Applications
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods and Materials
3. Results and Discussion
4. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schlesinger, T.E.; Toney, J.E.; Yoon, H.; Lee, E.Y.; Brunett, B.A.; Franks, L.; James, R.B. Cadmium zinc telluride and its use as a nuclear radiation detector material. Mater. Sci. Eng. R. 2001, 32, 103–189. [Google Scholar] [CrossRef]
- Yang, G.; James, R.B. Physics, Applications of CdTe, CdZnTe, and CdMnTe Radiation Detectors. In Defects, Hetero- and Nano-structures, Crystal Growth, Surfaces and Applications Part II; Triboulet, R., Siffert, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2009; pp. 214–238. [Google Scholar]
- Del Sordo, S.; Abbene, L.; Caroli, E.; Mancini, A.M.; Zappettini, A.; Ubertini, P. Progress in the Development of CdTe and CdZnTe Semiconductor Radiation Detectors for Astrophysical and Medical Applications. Sensors 2009, 9, 3491–3526. [Google Scholar] [CrossRef] [PubMed]
- Johns, P.M.; Nino, J.C. Room temperature semiconductor detectors for nuclear security. J. Appl. Phys. 2019, 126, 040902-1-20. [Google Scholar] [CrossRef] [Green Version]
- Bolotnikov, A.E.; Camarda, G.S.; Cui, Y.; Yang, G.; Hossain, A.; Kim, K.; James, R.B. Characterization and evaluation of extended defects in CZT crystals for gamma-ray detectors. J. Cryst. Growth 2013, 379, 46–56. [Google Scholar] [CrossRef]
- Carini, G.A.; Bolotnikov, A.E.; Camarda, G.S.; James, R.B. High-resolution X-ray mapping of CdZnTe detectors. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2007, 579, 120–124. [Google Scholar] [CrossRef]
- Amman, M.; Lee, J.S.; Luke, P.N. Electron trapping nonuniformity in high-pressure-Bridgman-grown CdZnTe. J. Appl. Phys. 2002, 92, 3198–3206. [Google Scholar] [CrossRef] [Green Version]
- Camarda, G.S.; Bolotnikov, A.E.; Cui, Y.; Hossain, A.; Awadalla, S.A.; MacKenzie, J.; Chen, H.; James, R.B. Polarization Studies of CdZnTe Detectors Using Synchrotron X-Ray Radiation. IEEE Trans. Nucl. Sci. 2008, 55, 3725–3730. [Google Scholar] [CrossRef] [Green Version]
- Roy, U.N.; Camarda, G.S.; Cui, Y.; Gul, R.; Hossain, A.; Yang, G.; Zazvorka, J.; Dědič, V.; Franc, J.; James, R.B. Role of selenium addition to CdZnTe matrix for room-temperature radiation detector applications. Sci. Rep. 2019, 9, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Roy, U.N.; Camarda, G.S.; Cui, Y.; Gul, R.; Yang, G.; Zazvorka, J.; Dedic, V.; Franc, J.; James, R.B. Evaluation of CdZnTeSe as a high-quality gamma-ray spectroscopic material with better compositional homogeneity and reduced defects. Sci. Rep. 2019, 9, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Hwang, S.; Yu, H.; Bolotnikov, A.E.; James, R.B.; Kim, K. Anomalous Te Inclusion Size and Distribution in CdZnTeSe. IEEE Trans. Nucl. Sci. 2019, 66, 2329–2332. [Google Scholar] [CrossRef]
- Chaudhuri, S.K.; Sajjad, M.; Kleppinger, J.W.; Mandal, K.C. Charge transport properties in CdZnTeSe semiconductor room-temperature γ-ray detectors. J. Appl. Phys. 2020, 127, 1–8. [Google Scholar] [CrossRef]
- Chaudhuri, S.K.; Sajjad, M.; Kleppinger, J.W.; Mandal, K.C. Correlation of Space Charge Limited Current and γ-Ray Response of CdxZn1-xTe1-ySey Room-Temperature Radiation Detectors. IEEE Elect. Device Lett. 2020, 41, 1336–1339. [Google Scholar] [CrossRef]
- Yakimov, A.; Smith, D.J.; Choi, J.; Araujo, S.L. Growth and characterization of detector-grade CdZnTeSe by horizontal Bridgman technique. SPIE Proc. 2019, 11114. [Google Scholar] [CrossRef]
- Chanda, S.; Ghosh, D.; Debnath, B.; Debbarma, M.; Bhattacharjee, R.; Chattopadhyay, S. Calculations of the structural and optoelectronic properties of cubic CdxZn1−xSeyTe1−y semiconductor quaternary alloys using the DFT-based FP-LAPW ap-proach. J. Comp. Elect. 2020, 19, 1–25. [Google Scholar] [CrossRef]
- Rejhon, M.; Dědič, V.; Beran, L.; Roy, U.N.; Franc, J.; James, R.B. Investigation of Deep Levels in CdZnTeSe Crystal and Their Effect on the Internal Electric Field of CdZnTeSe Gamma-Ray Detector. IEEE Trans. Nucl. Sci. 2019, 66, 1952–1958. [Google Scholar] [CrossRef]
- Zhang, N.; Yeckel, A.; Burger, A.; Cui, Y.; Lynn, K.G.; Derby, J.J. Anomalous segregation during electrodynamic gradient freeze growth of cadmium zinc telluride. J. Cryst. Growth 2011, 325, 10–19. [Google Scholar] [CrossRef]
- Roy, U.N.; Weiler, S.; Stein, J.; Cui, Y.; Groza, M.; Buliga, V.; Burger, A. Zinc mapping in THM grown detector grade CZT. J. Cryst. Growth 2012, 347, 53–55. [Google Scholar] [CrossRef]
- Franc, J.; Moravec, P.; Dědič, V.; Roy, U.; Elhadidy, H.; Minárik, P.; Šíma, V. Microhardness study of Cd1-x ZnxTe1-ySey crystals for X-ray and gamma ray detectors. Mater. Today Commun. 2020, 24, 1–5. [Google Scholar] [CrossRef]
- Gul, R.; Roy, U.N.; Camarda, G.S.; Hossain, A.; Yang, G.; Vanier, P.; Lordi, V.; Varley, J.; James, R.B. A comparison of point defects in Cd1−xZnxTe1−ySey crystals grown by Bridgman and traveling heater methods. J. Appl. Phys. 2017, 121, 1–7. [Google Scholar] [CrossRef]
- Roy, U.N.; Gueorguiev, A.; Weiller, S.; Stein, J. Growth of spectroscopic grade Cd0.9Zn0.1Te:In by THM technique. J. Cryst. Growth 2009, 312, 33–36. [Google Scholar] [CrossRef]
- Roy, U.N.; Burger, A.; James, R.B. Growth of CdZnTe crystals by the traveling heater method. J. Cryst. Growth 2013, 379, 57–62. [Google Scholar] [CrossRef]
- Kargar, A.; Jones, A.M.; McNeil, W.J.; Harrison, M.J.; McGregor, D.S. CdZnTe Frisch collar detectors for γ-ray spectroscopy. Nucl. Instrum. Methods Phys. Res. A 2006, 558, 497–503. [Google Scholar] [CrossRef]
- Roy, U.N.; Camarda, G.S.; Cui, Y.; James, R.B. High-resolution virtual Frisch grid gamma-ray detectors based on as-grown CdZnTeSe with reduced defects. Appl. Phys. Lett. 2019, 114. [Google Scholar] [CrossRef]
- McCoy, J.J.; Kakkireni, S.; Gilvey, Z.H.; Swain, S.K.; Bolotnikov, A.E.; Lynn, K.G. Overcoming Mobility Lifetime Product Limitations in Vertical Bridgman Production of Cadmium Zinc Telluride Detectors. J. Electron. Mater. 2019, 48, 4226–4234. [Google Scholar] [CrossRef]
- Rudolph, P. Fundamental studies on Bridgman growth of CdTe. Prog. Cryst. Growth Charact. 1994, 29, 275–381. [Google Scholar] [CrossRef]
- Tanaka, A.; Masa, Y.; Seto, S.; Kawasaki, T. Zinc and selenium co-doped CdTe substrates lattice matched to HgCdTe. J. Cryst. Growth 1989, 94, 166–170. [Google Scholar] [CrossRef]
Elements | CZTS Ingot #1 | CZTS Ingot #2 |
---|---|---|
Concentration (ppb at.) | Concentration (ppb at.) | |
Fe | 42 | 42 |
Cu | <4 | 22 |
Ti | <5 | <5 |
Cr | 36 | <20 |
Pb | 11 | 10 |
Ni | 16 | <4 |
Sn | <100 | <100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roy, U.N.; Camarda, G.S.; Cui, Y.; James, R.B. Advances in CdZnTeSe for Radiation Detector Applications. Radiation 2021, 1, 123-130. https://doi.org/10.3390/radiation1020011
Roy UN, Camarda GS, Cui Y, James RB. Advances in CdZnTeSe for Radiation Detector Applications. Radiation. 2021; 1(2):123-130. https://doi.org/10.3390/radiation1020011
Chicago/Turabian StyleRoy, Utpal N., Giuseppe S. Camarda, Yonggang Cui, and Ralph B. James. 2021. "Advances in CdZnTeSe for Radiation Detector Applications" Radiation 1, no. 2: 123-130. https://doi.org/10.3390/radiation1020011
APA StyleRoy, U. N., Camarda, G. S., Cui, Y., & James, R. B. (2021). Advances in CdZnTeSe for Radiation Detector Applications. Radiation, 1(2), 123-130. https://doi.org/10.3390/radiation1020011