Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = upper Jurassic limestone facies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 5930 KB  
Article
Depositional Sedimentary Facies, Stratigraphic Control, Paleoecological Constraints, and Paleogeographic Reconstruction of Late Permian Chhidru Formation (Western Salt Range, Pakistan)
by Syed Kamran Ali, Hammad Tariq Janjuhah, Syed Muzyan Shahzad, George Kontakiotis, Muhammad Hussain Saleem, Usman Khan, Stergios D. Zarkogiannis, Panayota Makri and Assimina Antonarakou
J. Mar. Sci. Eng. 2021, 9(12), 1372; https://doi.org/10.3390/jmse9121372 - 3 Dec 2021
Cited by 35 | Viewed by 10922
Abstract
The Upper Indus Basin, in Pakistan’s western Salt Range, is home to the Zaluch Gorge. The sedimentary rocks found in this Gorge, belonging to the Chhidru Formation, were studied in terms of sedimentology and stratigraphy, and provide new insights into the basin paleogeographic [...] Read more.
The Upper Indus Basin, in Pakistan’s western Salt Range, is home to the Zaluch Gorge. The sedimentary rocks found in this Gorge, belonging to the Chhidru Formation, were studied in terms of sedimentology and stratigraphy, and provide new insights into the basin paleogeographic evolution from the Precambrian to the Jurassic period. Facies analysis in the Chhidru Formation deposits allowed the recognition of three lithofacies (the limestone facies—CF1, the limestone with clay interbeds facies—CF2, and the sandy limestone facies—CF3) with five microfacies types (mudstone biomicrite—MF-1, wackestone-biomicrite—MF-2, wackestone-biosparite—MF-3, pack-stone-biomicrite—MF-4, and packstone-biosparite—MF-5), as well as their depositional characteristics. The identified carbonate and siliciclastic formations display various facies in a shallow marine environment, with different lithologies, sedimentary features, and energy conditions. It is thought that the depositional characteristics of these microfacies are closer to those of the middle to outer shelf. Because of the progressively coarsening outcrop sequence, this formation seems to be at the very top of the high stand system tract (HST). A modified dynamic depositional model of the Chhidru Formation is further built using outcrop data, facies information, and stratigraphy. According to this concept, the formation was deposited in the middle to inner shelf area of the shallow marine environment, during the Late-Permian period. The Permo-Triassic Boundary (PTB), which is the end of the type-1 series, is marked by this formation’s top. Full article
(This article belongs to the Special Issue Recent Advances in Geological Oceanography)
Show Figures

Figure 1

22 pages, 15371 KB  
Article
Tracking the Origin and Evolution of Diagenetic Fluids of Upper Jurassic Carbonate Rocks in the Zagros Thrust Fold Belt, NE-Iraq
by Namam Salih, Alain Préat, Axel Gerdes, Kurt Konhauser and Jean-Noël Proust
Water 2021, 13(22), 3284; https://doi.org/10.3390/w13223284 - 19 Nov 2021
Cited by 9 | Viewed by 3963
Abstract
Utilizing sophisticated tools in carbonate rocks is crucial to interpretating the origin and evolution of diagenetic fluids from the Upper Jurassic carbonate rocks along the Zagros thrust-fold Belt. The origin and evolution of the paleofluids utilizing in-situ strontium isotope ratios by high resolution [...] Read more.
Utilizing sophisticated tools in carbonate rocks is crucial to interpretating the origin and evolution of diagenetic fluids from the Upper Jurassic carbonate rocks along the Zagros thrust-fold Belt. The origin and evolution of the paleofluids utilizing in-situ strontium isotope ratios by high resolution laser ablation ICP-MS, integrated with stable isotopes, petrography and fieldwork are constrained. Due to the lack of information on the origin of the chemistry of the fluids, the cements that filled the Jurassic carbonate rocks were analysed from the fractures and pores. This allowed us to trace the origin of fluids along a diagenetic sequence, which is defined at the beginning from the sediment deposition (pristine facies). Based on petrography and geochemistry (oxygen-, carbon- and strontium-isotope compositions) two major diagenetic stages involving the fluids were identified. The initial stage, characterized by negative δ13CVPDB values (reaching −10.67‰), involved evaporated seawater deposited with the sediments, mixed with the input of freshwater. The second stage involved a mixture of meteoric water and hot fluids that precipitated as late diagenetic cements. The late diagenetic cements have higher depleted O–C isotope compositions compared to seawater. The diagenetic cements display a positive covariance and were associated with extra- δ13CVPDB and δ18OVPDB values (−12.87‰ to −0.82‰ for δ18OVPDB and −11.66‰ to −1.40‰ for δ13CVPDB respectively). The distinction between seawater and the secondary fluids is also evident in the 87Sr/86Sr of the host limestone versus cements. The limestones have 87Sr/86Sr up to 0.72859, indicative of riverine input, while the cements have 87Sr/86Sr of (0.70772), indicative of hot fluid circulation interacting with meteoric water during late diagenesis. Full article
Show Figures

Figure 1

15 pages, 9045 KB  
Article
Upper Jurassic Bedded Limestones and Early Diagenetic Dolomitized Limestones in the Light of Mineralogical, Geochemical and Sedimentological Studies; Kraków Area, Poland
by Marcin Krajewski and Piotr Olchowy
Minerals 2021, 11(5), 462; https://doi.org/10.3390/min11050462 - 27 Apr 2021
Cited by 5 | Viewed by 3226
Abstract
This paper describes and analyzes the Upper Jurassic (Lower Kimmeridgian) succession exposed in the Zakrzówek Horst, located in the Kraków area. Three distinguished facies types FT 1-FT 3 comprise several limestone varieties: sponge-microbial, pelitic-bioclastic, and partly dolomitized detrital-bioclastic. Their sedimentary environments varied from [...] Read more.
This paper describes and analyzes the Upper Jurassic (Lower Kimmeridgian) succession exposed in the Zakrzówek Horst, located in the Kraków area. Three distinguished facies types FT 1-FT 3 comprise several limestone varieties: sponge-microbial, pelitic-bioclastic, and partly dolomitized detrital-bioclastic. Their sedimentary environments varied from relatively deeper, attaining storm-wave base, to more shallower, probably close to normal-wave base. Characteristic features of limestones are changes in contents of CaCO3 and insoluble residuum as well as porosity values in vertical transitional zones between facies types. The investigated facies types differ in sediment porosity dependent on development of limestones and its susceptibility to mechanical compaction during the early diagenesis. The studied limestones show high CaCO3 contents and minor insoluble residuum contents comprising quartz, chalcedony and clay minerals. No distinct variability occurs in contents of magnesium, silica, alumina and iron accumulated in clay minerals, iron oxides and oxyhydroxides, as well as in the amounts of amorphous silica. Early diagenetic dolomites, which occur locally within the limestones, were unrelated to fracture systems as possible pathways responsible for transfer of solutions rich in Mg2+ ions. The possible source of Mg2+ ions might have been the pore solutions, which migrated from compacted basinal bedded facies towards reef facies or the grain-supported bedded facies developed in the adjacent areas. Microscopic studies revealed dedolomitization at the surfaces and in the inner parts of dolomite crystals. In many cases, dolomite crystals were replaced by calcite forming pseudomorphs. Full article
Show Figures

Figure 1

Back to TopTop