Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = unpollinated ovules

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2030 KiB  
Review
Haploid Production in Cannabis sativa: Recent Updates, Prospects, and Perspectives
by S.M. Ahsan, Md. Injamum-Ul-Hoque, Nayan Chandra Howlader, Md. Mezanur Rahman, Md Mahfuzur Rahman, Md Azizul Haque and Hyong Woo Choi
Biology 2025, 14(6), 701; https://doi.org/10.3390/biology14060701 - 15 Jun 2025
Viewed by 978
Abstract
Cannabis sativa L. is a dioecious species known to produce over 1600 chemical constituents, including more than 180 cannabinoids classified into 11 structural groups. These bioactive compounds are predominantly synthesised in the glandular trichomes of female inflorescences. However, sex determination in C. sativa [...] Read more.
Cannabis sativa L. is a dioecious species known to produce over 1600 chemical constituents, including more than 180 cannabinoids classified into 11 structural groups. These bioactive compounds are predominantly synthesised in the glandular trichomes of female inflorescences. However, sex determination in C. sativa is influenced by both genetic and environmental factors, often leading to the development of male flowers on female plants. This unintended fertilisation reduces cannabinoid yield and increases genetic heterogeneity and challenges in medical cannabis production. Haploid and doubled haploid (DH) technologies offer a promising solution by rapidly generating homozygous lines from gametophytic (e.g., unpollinated ovaries and ovules) or sporophytic tissues (e.g., anthers and microspores) via in vitro culture or chromosome reduction during hybridisation. In land plants, the life cycle alternates between a diploid sporophyte and a haploid gametophyte generation, both capable of mitotic division to form multicellular bodies. A single genome regulates this phase transition and encodes the molecular, genetic, and epigenetic mechanisms that precisely control the developmental processes unique to each generation. While the application of haploid technology in C. sativa remains limited, through recent progress in haploid induction (HI) and CRISPR-based genome editing, the direct modification of haploid gametes or embryos enables the creation of null homozygous lines following chromosome doubling, improving genetic uniformity. Understanding the molecular mechanisms of spontaneous chromosome doubling may further facilitate the development of elite cannabis genotypes. Ultimately, enhancing the efficiency of DH production and optimising genome editing approaches could significantly increase the speed of genetic improvement and cultivar development in Cannabis sativa. Full article
(This article belongs to the Collection Crop Improvement Now and Beyond)
Show Figures

Figure 1

21 pages, 3640 KiB  
Article
Optimizing Different Medium Component Concentration and Temperature Stress Pretreatment for Gynogenesis Induction in Unpollinated Ovule Culture of Sugar Beet (Beta vulgaris L.)
by Tatyina Zayachkovskaya, Ksenia Alyokhina, Anna Mineykina, Olga Romanova, Tatiana Vjurtts, Yana Tukuser, Vladimir Zayachkovsky, Alexey Ermolaev, Lyudmila Kan, Maria Fomicheva and Elena Domblides
Horticulturae 2023, 9(8), 900; https://doi.org/10.3390/horticulturae9080900 - 8 Aug 2023
Cited by 3 | Viewed by 2371
Abstract
The great economic importance of sugar beet determines the ongoing biotechnological studies conducted worldwide to improve the technology of obtaining doubled haploids (DHs) using the method of unpollinated ovule culture in vitro. To improve the induction of gynogenesis, we tested the effect of [...] Read more.
The great economic importance of sugar beet determines the ongoing biotechnological studies conducted worldwide to improve the technology of obtaining doubled haploids (DHs) using the method of unpollinated ovule culture in vitro. To improve the induction of gynogenesis, we tested the effect of thidiazuron (TDZ), temperature bud pretreatment, different concentrations of sucrose, and culturing on liquid or solid medium. Three genotypes were tested in this study. The use of TDZ at a concentration of 0.4 mg/L in solid IMB (induction medium for Beta vulgaris) induction nutrient medium with 3 g/L phytagel, 50 g/L sucrose, 200 mg/L ampicillin and cultivation at 28◦C in the dark produced up to 16.7% induced ovules. The liquid nutrient medium of the same composition induced up to 8% ovules. Increasing TDZ concentration to 0.8 mg/L resulted in reduction or total inhibition of gynogenesis, depending on the genotype. Reducing the sucrose concentration to 20 g/L or increasing it to 80 g/L was not effective. In all three genotypes, the absence of temperature pretreatment of buds (5–6 °C) showed the best results. The plant regeneration with MS nutrient medium of 20 g/L sucrose, 3 g/L phytagel, 1 mg/L 6-benzylaminopurine (BAP) and 0.1 mg/L gibberellic acid (GA3) resulted in up to seven shoots from one induced ovule in the most responsive genotype. We showed by flow cytometry, chromosome counting and chloroplast number assessment that all regenerant plants were haploid (2n = x = 9). Full article
Show Figures

Figure 1

18 pages, 4046 KiB  
Article
Efficient Methods for Evaluation on Ploidy Level of Cucurbita pepo L. Regenerant Plants Obtained in Unpollinated Ovule Culture In Vitro
by Elena Domblides, Alexey Ermolaev, Sergey Belov, Lyudmila Kan, Mikhail Skaptsov and Arthur Domblides
Horticulturae 2022, 8(11), 1083; https://doi.org/10.3390/horticulturae8111083 - 16 Nov 2022
Cited by 5 | Viewed by 3466
Abstract
An important stage in doubled haploid (DH) production is to evaluate and to differentiate the ploidy level of regenerant plants at least two–three times during the technology. Therefore, rapid and reliable methods are necessary for particular species taken into the technology. In this [...] Read more.
An important stage in doubled haploid (DH) production is to evaluate and to differentiate the ploidy level of regenerant plants at least two–three times during the technology. Therefore, rapid and reliable methods are necessary for particular species taken into the technology. In this study, Cucurbita pepo regenerants obtained through unpollinated ovule culture in vitro were evaluated including three different methods: direct chromosome counting in apical meristems, flow cytometry of the cell nucleus, and estimation of morphological parameters of the abaxial epidermis. Methods were optimized for each of three evaluations, and main criteria were determined for ploidy level differentiation. As a result, four ploidy levels, namely, 2n, 3n, 4n, and 8n, were defined among regenerant plants adapted to ex vitro conditions, while true haploids were only found among plants that remained in the in vitro culture. In total, 32.35%, 26.47%, 33.82%, 4.41%, and 2.94% of regenerant plants of courgette and patisson were diploid, triploid, tetraploid, octaploid, and aneuploid, respectively. According to results of flow cytometry of the cell nucleus, two cytotypes in diploid samples with DNA content of 2C = 1.07 ± 0.03 pg for courgette belonging to subsp. pepo and 2C = 0.95 ± 0.03 pg for patisson samples belonging to subsp. ovifera were revealed. The images of metaphase chromosomes of haploid, triploid, and tetraploid C. pepo specimens obtained using the propion–lacmoid chromosome staining method were presented for the first time. Parameters of abaxial epidermis in diploid samples of courgette and patisson grown in open-field and greenhouse conditions were described and compared. It was shown that the most robust parameter not depending on external factors was the number of chloroplasts in stomatal guard cells, which contained 9.41 to 11.31, 14.84 to 16.3, and up to 17.58 chloroplasts in diploid, triploid, and tetraploid samples, respectively. The application of several methods for estimation enables avoiding the misidentification of ploidy levels in adapted regenerant plants produced with the use of DH technology. Full article
(This article belongs to the Section Propagation and Seeds)
Show Figures

Figure 1

28 pages, 1920 KiB  
Review
The Production of Helianthus Haploids: A Review of Its Current Status and Future Prospects
by Andrey O. Blinkov, Nataliya V. Varlamova, Ludmila V. Kurenina and Marat R. Khaliluev
Plants 2022, 11(21), 2919; https://doi.org/10.3390/plants11212919 - 29 Oct 2022
Cited by 5 | Viewed by 4620
Abstract
The genus Helianthus comprises 52 species and 19 subspecies, with the cultivated sunflower (Helianthus annuus L.) representing one of the most important oilseed crops in the world, which is also of value for fodder and technical purposes. Currently, the leading direction in [...] Read more.
The genus Helianthus comprises 52 species and 19 subspecies, with the cultivated sunflower (Helianthus annuus L.) representing one of the most important oilseed crops in the world, which is also of value for fodder and technical purposes. Currently, the leading direction in sunflower breeding is to produce highly effective heterosis F1 hybrids with increased resistance to biotic and abiotic stresses. The production of inbred parental lines via repeated self-pollination takes 4–8 years, and the creation of a commercial hybrid can take as long as 10 years. However, the use of doubled haploid technology allows for the obtainment of inbred lines in one generation, shortening the time needed for hybrid production. Moreover, it allows for the introgression of the valuable genes present in the wild Helianthus species into cultivated sunflowers. Additionally, this technology makes it possible to manipulate the ploidy level, thereby restoring fertility in interspecific hybridization. This review systematizes and analyzes the knowledge available thus far about the production of haploid and dihaploid Helianthus plants using male (isolated anther and microspore cultures) and female (unpollinated ovaries and ovules culture) gametophytes, as well as by induced parthenogenesis using γ-irradiated pollen and interspecific hybridization. The genetic, physiological, and physical factors influencing the efficiency of haploid plant production are considered. A special section focuses on the approaches used to double a haploid chromosome set and the direct and indirect methods for determining the ploidy level. The current analyzed data on the successful application of haploid sunflower plants in breeding are summarized. Full article
(This article belongs to the Collection Doubled Haploid Technology in Plant Breeding)
Show Figures

Figure 1

14 pages, 5107 KiB  
Article
Spatiotemporal Distribution of Homogalacturonans and Hemicelluloses in the Placentas, Ovules and Female Gametophytes of Utricularia nelumbifolia during Pollination
by Bartosz J. Płachno, Małgorzata Kapusta, Piotr Stolarczyk and Anna Bogucka-Kocka
Cells 2022, 11(3), 475; https://doi.org/10.3390/cells11030475 - 29 Jan 2022
Cited by 6 | Viewed by 3075
Abstract
Utricularia nelumbifolia is a large carnivorous plant that is endemic to Brazil. It forms an extra-ovular female gametophyte, which surpasses the entire micropylar canal and extends beyond the limit of the integument and invades the placenta tissues. Due to the atypical behavior of [...] Read more.
Utricularia nelumbifolia is a large carnivorous plant that is endemic to Brazil. It forms an extra-ovular female gametophyte, which surpasses the entire micropylar canal and extends beyond the limit of the integument and invades the placenta tissues. Due to the atypical behavior of the female gametophyte, it is interesting to determine the interaction between the gametophyte and sporophytic tissue. Therefore, the aim of this study was to evaluate the role of the placenta, the ovular tissues, the hypertrophied central cell and the integument in guiding the pollen tube in Utricularia nelumbifolia Gardner by studying the distribution of homogalacturonans and hemicelluloses. It was also determined whether the distribution of the homogalacturonans (HG) and hemicelluloses in Utricularia are dependent on pollination. The antibodies directed against the wall components (anti-pectin: JIM5, JIM7, LM19, LM20 and the anti-hemicelluloses: LM25, LM11, LM15, LM20, LM21) were used. Because both low- and high-esterified HG and xyloglucan were observed in the placenta, ovule (integument, chalaza) and female gametophyte of both pollinated and unpollinated flowers, the occurrence of these cell-wall components was not dependent on pollination. After fertilization, low methyl-esterified HGs were still observed in the cell walls of somatic cells and female gametophyte. However, in the case of high-esterified HG, the signal was weak and occurred only in the cell walls of the somatic cells. Because xyloglucans were observed in the cell walls of the synergids and egg cells, this suggests that they play a role in sexual reproduction. Utricularia nelumbifolia with an extra ovule-female gametophyte is presented as an attractive model for studying the male-female dialogue in plants. Full article
(This article belongs to the Special Issue Research on Plant Cell Wall Biology)
Show Figures

Figure 1

22 pages, 5117 KiB  
Article
Production of Gynogenic Plants of Red Beet (Beta vulgaris L.) in Unpollinated Ovule Culture In Vitro
by Tatyina Zayachkovskaya, Elena Domblides, Vladimir Zayachkovsky, Lyudmila Kan, Arthur Domblides and Alexey Soldatenko
Plants 2021, 10(12), 2703; https://doi.org/10.3390/plants10122703 - 8 Dec 2021
Cited by 12 | Viewed by 4171
Abstract
The unique and balanced components of the biochemical composition, together with high antioxidant activity, make the red beet necessary a dietary vegetable crop, much contributing to healthy food ration. The application of the technology for producing gynogenic plants in vitro increases the genetic [...] Read more.
The unique and balanced components of the biochemical composition, together with high antioxidant activity, make the red beet necessary a dietary vegetable crop, much contributing to healthy food ration. The application of the technology for producing gynogenic plants in vitro increases the genetic diversity and significantly reduces the period of time required to obtain the appropriate homozygous lines used to create the F1 hybrids that are demanded in the market. For induction of gynogenesis, we used IMB medium developed by us with the addition of 55 g/L sucrose, 3 g/L phytogel, 200 mg/L ampicillin, and 0.4 mg/L thidiazuron (TDZ) and cultured at 28 °C in the dark for 4–6 weeks. Shoot regeneration from embryoids and callus was performed on MS medium with 20 g/L sucrose, 3 g/L phytogel, 1 mg/L 6-benzylaminopurine (BAP), and 0.1 mg/L gibberellic acid (GA3). Immersion of the obtained microshoots with 5–7 well-developed leaves for 10–15 s into concentrated sterile indole-3-butyric acid (IBA) solution (50 mg/L) followed by their cultivation on solid medium ½ IMB with 2% sucrose and 3 g/L phytogel was the most efficient method for root formation. The addition of silver nitrate (22 mg/L) to the nutrient medium provoked an increase in the number of induced ovules up to nine per Petri dish (up to 25% of induced ovules). Gynogenic development was produced in six out of 11 genotypes studied, and the plants that were then acclimatized to ex vitro conditions were obtained in three genotypes (Nezhnost’, Dobrynya, b/a 128). The evaluation of ploidy of gynogenic plants that was carried out by flow cytometry and direct counting of chromosomes stained with propion-lacmoide revealed that all obtained gynogenic plants were haploids (2n = x = 9). Full article
Show Figures

Figure 1

16 pages, 4996 KiB  
Article
Spatio-Temporal Distribution of Cell Wall Components in the Placentas, Ovules and Female Gametophytes of Utricularia during Pollination
by Bartosz Jan Płachno, Małgorzata Kapusta, Piotr Świątek, Krzysztof Banaś, Vitor F. O. Miranda and Anna Bogucka-Kocka
Int. J. Mol. Sci. 2021, 22(11), 5622; https://doi.org/10.3390/ijms22115622 - 25 May 2021
Cited by 7 | Viewed by 3366
Abstract
In most angiosperms, the female gametophyte is hidden in the mother tissues and the pollen tube enters the ovule via a micropylar canal. The mother tissues play an essential role in the pollen tube guidance. However, in Utricularia, the female gametophyte surpasses [...] Read more.
In most angiosperms, the female gametophyte is hidden in the mother tissues and the pollen tube enters the ovule via a micropylar canal. The mother tissues play an essential role in the pollen tube guidance. However, in Utricularia, the female gametophyte surpasses the entire micropylar canal and extends beyond the limit of the integument. The female gametophyte then invades the placenta and a part of the central cell has direct contact with the ovary chamber. To date, information about the role of the placenta and integument in pollen tube guidance in Utricularia, which have extra-ovular female gametophytes, has been lacking. The aim of this study was to evaluate the role of the placenta, central cell and integument in pollen tube pollen tube guidance in Utricularia nelumbifolia Gardner and Utricularia humboldtii R.H. Schomb. by studying the production of arabinogalactan proteins. It was also determined whether the production of the arabinogalactan proteins is dependent on pollination in Utricularia. In both of the examined species, arabinogalactan proteins (AGPs) were observed in the placenta (epidermis and nutritive tissue), ovule (integument, chalaza), and female gametophyte of both pollinated and unpollinated flowers, which means that the production of AGPs is independent of pollination; however, the production of some AGPs was lower after fertilization. There were some differences in the production of AGPs between the examined species. The occurrence of AGPs in the placental epidermis and nutritive tissue suggests that they function as an obturator. The production of some AGPs in the ovular tissues (nucellus, integument) was independent of the presence of a mature embryo sac. Full article
Show Figures

Figure 1

20 pages, 2899 KiB  
Article
Computational Characterization of ncRNA Fragments in Various Tissues of the Brassica rapa Plant
by Boseon Byeon, Andriy Bilichak and Igor Kovalchuk
Non-Coding RNA 2017, 3(2), 17; https://doi.org/10.3390/ncrna3020017 - 24 Mar 2017
Cited by 10 | Viewed by 5344
Abstract
Recently, a novel type of non-coding RNA (ncRNA), known as ncRNA fragments or ncRFs, has been characterised in various organisms, including plants. The biogenesis mechanism, function and abundance of ncRFs stemming from various ncRNAs are poorly understood, especially in plants. In this work, [...] Read more.
Recently, a novel type of non-coding RNA (ncRNA), known as ncRNA fragments or ncRFs, has been characterised in various organisms, including plants. The biogenesis mechanism, function and abundance of ncRFs stemming from various ncRNAs are poorly understood, especially in plants. In this work, we have computationally analysed the composition of ncRNAs and the fragments that derive from them in various tissues of Brassica rapa plants, including leaves, meristem tissue, pollen, unfertilized and fertilized ova, embryo and endosperm. Detailed analysis of transfer RNA (tRNA) fragments (tRFs), ribosomal RNA (rRNA) fragments (rRFs), small nucleolar RNA (snoRNA) fragments (snoRFs) and small nuclear RNA (snRNA) fragments (snRFs) showed a predominance of tRFs, with the 26 nucleotides (nt) fraction being the largest. Mapping ncRF reads to full-length mature ncRNAs showed a strong bias for one or both termini. tRFs mapped predominantly to the 5′ end, whereas snRFs mapped to the 3′ end, suggesting that there may be specific biogenesis and retention mechanisms. In the case of tRFs, specific isoacceptors were enriched, including tRNAGly(UCC) and tRFAsp(GUC). The analysis showed that the processing of 26-nt tRF5′ occurred by cleavage at the last unpaired nucleotide of the loop between the D arm and the anticodon arm. Further support for the functionality of ncRFs comes from the analysis of binding between ncRFs and their potential targets. A higher average percentage of binding at the first half of fragments was observed, with the highest percentage being at 2–6 nt. To summarise, our analysis showed that ncRFs in B. rapa are abundantly produced in a tissue-specific manner, with bias toward a terminus, the bias toward the size of generated fragments and the bias toward the targeting of specific biological processes. Full article
(This article belongs to the Special Issue Bioinformatics Softwares and Databases for Non-Coding RNA Research)
Show Figures

Figure 1

Back to TopTop