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Abstract: The Upper Indus Basin, in Pakistan’s western Salt Range, is home to the Zaluch Gorge. The
sedimentary rocks found in this Gorge, belonging to the Chhidru Formation, were studied in terms of
sedimentology and stratigraphy, and provide new insights into the basin paleogeographic evolution
from the Precambrian to the Jurassic period. Facies analysis in the Chhidru Formation deposits al-
lowed the recognition of three lithofacies (the limestone facies—CF1, the limestone with clay interbeds
facies—CF2, and the sandy limestone facies—CF3) with five microfacies types (mudstone biomicrite—
MF-1, wackestone-biomicrite—MF-2, wackestone-biosparite—MF-3, pack-stone-biomicrite—MF-4,
and packstone-biosparite—MF-5), as well as their depositional characteristics. The identified car-
bonate and siliciclastic formations display various facies in a shallow marine environment, with
different lithologies, sedimentary features, and energy conditions. It is thought that the depositional
characteristics of these microfacies are closer to those of the middle to outer shelf. Because of the
progressively coarsening outcrop sequence, this formation seems to be at the very top of the high
stand system tract (HST). A modified dynamic depositional model of the Chhidru Formation is
further built using outcrop data, facies information, and stratigraphy. According to this concept, the
formation was deposited in the middle to inner shelf area of the shallow marine environment, during
the Late-Permian period. The Permo-Triassic Boundary (PTB), which is the end of the type-1 series,
is marked by this formation’s top.

Keywords: Permian-Triassic boundary; sequence stratigraphy; high stand systems tract (HST);
shallow marine deposits; microfacies types; stratigraphic correlations; subtidal-intertidal depositional
environments; mixed siliciclastic-carbonate successions; sedimentary basin dynamics; paleoecology

1. Introduction

The Salt Range region of Pakistan has been the focus of geological study because of
its complicated geology, which ranges in age from Precambrian to Recent [1], although
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the precise sedimentological sequence and its paleoenvironmental significance remain
largely unclear. The Salt Range of Pakistan, situated in the southern Potwar Basin, is the
southernmost portion of the Sub-Himalayan Mountains, which stretch east-west for more
than 180 km between the Jhelum and Indus rivers (Figure 1). An unconformably thick
sedimentary layer covers low-grade metamorphic and igneous rocks in the Salt Range from
the Precambrian to modern eras (Figure 1). A long phase of nondeposition has persisted
over the majority of the Indian subcontinent since the Late Proterozoic, when Pakistan and
India’s Permian sedimentation began [2].

The upper part of the Chhidru Group was given a Permian age [3–5]. The Permo-
Triassic layers in the western Chhidru Nala were also measured by Wignall and Hallam [6].
The evidence supporting a significant split between the Permian and Triassic sequences, on
the other hand, eluded him. As a result of their research, Kummel [7] identified the Permian-
Triassic boundary as a “paraconformity of undetermined magnitude” and characterized
the distribution of lithology and fauna of layers above and below it. For further information
on the stratigraphic succession of this formation, we refer to the works of Theobald [8],
Ghazi et al. [9], Schneebeli-Hermann et al. [10], and Waterhouse [11]. They classified it as
the Permian period of the Upper Chhidru Group. No clear boundary existed between the
Permian and Triassic period following these Salt Range studies.J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 3 of 25 

 

 

 

Figure 1. Pakistan’s tectonic map. (a) showing Pakistan’s overall geology and surrounding area; (b) 
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Figure 1. Pakistan’s tectonic map. (a) showing Pakistan’s overall geology and surrounding area; (b) the
geological map of the Salt Range is shown as a green box in Figure 1a (Modified after Wadood et al. [12]).
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Shen et al. [13] projected a proper age for the Chhidru’s Formation, although the
age is still debated. The most recent palynological and stratigraphic investigations detail
the microfossil composition of the Middle Permian Sardhai Formation and the Permian
to Middle Triassic assemblages [3,14,15]. Hermann et al. [3] used microfloral records
from the Nammal and Chhidru (Salt Range), and Chitta-Landu and Narmia, to identify
three palynological associations and five different palynostratigraphic zones from the top
Permian to the middle Triassic (Surghar Range). To study palynological assemblages,
scientists had to look at sedimentary gaps at the Permian-Triassic border and carbonate-
dolomite lithology in the Lower Triassic. Mertmann [16] investigated the evolution of
the Salt Range’s marine Permian carbonate platform and described the various system
tracts. Although general information about the stratigraphic and sedimentological aspects
of the various formations in the Salt Range exists, the specific critical approach in terms of
sedimentology and stratigraphy for the Chhidru Formation is lacking, which is crucial in
understanding the Permo-Triassic (P-T) boundary in the Western Salt Range.

The present study has conducted a critical examination of facies analysis, microfacies
types, and other aspects of the depositional environment, as well as the distribution of
fauna in the Chhidru Formation; this is necessary to understand and identify the cyclical
order in Pakistan’s Western Salt Range stratigraphic framework, based on sedimentological
and stratigraphic research on the Salt Range. The dynamic depositional model that was
proposed will provide additional insights into the paleogeographic evolution of the basin
and better correlation with coeval analogous tectono-stratigraphic successions along the
south-eastern margin of the Paleo-Tethys Ocean.

2. Geological Setting

Pakistan is located on the Eurasian, Indian and Arabian Plates (Figure 1). A tertiary
period convergence of the Eurasian and Indian plates is represented by this structure.
Punjab is Pakistan’s most populous province, followed by Sindh and Khyber Pakhtunkhwa
(KPK) in terms of population [17]. Punjab’s terrain is divided between the Plateau (Pot-
war), a mountain range straddling the Jhelum and Indus rivers, and the Punjab Plains, a
lowland area. The hill system is also known as the Salt Range [18]. The stratigraphy of the
Salt Range area has been identified in the Kohat-Potwar Plateau, as well as in the wells
drilled in Punjab Plains. To create the Potwar sub-basin, geological force, such as the thrust
belt, which runs north-south for around 150 km, is responsible for the development of
the basin. Tectonically, the Potwar sub-basin is bounded by the Jhelum fault in the east
and the Kalabagh fault in west [19,20]. The Potwar sub-basin is separated from the Main
Boundary Thrust (MBT) on the north and the MBT on the south by the Salt Range thrust.
(Figure 1). The Indian and Eurasian plates collision caused a 55-km shortening of the
horizontal crust between Soan Syncline and NPDZ, and a 20-km shortening along the Salt
Range [21–24]. From Precambrian to more recent geological strata, the Upper Indus Basin
geology and sedimentary environment are diverse [25–27]. Eastward from the Salt Range,
the thickness of pre-Cambrian and Cambrian rock formations rises, whereas westward
from the Salt Range, it decreases [9,28,29]. A salt, marl, and gypsum-rich lithology first
appeared in the Precambrian Salt Range Formation. East of the Salt Range is where it is at
its peak. The Cambrian rocks include the Khewra Sandstone, the Kussak Formation, the
Jutana Formation, and the Baghanwala Formation [30,31]. The eastern Salt Range has a
well-developed Cambrian stratigraphic sequence. Large plate tectonic changes marked
the Late Paleozoic–Early Mesozoic era. The Paleo-Tethys Ocean closed along the south-
ern boundary of Eurasia in the Late Triassic, completing the Variscan assemblage into
a single supercontinent, Pangea, in the Middle Cambrian period. During Gondwana’s
last stages, the Cimmerian Orogen, a prominent mountain range, was formed when the
eastern boundary of Gondwana was broken by a strip of Gondwanan terranes called the
Cimmerian terranes, which encompasses Iran, Afghanistan, the Karakoram, and Qiang-
tang [32]. According to the Late Permian–Early Triassic paleogeographic reconstruction,
the Salt Range was located around 30–40◦ S along the Tethyan border and indicates an
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overall warm-temperate paleoclimate [33,34]. Limestones, dolostones, sandstones, and
shales make up the Salt Range’s Triassic strata. To study sediments below and across the
Permian–Triassic Boundary (PTB), the Salt Range’s exposures have made it possible.

The Permian deposit began several hundred years after the Cambrian deposit had
finished. The Permian succession is divided into two stratigraphic successions, the Nam-
mal Gorge and the Chhidru Nalah near Chhidru town, each of which has a different
depositional environment (Figure 1) [35–37]. The Nilawahan Group is mainly a Gond-
wanan terrestrial succession, whereas the Zaluch Group is a shallow marine Tethyan
succession [14,31,38,39]. The Tobra Formation’s base has a disconformity, which scien-
tists discovered. Several rock types lie above the Tobra Formation, including the Dandot
Formation, Warchha Sandstone, and the Nilawahan Group’s Sardhai Formation [40,41].

A well-exposed region of shallow to intertidal marine deposits may be found in
the Zaluch Group of the Salt Range, which includes the Amb, Wargal, and Chhidru
formations [7,16,42–46]. A discontinuity exists between the Amb and Sardhai formations
at their base, while the upper Chhidru-overlying Triassic Mianwali Formation’s contact has
yet to be determined [7,9,36,47,48]. Permian rock formations may be found in the western
Salt Range [49] (Figure 2).
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Figure 2. Lithology distribution map of the Salt Range area (Modified after Malkani and Mahmood [49]).

The rocks of the Mesozoic period can be characterized due to paraconformity. At the
end of the Permian period, Hermann et al. [50] referred to the body as a para-unconformity
showing subaerial exposure. The Permian rocks found in the Salt Range are rich in fauna
and are related to Triassic rocks. There is a substantial faunal break at the boundary
between the Permian and Triassic periods. Each of the Mesozoic formations may be found
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in the Upper Indus Basin and are part of the Triassic era [35]. The Mesozoic rock series may
be found in abundance in the western Salt Range [51,52]. Samanasuk Limestone and the
Shinawri Formation are part of the Jurassic period’s Datta and Shinawri formations. The
Cretaceous period is represented by the Chichali and Lumshiwal formations in Rajasthan
(Figure 2). Unconformities in rock units may be seen across Africa in the Hangu Formation,
which includes laterite and bauxite. The Cenozoic geologic sequence includes the Hangu
Formation, Lockhart Formation, Patala Formation, Nammal Formation, Sakesar Limestone,
and Chorgali Formation, respectively.

Surface and subsurface maps of the Potwar region and the area to the west of it are
shown in Figure 2. The bright blue color of the Potwar region’s subsoil indicates the lack of
Jurassic and Cretaceous layers. The bright green color indicates the existence of Jurassic and
Cretaceous formations under the surface of the western Potwar-Kohat region and the southern
Hazara highlands. According to Alhubail and Ghahfarokhi [53] Pakistan’s Upper Indus Basin
Upper Jurassic to Early Cretaceous rocks are rich in geological and economic resources.

Typical Jurassic and Early Cretaceous formations, such as the Datta, Samana Suk,
Chichali, and Lumshiwal formations, may be found as far east as the Abbottabad area’s
Thandiani Formation [54,55]. In the southern Hazara highlands, as well as across the Indus
River, these rock units may be found in abundance. Since no Jurassic or Cretaceous ages
were found in the Potwar region, a particular condition existed across the Main Boundary
Thrust in the neighboring Potwar area (Figure 2).

2.1. Stratigraphy of Zaluch Gorge-Chhidru Formation

The study area is located in the Zaluch Gorge, in the westernmost section of the Salt
Range. Sedimentary rocks from the Precambrian Salt Range Formation to the Jurassic Datta
Formation make up the Zaluch Area (Table 1). The Nilawahan Group’s Tobra Formation
represents the beginning of the Permian period. Above the Tobra Formation is the Warchha
Sandstone. Zaluch Gorge is devoid of the Dandot Formation [4,11]. The Warchha Sandstone
gradually gives way to the Sardhai Formation, as it rises to the north [56]. Ascending
toward the top from the Nilawahan Group is the Zaluch Group, which contains the Amb
Formation, Wargal Limestone, and the Chhidru Formation. Fossil-rich Permian strata in
the Salt Range are connected to rocks from the Triassic period; marine layers along the
Permo-Triassic boundary are consistent, the fauna did not change much after contact with
the marine layers along the Permo-Triassic boundary [43,57]. The Mianwali Formation
is the first in the Triassic series, followed by the Tredian and Kingriali formations. The
Kingriali Formation, which is younger than the Jurassic Datta Formation, rests erratically
just above it.

Chhidru Formation

Originally, the Chhidru Formation was referred to as the Chhidru beds after early
investigations by Waagen [58]. According to Dunbar [59], in the early nineteenth century,
Chhidru Formation was characterized as a mix of siliciclastic and carbonate phases. There
has been much debate about the age of the Chhidru Formation, and its relationship to
Triassic rocks, since Teichert [60] first discovered it. Mei and Henderson [61] suggested the
Wuchiapingian/Changhsingian boundary as the dividing line between the Wargal and
Chhidru formations. Since the Chhidru Formation was deposited in a shallow subtidal
to the intertidal environment, its thickness varies across the Salt Range, according to
Mertmann [16]. The stratigraphic thickness, as determined by earlier researchers, varies
widely. According to Mertmann [16], Jan and Stephenson [62], Sajjad Ahmed et al. [63]
and Hussain et al. [64], Zaluch Nala, Zaluch Gorge and Chhidru Nala all recorded 58.4 m,
63.63 m, and 81.81 m of the Chhidru Formation, respectively. According to Zahid et al. [25],
Hermann et al. [50] and Saboor et al. [65], the Chhidru Formation is a siliciclastic mixed
carbonate series that is readily accessible in the research region under consideration.

Shallow sandstone and sandy limestone comprise most of the Chhidru Formation.
The base of the Chhidru Formation is exposed, displaying shale units. Above the shale
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unit, a calcareous sandstone unit is evident. An oscillation ripple mark may be seen on
the topmost layer of this formation, which might be a white sandstone bed [66,67]. This
limestone-clay-sand interbeds formation may be found in Zaluch Gorge (Figure 3). The
Chhidru Formation’s lower contact with Wargal Limestone is conformable, while the upper
contact is not visible, because of a paraconformity at the Permian-Triassic (P-T) boundary
with upper contact of the Mianwali Formation (Figure 3). The Late Permian period is
responsible for the development of Chhidru. [3,11,31].

Table 1. Stratigraphic successions of the Zaluch Gorge.

Formation Lithology Age

Datta Formation Sandstone, Siltstone, Glass sand, Fire clay Jurassic

Kingriali Formation Dolomite, Limestone, Marl, Shale Triassic

Tredian Formation Sandstone, Shale Middle Triassic

Mianwali Formation Sandstone, Shale, Dolomite
(Heterogeneous lithology) Lower Triassic

Unconformity (P-T Boundary)

Chhidru Formation Limestone, Sandstone Late Permian

Wargal Limestone Limestone, Dolomite Late Permian

Amb Formation Shale, Limestone Middle to Late Permian

Unconformity

Sardhai Formation Shale Early Permian

Warchha Sandstone Sandstone Early Permian

Tobra Formation Conglomerates having tillitic, fresh water
and complex facies Early Permian

Unconformity

Salt Range Formation Salt, Marl, Gypsum Precambrian

There is a rich fossil fauna in Pakistan’s Salt Range and Surghar Range, which date back
to the Permian-Triassic period, when carbonate-siliciclastic successions were combined with
sandstones and clays. These sedimentary archives allow researchers to combine palynology
with ammonoids, conodont, and chemostratigraphic age controls to better understand the
origins of life on Earth [68,69]. Cyclosorus, a Permian ammonoid, was discovered in the Salt
Range by Furnish and Glenister [70]. Wignall and Hallam [6] investigated the Salt Range
and Trans Indus Range’s topmost Permian and lower Triassic conodonts. The acritarchs
and tasmanitids of the Chhidru Formation were explained by Ahmad et al. [67]. According
to Qureshi et al. [57], the Salt Range and the Surghar Range are rich in palynology, which
he investigated. Between 1981 and 1985, Pakistani and Japanese scientists studied the
Permo-Triassic succession in the Salt Range. As opposed to the Chhidru Formation in Khan
and Afzal’s [71] research, the Zaluch Nalah and Nammal portions had a higher density
of brachiopods. The Zaluch Gorge section of Pakistan’s P-T boundary has received the
most attention. Mertmann [16] studied the development of the Permian marine carbonate
platform’s salt range after discovering several system tracts in the Chhidru Formation.
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3. Material and Methods

Fieldwork was carried out in the Salt Range area’s Zaluch Gorge Chhidru Formation,
which has a mix of siliciclastic and carbonates throughout its geological history. The
existing outcrop was recorded, measured, and sampled using standard procedures [72].
An 82.15-m-thick sequence was researched and documented in the western Salt Range’s
Zaluch Gorge on a standard log sheet. Detailed analyses were performed to identify distinct
lithofacies intervals based on sedimentological properties such as lithology, depositional
texture as defined by Dunham [73], and carbonate components.

The section was then classified into three facies (Figure 3). The lithofacies in the region
were identified and described using an outcrop study, important stratigraphic features, and
microscopic hemicycles observed in the field. Thirty-four rock samples, each 2.8 cm long
and 3.2 cm in diameter, were gathered from the same intervals investigated. These samples
were selected to illustrate carbonate microfacies, and their textures ranged from mudstone
to packstone. At the AJ&K University Laboratory, 12 thin sections were produced for
chosen materials and then analyzed using reflected and transmitted light microscopy. The
thin sections were described using an Olympus BX 51 camera with a DP-27 connected.
Half of the thin sections were treated with an acid solution containing red alizarin S
and potassium ferricyanide stains on a section of the slide. The microfacies definition
and textural character analysis of the carbonate rocks, which included both biogenic and
inorganic dominant components, were performed using Dunham [73] and Embry and
Klovan [74] carbonate classification schemes, which were modified to include the Standard
Microfacies Types (SMF) in the facies zones (FZ) of the rimmed carbonate platform model.
Depositional environments were reconstructed based on the derived sedimentological
features and through comparison with additional standard facies reconstructions [75–77].

To evaluate the depositional environment, both macroscopically and through litho-
facies analyses, several petrographic observations and parameters were recorded and
measured. Finally, a dynamic depositional model was developed, based on the dynamics
of the paleo-deposition environment, emphasizing the paleogeographic relevance of the
studied deposits. Figure 3 depicts a synthesis of the acquired findings.

4. Results
4.1. Lithofacies of Chhidru Formation

The investigated part is located entirely inside District Mianwali’s Zaluch Gorge
(Late Permian). Wargal Limestone has a conformable lower contact, whereas the Triassic
Mianwali Formation, which lies above it, is paraconformable (Figure 4a–c). In the field, the
following three lithofacies were found:

• Limestone facie (CF1)
• Limestone with clays interbeds facies (CF2)
• Sandy limestone facie (CF3)

4.1.1. Limestone Facies CF1

This facie (CF1) comprises ceramist grey to light brownish, thin-grained limestone
(Figure 4a,d). The thickness of this facie is approximately 35.49 m in the studied region.
This facies comprises more than 90% of limestone. The main grain size is medium grained.
These facies are enriched in fossiliferous strata. Eight rock samples (ZC1, ZC2, ZC3, ZC4,
ZC5, ZC6, ZC7, and ZC9) were obtained for the petrographic investigation (Figure 3). The
petrographic study shows substantial grainstone depositional texture with moderate to
poor preservation of allochems.

4.1.2. Limestone Interbedded with Clays Facie CF2

According to quantitative analysis, this facies (CF2) is composed of 80% limestone and
20% mudstone and has a greyish to light brownish color (Figure 4a). It also contains fossil-
iferous limestone and finely interbedded lamina. The grain is between fine and medium in
texture. The petrographic analysis of CF2 (sample ZC8) reveals a mudstone depositional
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texture with limited preservation of the allomicritic matrix (Figure 4e). The diagenetic
fabric of the mudstone fabric shows iron leaching at particular points of petrographic
investigation. Fractures filled with stylolite and calcite have also been observed.

4.1.3. Sandy Limestone Facies CF3

The sandy limestone facies (CF3) are distinguished by their light grey to creamy
white color (Figures 3 and 4a). In the studied region, the total thickness of this facie is
about 44.36 m. The sandy limestone layers found are less fossiliferous than CF1 and CF2.
The most often used grain size is medium grain. According to petrographic studies, this
facie has a packstone depositional texture. Three rock samples (ZC10, ZC11, and ZC12)
were collected for petrographic examination. The petrographic investigation also showed a
random distribution of quartz, feldspar, and muscovite (Figure 5a). Calcite, stylolites, bioclasts
(micritized), and recrystallized fossil pieces define the diagenetic fabric of this facies.
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limestone facies); (e) photomicrograph of Facies-2 (CF2 limestone with clay interbeds).
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Figure 5. Photomicrographs representing different characteristics (a) Facies-3 (CF3 Sandy Limestone); (b) Sample-Zc10—
Mudstone-biomicrite unit from the Chhidru Formation representing brachiopods and stylolites veins highlighted by hematite
(cross Nicol 4×); (c) Sample-ZC11—Mudstone-biomicrite unit representing albite, microcline, muscovite, and nodosaria (cross
Nicol 4×); (d) Sample-ZC-12—Mudstone-biomicrite unit showing albite; (e) Sample-ZC-12—Mudstone-biomicrite unit repre-
senting zircon which is colorless in plain polarized light (PPL 10×); (f) Sample-ZC-7—Wackstone-biomicrite unit representing
ammonites (PPL 4×); (g) Sample-ZC-8—Wackstone-biomicrite unit showing bioclasts replaced by silica (Cross Nicol 4×);
(h) Sample-ZC-4—Wackstone-biosparite unit representing radiolaria (PPL 10×).
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4.2. Microfacies of Chhidru Formation

The microfacies found in the Chhidru Formation were identified and classified based
on the classification scheme of Wilson (2008). Dominant microfacies are those made of
multiple types of bioclasts, quartz, and feldspar components, showing textures from mudstone
to packstone. A total of five microfacies have been identified; they are listed below.

Mudstone-biomicrite facies
Wackstone-biomicrite facies
Wackstone-biosparite facies
Packstone-biomicrite facies
Packstone-biosparite facies

4.2.1. Mudstone-Biomicrite Facies

The mudstone-biomicrite facies includes samples ZC10, ZC11, and ZC12 (Table 2).
The petrographic examination reveals that these samples are composed of micrite, quartz,
feldspar, and fairly preserved brachiopod and bryozoan bioclasts, among other minerals
(Figure 5b,c).

A little quantity of hematite, around 1–2%, may be found in stylolite. Mineral zircon
is present in very small amounts in ZC12 (Figure 5d). The most frequent kind of cement
discovered in these microfacies is sparry calcite cement (Figure 5c,d). Dunham classifies
samples ZC10, ZC11, and ZC12 as mudstone due to the presence of muddier carbonate
(Figure 5b–e). The grains are subangular to subrounded and weakly to moderately sorted,
and this microfacies represent marine fossil fragments containing these grains.

This microfacies is characterized by marine fossils fragments, subangular to sub
rounded grains, moderate to poor sorting, and abundant clastic and ferruginous matrix.
This is a low-energy deposition environment underneath the fair-weather wave base
because of the presence of matrix. A close proximity to the inner shelf is suggested by
the occurrence of tiny marine fossils and the predominant sandstone texture (such as
quartz, feldspar, etc.) [78,79]. The same kind of microfacies was also regarded as inner shelf
deposits by Zlobin et al. [80], Özgen-Erdem and Koç-Tasgin [81], and Moissette et al. [82].

4.2.2. Wackstone-Biomicrite Facies (MF-2)

The Wackstone-biomicrite facies includes samples ZC7 and ZC8 (Table 2). These
samples include 30% bioclasts, 50% micrite, and 20% spar, as determined by petrographic
examination (Figure 5f,g). Bioclasts in fine-grained cement is classified by Folk as such (mi-
crite). ZC7 and ZC8 are classified by Dunham as Wackstone deposits with poor fusulinids
and gastropod preservation (Figure 5f,g).

According to Sims and Belanger [83], Arefifard and Payne [84] and Huang et al. [85],
Fusulinids (foraminifera) is most often seen in open sea. Bryozoans, on the other hand,
can only exist in naturally salted water [86–89]. Marine subtidal habitat is indicated by the
presence of a micrite matrix and a wide range of fauna. Because agitated water prevents
lime mud from settling, a low energy depositional condition results in a large inflow or
presence of mud. Low energy deposition, the presence of shallow marine creatures, poor
preservation of fusulinids, and a large inflow of lime are believed to have contributed to the
deposition of this microfacies below the middle shelf setting’s fair-weather wave base condition.

4.2.3. Wackstone-Biosparite Facies (MF-3)

Sample ZC4 is classified as a Wackstone-biomicrite microfacies (Table 2). The petro-
graphic analysis of ZC4 reveals that this rock sample includes 49% bioclasts, 16% micrite,
and 35% spar. It depicts fragments of brachiopod shells (Figure 5h). The cement spar
contains bioclasts that are coarsely crystalline. More than 10% of ZC4’s carbonate grains
are supported by mud, according to Dunham [73] categorization (Figure 5h).

The limestone of a shallow marine origin is especially rich in brachiopod fragments.
Most of the organisms were benthonic and sessile [90–92]. However, even though bra-
chiopods are all marine organisms, they have a wide salinity range, ranging from brackish
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to slightly hypersaline [93–95]. The presence of sparry cement indicates a high level of
energy. These microfacies point to a deposition in the proximal middle shelf area below the
storm wave base.

Table 2. Modal percentage composition of lithofacies of Chhidru Formation, Zaluch Gorge (Macro-scale Estimation).

Sample No. Quartz
%

Feldspar
%

Calcite
%

Bioclasts
%

Others
%

Classification

Dunham [73] Folk [96]

ZC12 29 5 63 2 Muscovite 1%,
Zircon (Trace) Mudstone Biomicrite

ZC11 63 4 28 1 Hematite 1%,
Muscovite 3% Mudstone Biomicrite

ZC10 41 4 51 2
Hematite 2%,

Muscovite
(Trace)

Mudstone Biomicrite

Bioclasts Micrite Spar

ZC9 31 43 26 —— Packstone Biomicrite

ZC8 19 77 10 —— Wackstone Biomicrite

ZC7 19 61 20 —— Wackstone Biomicrite

ZC6 73 18 9 —— Packstone Biomicrite

ZC5 14 36 50 —— Packstone Biosparite

ZC4 49 16 35 Hematite (Trace) Wackstone Biosparite

ZC3 55 9 36 —— Packstone Biosparite

ZC2 43 14 37 Hematite 1% Packstone Biosparite

ZC1 51 19 11 Hematite 5% Packstone Biomicrite

4.2.4. Packstone-Biomicrite Facies (MF-4)

The Packstone-biomicrite facies is shown by samples ZC1, ZC6, and ZC9 (Figure 6a–c;
Table 2). Petrographic analysis of the C1, ZC6, and ZC9 samples shows that bioclasts make
up more than half of the material, with micrite and spar coming in second and third in
order. ZC1 has calcite veins as well (Figure 6a–c). Brachiopods, gastropods, and bryozoans
are all found here. Since bioclasts are found in fine-grained cement (micrite), this is referred
to as bio-micrite according to Folk’s categorization. Because of mud-supported grains, ZC1,
ZC6, and ZC9 are classified as Packstone by Dunham [73] (Figure 6a–c).

As stated by Tucker [97] and Cumming et al. [98], marine bryozoans are important
carbonate sediment providers. They have helped create reefs and other limestones in
the past. Even though brachiopods dwell in fresh water far from the offshore, Scholle
and Ulmer-Scholle [94] and Karlsson et al. [99] describe them as marine invertebrates. A
large inflow of continental sediments during deposition is thought to be the origin of the
formation of this microfacies on a distal middle shelf.

4.2.5. Packstone-Biosparite Facies (MF-5)

Samples no. ZC2, ZC3, and ZC5 are categorized as Packstone-biosparite facies
(Figure 6d–f; Table 2). The petrographic analysis of ZC2, ZC3, and ZC5 reveals that bio-
clasts are the most abundant, followed by micrite and spar. Bryozoans and brachiopods
are the most commonly observed marine organisms. This microfacies indicates a proximal
middle shelf deposition because of the poor preservation of marine fragments and the
presence of a continental inflow during the deposition.
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Figure 6. Photomicrographs representing different features (a) Sample-ZC-1—Wackstone-biomicrite unit representing
ammonite (PPL 10×); (b) Sample ZC-6—Packstone-biomicrite unit representing ostracod and gastropod (Cross Nicol 4×);
(c) Sample-ZC-9—Packstone-biomicrite unit representing brachiopod (PPL 4×); (d) Sample-ZC-2—Packstone-biosparite
unit representing micrite and spar (PPL 4×); (e) Sample-ZC-3—Packstone-biosparite unit indicating brachiopod packed
between spar (Cross Nicol 4×); (f) Sample-ZC-5—Packstone-biosparite representing bioclasts replaced by silica.

5. Discussion
5.1. Dynamic Depositional Model

For the dynamic depositional modeling, the sequence stratigraphy is a critical input
tool for characterizing the sediments that fill the region’s time and space. Rock relation-
ships in a chronostratigraphic framework of repeated layers are studied using sequence
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stratigraphy. Unconformities or their corresponding conformities define the boundaries of
these repeating layers [72,100,101]. Different system tracts (transgressive and regressive)
represent a depositional sequence, which leads to the interpretation of understanding
the deposition between changes in the sea level, according to Janjuhah et al. [102], Lin
et al. [103], and Janjuhah and Alansari [104]. This is the sole method, according to Em-
bry [100], to subdivide rock recordings into system tracts, which may be the only option in
this specific instance.

The transgressive–regressive (T–R) sequence was established by Embry and Klo-
van [74] and is still in use. The unconformable boundary on the basin border is the
subaerial unconformity, and the corresponding conformity farther out to sea is the max-
imum regressive surface (MRS). Through the use of this approach, we may avoid the
problems associated with both the depositional and genetic stratigraphic sequences. The
T–R sequence is divided into transgressive and regressive system tracts using maximum
flooding surfaces. Regressive systems tracts, a basic method of separating the rock record
into systems tracts, may be the only alternative in a given scenario when other methods are
ineffective [100]. The T–R sequence model of Embry [105] was used in this investigation
(Figure 7).
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Figure 7. Field outcrop picture of a Zaluch Gorge outcrop displaying the following various cycles: (a) the stratigraphic cycle
of the Sadri and Amb formations; (b) the stratigraphic cycles of Wargal Limestone; and (c) the stratigraphic cycle of the
Chhidru Formation.
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For this reason, the sequence boundary (SB) is located in Zaluch Gorge, near the base of
the Sardhai Formation, where Warchha Sandstone and Sardhai Shale meet [16,47]. Sardhai
formation has a fine ascending succession, as shown by the grain size. As a result, the water
level rises, causing the Sardhai formation clays to be deposited [38]. The transgressive
surface may be found at the very top of the Sardhai formation (TS) (Figure 7a). Underneath
the Sardhai formation, the lower system tract (LST) is present. There is also a marine
origin to the Amb Formation that covers the Sardhai formation (Figure 7a). It is clear from
the lithology and grain size that sea level increased and ultimately reached at its highest
point. Once the regression has begun, the sea level has dropped. The maximum flooding
surface (MSF) is present at this point. It is located between the transgression surface (TS)
and the MSF of the Amb Formation (Figure 7a). Following deposition (Amb Formation),
regression takes place, and the facie begins to recede toward the basin’s edge. Rocks, such
as the Wargal Limestone and Chhidru formations, are deposited first (Figure 7b). When
looking at the Chhidru Formation, the regressive system tract is composed of marine and
non-marine fabric ranging from limestone to sandy limestones (Figures 3 and 7c) [66,67].
This group of facies was thought to have been deposited in an environment between the
inner and the middle shelf.

The unconformity at the summit of the Chhidru Formation indicates a type-1 sequence
boundary. The high stand system tract (HST) contains several geological formations.
Figure 8 depicts the depositional hierarchy, stratigraphic cycles, and system tracts in this
setting. Previous research has placed the age of the Chhidru Formation at various times.
According to the biostratigraphy of brachiopods, Khan and Afzal [71] dated the Chhidru
Formation as Guadeloupian. His objective was to use the brachiopod biostratigraphy as
a means of correlating the fossil records of different species. His research also found that
the Salt Range lacked Upper Permian strata. Using data from Furnish and Glenister [70],
Nakazawa and Dickins [106], Balic and Malvic [107], Nugroho and Putra [108], and Moro
et al. [109] utilized biostratigraphic dating of foraminifera fusulinids and ammonites to
interpret the Chhidru Formation as having been deposited between 254 and 252.5 Ma.
They proposed using the Upper Permian age as a baseline for cyclicity in their correlation
studies. The relative sea-level curve was compared using the chronology of the eustatic
sea-level curve developed by Chen et al. [110], Haq and Schutter [111], Ross and Ross [112].
The relative sea-level curve for Chhidru’s Formation was derived using observations of
various facies and microfacies, as well as their hypothesized depositional settings. It
has been suggested that the Chhidru Formation was deposited 1.5 Ma ago, during two
distinct periods. Six fourth-order cycles with a 0.1–0.4 Ma time duration are found inside
these third-order cycles [113]. The Chhidru Formation’s depositional environment was
determined by combining data from lithofacies, microfacies, sequence stratigraphy, and
preserved fauna. There is evidence from lithofacies (such as those found in the Chhidru
Formation, which includes clastic as well as carbonate fragments) as well as microfacies
(such as those found in the middle and inner shelf) that the Chhidru Formation was
deposited in the middle to the inner shelf during periods of tectonic stability, with the
distal source of the fine clastic sediments still providing the sediments for the shelf-diverse
agents, representing two (3rd Order) cycles and six parasequence cycles (fourth order) of
the T–R cycle. Samples ZC1, ZC3, ZC6, ZC7, and ZC9 are thought to have lived in clear
water in a shallow marine environment, and fossils such as brachiopods and ammonites
support this theory [114,115]. It is safe to assume that samples ZC2, ZC10, and ZC11, which
all include varied fauna, were collected in a subtidal environment. However, while being
mostly marine, brachiopods have a wide salinity range, being found in both brackish and
somewhat hypersaline habitats. There is a middle-inner shelf depositional environment
indicated by the fossils’ poor preservation, which is due to a significant continental inflow
during the deposit of the Chhidru Formation. Glacio-eustacy and tectonic subsidence
influence the deposition in third-order cycles [116]. Global third order cycle deposits may
have been formed by an increase in glacial ice volume in the late Paleozoic [117]. After sea
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inundation, local subsidence may have caused the Chhidru Formation’s parasequences to
appear cyclically.
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This system tract emerges during the part of the global sea-level rise, when rising
rates outpace sedimentation rates. Comparison of the Chhidru Formation’s sea level to
global sea level in the Upper Permian time, these two medium-sized (25–75 m) decreases
in the Upper Permian are associated with the sea level decline at the base and top of the
Chhidru Formation, according to Haq and Schutter [111] (Figures 3 and 8). This means that
the other two small cycles of falls are not present worldwide but are due to local tectonic
activity (Figure 3). The Chen et al. [110] curve shows a fall of 253.8 Ma on the world chart,
and this research is highly correlated, while a 252.5 Ma fall cannot be correlated as the
Chen et al. [110] curve has a maximum flooding surface at that time. When compared to
the sea-level curve of Ross and Ross [112], it seems that the worldwide impacts on the
Neo-Tethys depositional facies on the Chhidru Formation, as well as local tectonic activity,
played a role (Figure 8) [118]. We infer that the depositional environment of the Chhidru
Formation is influenced by both global and local tectonics.

5.2. Permo-Triassic Boundary

The mixed siliciclastic and carbonate succession of the Permo-Triassic era may be
found in Pakistan’s salt. The sandstone bed known as the white sandstone bed is the
uppermost lithological unit of the Chhidru Formation. The sandstone is fine to medium
grained, thinly bedded with shale interbeds, and the upper contact with the Mianwali
Formation’s Kathwai member is dolomite. The P-T Boundary is marked by Ceratite beds
from the Mianwali Formation (Table 1). The grain size rises from bottom to top (Chhidru
Formation–Mianwali Formation), indicating a coarsening of material in increasing order
(Figure 9). The limestone in the Chhidru Formation’s lower section has been replaced by
sandy limestone, which was deposited far from the coast on the middle to inner shelf during
the Late Permian period. Grain size rises from bottom to top, indicating an increasingly
coarsened layer. Later, the lithology changed dramatically, and the dolomitic unit of the
Mianwali Formation started to rise sharply. During the Siberian Traps eruptions, seawater
sulphate levels in the ocean dropped dramatically, which may have caused the early Triassic
dolomite to accumulate [119]. Invertebrates, particularly brachiopods and ammonoids,
were able to recover during the Spathian period due to continued cooling, which decreased
marine anoxia and raised sulphate levels. During the P-T mass extinction event, there
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were fewer floral eaters and more piscivores in the environment [120]. It is argued that a
sharp decline in the quantity of sediment-binding vegetation in the Early Triassic of South
Africa, Australia, India, and Spain was responsible for the basinal shift from low-energy
meandering rivers to high-energy braided rivers [121]. A variety of Permian flora was
reintroduced in the Spathian Stage, resulting in the presence of algal bindstones in the South
China sea. This demonstrates that the eastern Tethys Ocean’s dominantly mixed siliciclastic-
carbonate margins were dominated by sediment-binding organisms that played a key role
in the formation of carbonates. Reduviasporonites, including the species Reduviasporonites
chalastus and Reduviasporonites catenulatus, are common in Permian-Triassic palynological
assemblages [122–124]. Reduviasporonites have been found in ‘relatively high frequency’
at the PTB, as reported by Yin et al. [125]. Reduviasporonites have been found in Pakistan’s
Lower Triassic by Schneebeli-Hermann and Bucher [4].
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On the basis of the abrupt facies changes that occur between the Chhidru and Mianwali
formations, as well as the record of the biostratigraphy, it seems that a P-T border exists
between these two formations.

6. Conclusions

The Nilawahan and Zaluch formations date from the Permian, and they were formed
in the Salt Range. During that period, the tendency of sediment deposition was east to west.
As a result, the Permian succession’s thickness rises from east to west over the Salt Range.
These two formations exhibit progradation, while the Sardhai Formation and the Amb
Formation in the Zaluch Gorge show retrogradation and may be found inside the low stand
system tract or the transgressive system tract. The maximum flooding surface is located
near the summit of the Amb Formation. Once the water level starts dropping, the regressive
process may begin. There are two major deposits in the high stand system tract during
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this time period, which are the Wargal Limestone and Chhidru formations (HST); the
border between Permian-Triassic and Triassic is seen at the apex of the Chhidru Formation.
According to the outcrop data from the Chhidru Formation, three lithofacies have been
observed, namely, the limestone facies (CF1), the limestone with clay interbeds facies
(CF2), and the sandy limestone facies (CF3), while the petrographic study has classified the
Chhidru Formation into five distinct microfacies, namely the mudstone biomicrite facies,
the wackestone-biomicrite facies, and the wackestone-biosparite. Based on lithofacies,
microfacies, stratigraphic control, and surviving fauna including brachiopods, ammonites,
and gastropods, the Chhidru Formation was formed in a middle to inner shelf environment.
The high stand system tract’s sequence stratigraphic cycles indicate that this succession
is situated in its uppermost portion. According to the sequence stratigraphic study, the
Chhidru Formation exhibits a worldwide coursing-upward cycle. Using a laser level, we
were able to map out where the transgressive surface and maximum flooding surface are
in relation to each other.
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