Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = underwater distributary channel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 11338 KiB  
Article
Genesis of Clastic Reservoirs in the First Member of Yaojia Formation, Northern Songliao Basin
by Junhui Li, Qiang Zheng, Yu Cai, Huaye Liu, Tianxin Hu and Haiguang Wu
Minerals 2025, 15(8), 795; https://doi.org/10.3390/min15080795 - 29 Jul 2025
Viewed by 196
Abstract
This study focuses on the clastic reservoir in the first member of Yaojia Formation within Qijia-Gulong Sag, Songliao Basin. The results indicate that the reservoir in the study area develops within a shallow-water delta sedimentary system. The dominant sedimentary microfacies comprise underwater distributary [...] Read more.
This study focuses on the clastic reservoir in the first member of Yaojia Formation within Qijia-Gulong Sag, Songliao Basin. The results indicate that the reservoir in the study area develops within a shallow-water delta sedimentary system. The dominant sedimentary microfacies comprise underwater distributary channels, mouth bars, and sheet sands. Among these, the underwater distributary channel microfacies exhibits primary porosity ranging from 15.97% to 17.71%, showing the optimal reservoir quality, whereas the sheet sand microfacies has a porosity of only 7.45% to 12.08%, indicating inferior physical properties. During diagenesis, compaction notably decreases primary porosity via particle rearrangement and elastic deformation, while calcite cementation and quartz overgrowth further occlude pore throats. Although dissolution can generate secondary porosity (locally up to 40%), the precipitation of clay minerals tends to block pore throats, leading to “ineffective porosity” (permeability generally < 5 mD) and overall low-porosity and low-permeability characteristics. Carbon–oxygen isotope analysis reveals a deficiency in organic acid supply in the study area, restricting the intensity of dissolution alteration. Reservoir quality evolution is dominantly governed by the combined controls of sedimentary microfacies and diagenesis. This study emphasizes that, within shallow-water delta sedimentary settings, the material composition of sedimentary microfacies and the dynamic equilibrium of diagenetic processes jointly govern reservoir property variations. This insight provides critical theoretical support for understanding diagenetic evolution mechanisms in clastic reservoirs and enabling precise prediction of high-quality reservoir distribution. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Figure 1

19 pages, 15236 KiB  
Article
Sedimentary Characteristics and Model of Estuary Dam-Type Shallow-Water Delta Front: A Case Study of the Qing 1 Member in the Daqingzijing Area, Songliao Basin, China
by Huijian Wen, Weidong Xie, Chao Wang, Shengjuan Qian and Cheng Yuan
Appl. Sci. 2025, 15(15), 8327; https://doi.org/10.3390/app15158327 - 26 Jul 2025
Viewed by 254
Abstract
The sedimentary characteristics and model of the shallow-water delta front are of great significance for the development of oil and gas reservoirs. At present, there are great differences in the understanding of the distribution patterns of estuary dams in the shallow-water delta front. [...] Read more.
The sedimentary characteristics and model of the shallow-water delta front are of great significance for the development of oil and gas reservoirs. At present, there are great differences in the understanding of the distribution patterns of estuary dams in the shallow-water delta front. Therefore, this paper reveals the distribution characteristics of estuary dams through the detailed dissection of the Qing 1 Member in the Daqingzijing area and establishes a completely new distribution pattern of estuary dams. By using geological data such as logging and core measurements, sedimentary microfacies at the shallow-water delta front are classified and logging facies identification charts for each sedimentary microfacies are developed. Based on the analysis of single-well and profile facies, the sedimentary evolution laws of the Qing 1 Member reservoirs are analyzed. On this basis, the sedimentary characteristics and model of the lacustrine shallow-water delta front are established. The results indicate that the Qing 1 Member in the Daqingzijing area exhibits a transitional sequence from a delta front to pro-delta facies and finally to deep lacustrine facies, with sediments continuously retrograding upward. Subaqueous distributary channels and estuary dams constitute the skeletal sand bodies of the retrogradational shallow-water delta. The estuary dam sand bodies are distributed on both sides of the subaqueous distributary channels, with sand body development gradually decreasing in scale from bottom to top. These bodies are intermittently distributed, overlapping, and laterally connected in plan view, challenging the conventional understanding that estuary dams only occur at the bifurcation points of underwater distributary channels. Establishing the sedimentary characteristics and model of the shallow-water delta front is of great significance for the exploration and development of reservoirs with similar sedimentary settings. Full article
Show Figures

Figure 1

30 pages, 18951 KiB  
Article
Identification and Sedimentary Model of Shallow-Water Deltas: A Case Study of the Funing Formation, Subei Basin, Northeast China
by Ziyi Yang, Guiyu Dong, Lianbo Zeng, Yongfeng Qiu, Chen Guo, Zhao Ma, Tianwei Wang, Xu Yang, Shuo Ran and Xing Zhao
Minerals 2025, 15(3), 207; https://doi.org/10.3390/min15030207 - 21 Feb 2025
Cited by 1 | Viewed by 470
Abstract
Shallow-water deltas are not only a hot spot for sedimentological research but also a key target for oil and gas exploration. In this paper, taking the third member (E1f3) of the Funing Formation in the Upper Jurassic as an [...] Read more.
Shallow-water deltas are not only a hot spot for sedimentological research but also a key target for oil and gas exploration. In this paper, taking the third member (E1f3) of the Funing Formation in the Upper Jurassic as an example, based on observations made from core samples, well logging, cathode luminescence characteristics, and analytical assays, the development conditions, sedimentary characteristics, and sedimentary models of shallow-water deltas are summarized. These shallow-water deltas were deposited in conditions with the following characteristics: a gentle terrain platform, a subtropical climate with ample rainfall, an abundant source supply, strong hydrodynamic forces, shallow water bodies, and a frequently eustatic lake level. Shallow-water deltas are characterized by sediment deposition from traction currents, numerous underwater distributary channel scour structures, overlapping scouring structures, sand body distribution with planar features, underwater distributary channels as skeletal sand bodies, and undeveloped mouth bars. Based on these, it is believed that during the deposition period of E1f3, the Gaoyou Sag in the Subei Basin had favorable geological conditions for the development of shallow-water delta deposition. The shallow-water delta deposition that occurred during the sedimentary periods of the five major sand units in the Funing Formation is characterized by front subfacies, with underwater distributary channels as the framework for sand bodies, and multiple intermittent positive rhythms overlapping vertically with the Jianhu Uplift as the source of material supply. In this paper, a depositional model for shallow-water delta deposition during the E1f3 deposition period in the Gaoyou Sag is established, expanding the scope of oil reservoir exploration in the north slope region of the Gaoyou Sag and providing important geological evidence for the selection of favorable subtle zones. Full article
(This article belongs to the Special Issue Deep-Time Source-to-Sink in Continental Basins)
Show Figures

Figure 1

26 pages, 66184 KiB  
Article
Advanced Seismic Sedimentology Techniques for Characterizing Shallow-Water Fan Deltas: Reservoir Architecture and Sedimentary Evolution of the Upper Karamay Formation, Bai21 Area, NW Junggar Basin, China
by Derong Huang, Xinmin Song, Youjing Wang and Guosheng Qin
Appl. Sci. 2025, 15(5), 2306; https://doi.org/10.3390/app15052306 - 21 Feb 2025
Viewed by 675
Abstract
Various glutenite reservoirs, developed by fans, can be found in the Junggar Basin. Among these, there are different interpretations of the glutenite reservoirs formed by shallow-water fan deltas in the Triassic system in the northwestern margin of the basin. The characteristics of these [...] Read more.
Various glutenite reservoirs, developed by fans, can be found in the Junggar Basin. Among these, there are different interpretations of the glutenite reservoirs formed by shallow-water fan deltas in the Triassic system in the northwestern margin of the basin. The characteristics of these deltas and their reservoir architecture have not been understood clearly. It seriously restricts the advancement of the subsequent development of the oilfield. Therefore, it is of great significance to carry out the fine reservoir architecture characterization of the shallow-water fan delta in this area. In this study, the upper member of the Triassic Karamay Formation in the Bai 21 area was selected as the study site. Through core analysis, nine types of sedimentary microfacies, including mudflow deposit, braided river, flood plain, underwater main channel, underwater distributary channel, overbank channel, interchannel deposition, estuary bar, and sheet sand, are found. Through mixed-phase wavelet frequency extension, the main frequency of seismic data is moderately increased and the frequency band is broadened, which makes it possible to identify the thin layer of about 10 m. Through continuous stratal slicing, the thin-layer sedimentary bodies that are difficult to be distinguished in the vertical direction are depicted, and the distribution of sedimentary bodies at different vertical positions is obtained by browsing the slices. Through color fusion based on seismic frequency decomposition, the fusion results contain information reflecting the thickness, and the characterization effect of the fan boundary is significantly improved. In summary, this study depicts the distribution of single-stage fans and recognizes the sand body development characteristics of the two-stage fans. Research suggests that two large shallow-water fan-delta complexes were discovered in the S3 sand group within the study area. Each fan possesses a multilevel branching distributary channel system, resulting in multiple horizontally oriented lobes. Within the fan-delta complex in S3, which is the third sand group in the Upper Triassic Karamay Formation, the fan complex can be divided into two single-stage fans recorded in the sublayer S31 and S32 upward. The two-stage fan deltas show inherited development characteristics in sedimentary characteristics and form in a regression sequence. The sand bodies formed during the low-water-level stage in S31 are thick, with few interlayers developed. Most sand bodies intersect each other vertically. In the shallow fan delta, a widespread estuary bar is deposited, which develops along the underwater distributary channel. This research enhances the understanding of shallow-water fan-delta reservoirs in the study area, and it provides a precise target for oilfield development and solves the key problem of unclear understanding of sand body distribution and combination relationships, which restricts development. Full article
(This article belongs to the Special Issue Advances in Seismic Sedimentology and Geomorphology)
Show Figures

Figure 1

22 pages, 37035 KiB  
Article
Diagenesis Variation in Different Distributary Channels of Shallow Water Lacustrine Delta Deposits and Implication for High-Quality Reservoir Prediction: A Case Study in the Chang 8 Member in Caijiamiao Area, Sw Ordos Basin, China
by Xiaolong Bi, Yiping Wang, Xiao Tang, Weiyun Luo, Chenxi Hao, Mingqiu Hou and Li Zhang
Minerals 2024, 14(10), 987; https://doi.org/10.3390/min14100987 - 30 Sep 2024
Cited by 3 | Viewed by 1306
Abstract
Tight oil reservoirs are considered important exploration targets in lacustrine basins. High-quality reservoir prediction is difficult as the reservoirs have complex distributions of depositional facies and diagenesis processes. Previous research has found that the diagenesis process of tight oil sandstones varies greatly in [...] Read more.
Tight oil reservoirs are considered important exploration targets in lacustrine basins. High-quality reservoir prediction is difficult as the reservoirs have complex distributions of depositional facies and diagenesis processes. Previous research has found that the diagenesis process of tight oil sandstones varies greatly in different depositional facies. However, diagenesis variation in different depositional facies is still poorly studied, especially in distributary channels of shallow water delta deposits in lacustrine basins. Based on the description of core samples, the observation of rock slices, the interpretation of well logging data, and the analysis of porosity and permeability data, the differences in the lithofacies types, diagenesis processes, and pore structures of different distributary channels have been clarified. Ultimately, a model of diagenesis and reservoir heterogeneity distribution in the shallow-water delta of Chang 8 Member of the Yanchang Formation in the Caijiamiao area of the Ordos Basin has been established. This research indicates that the main distributary channels in the study area are dominated by massive bedding sandstone lithofacies, while the secondary distributary channels are primarily characterized by cross-bedding sandstone lithofacies. There are significant differences in the compaction, dissolution, and cementation of authigenic chlorite and carbonate among different parts of the distributary channels. Plastic mineral components, such as clay and mica, are abundant in sheet sands, and are more influenced by mechanical and chemical compaction. Influenced by the infiltration of meteoric water and hydrocarbon generation, dissolution pores are relatively well-developed in the underwater distributary channel reservoirs. A large amount of carbonate cementation, such as calcite and siderite, is found within the sandstone at the interface between sand and mud. The occurrence of authigenic chlorite exhibits a clear sedimentary microfacies zonation, but there is little difference in the kaolinite and siliceous cementation among different microfacies reservoirs. Finally, a model of diagenetic differences and reservoir quality distribution within dense sand bodies has been established. This model suggests that high-quality reservoirs are primarily developed in the middle of distributary channels, providing a theoretical basis for the further fine exploration and development of oil and gas in the study area. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Figure 1

17 pages, 15960 KiB  
Article
Analysis of Factors Influencing Tight Sandstone Gas Production and Identification of Favorable Gas Layers in the Shan 23 Sub-Member of the Daning-Jixian Block, Eastern Ordos Basin
by Junyi Sun, Ming Chen, Bo Wang, Gang Wang, Haonian Tian, Jie Hou and Boning Zhu
Processes 2024, 12(9), 1810; https://doi.org/10.3390/pr12091810 - 26 Aug 2024
Cited by 2 | Viewed by 866
Abstract
The Daning-Jixian Block harbors abundant tight sandstone gas resources. However, significant variations in gas production exist among the different wells within the block. A comprehensive study was conducted on key factors such as sedimentary strata and petrophysical characteristics to elucidate their impact on [...] Read more.
The Daning-Jixian Block harbors abundant tight sandstone gas resources. However, significant variations in gas production exist among the different wells within the block. A comprehensive study was conducted on key factors such as sedimentary strata and petrophysical characteristics to elucidate their impact on gas reservoir productivity. Linear regression equations were employed to classify the favorable reservoirs within the study area. The analysis revealed that within the first 6 months of production from the Shan 23 gas layer, daily gas production ranged from 2576.19 to 156,078.17 m3/d, averaging 24,037.9 m3/d. Over the first year, average daily production varied from 2185.05 to 136,806.99 m3/d, averaging 23,469.23 m3/d, indicating relatively stable production from the Shan 23 layer alone. In the dominant central area of the underwater distributary channel delta front in Shan23, the sand body exhibits a superimposed cutting type, resulting in high production rates. Conversely, the sand bodies on the periphery gradually transition to superimposed and isolated types, leading to decreased production. Through a correlation analysis of gas layer thickness, porosity, permeability, and initial gas well production, it was determined that gas production from the wells within the same layer is primarily influenced by gas layer thickness, porosity, and permeability. Gas saturation demonstrates a minimal impact on production according to single-factor analysis. The evaluated factors such as the gas productivity coefficient, energy storage coefficient, and enrichment coefficient exhibited similar distribution patterns across the study area. The high-value areas for the gas productivity coefficient, energy storage coefficient, and enrichment coefficient are concentrated in distributary channel zones and delta lobes. In contrast, regions with underdeveloped skeletal sand bodies generally display lower values for these parameters. The linear relationships between these parameters and the average gas production were calculated to further classify the favorable reservoirs in the study area. This study aimed to establish a scientific basis for the efficient development of the tight sandstone gas reservoirs within the Daning-Jixian Block. Full article
(This article belongs to the Special Issue Exploration, Exploitation and Utilization of Coal and Gas Resources)
Show Figures

Figure 1

14 pages, 5419 KiB  
Article
Evaluation of Sedimentary Characteristics of the Chang 9 Oil Layer Formation in the Yanchang Formation, Ordos Basin
by Xuelin Qiu and Yaning Wang
Appl. Sci. 2024, 14(10), 4035; https://doi.org/10.3390/app14104035 - 9 May 2024
Cited by 2 | Viewed by 1405
Abstract
Shallow-water deltas are a subject of sedimentary research and represent a significant target for oil and gas exploration. The Yanchang Formation of the Triassic in the Ordos Basin comprises numerous shallow-water delta blocks. This paper addresses the core issues pertaining to the sedimentary [...] Read more.
Shallow-water deltas are a subject of sedimentary research and represent a significant target for oil and gas exploration. The Yanchang Formation of the Triassic in the Ordos Basin comprises numerous shallow-water delta blocks. This paper addresses the core issues pertaining to the sedimentary facies, sedimentary characteristics and sand body distribution of the Chang 9 oil layer formation of the Upper Triassic in the Ordos Basin. Guided by the relevant theories and methods of contemporary sedimentology and sedimentary geology, the reservoir characteristics are described and studied in detail through ordinary thin sections, cast thin sections, graphical representations of particle size and scanning electron microscopy experiments. The experimental results indicate that the porosity in the study area ranges from 3% to 12% and that the permeability is between 0 and 1.5 × 10−3 μm2, which is consistent with classification as an ultra-low-porosity and ultra-low-permeability reservoir. The Chang 9 sandstone is composed of feldspar sandstone and lithic feldspar sandstone. The average content of quartz is low, at less than 31%, while the average content of feldspar is high, at more than 34%. The average content of rock debris is between 10% and 20%. Therefore, the compositional maturity of the Chang 9 sand body is generally low. The particle size distribution exhibits a positive deviation, indicating that the sediments in the sand body are primarily coarse-grained components. The kurtosis of the particle size–frequency curve is observed to vary from flat to very sharp. The Chang 91 lake is classified as a shore shallow lake with basin subsidence and lake transgression. The Chang 9 period saw the development of the Chang 91 sedimentary facies into a semi-deep lake–deep lake environment. The vertical structural style of the Chang 9 oil layer formation in the basin can be roughly summarized into three basic structural types: the sedimentary structures observed in the area include box-shaped upward thinning, bell-shaped upward thinning and funnel-shaped upward thickening. The delta front area in Chang 9 is notable for its size and the prevalence of underwater distributary channel microfacies. The sand body distribution is stable, with sand layer thicknesses ranging from 15 to 30 m. The evaluation and summary of the sedimentary characteristics of the Chang 9 oil layer formation provide a geological basis for future exploration and development in the study area. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

14 pages, 5708 KiB  
Article
Application of Convolutional Neural Network in Quantifying Reservoir Channel Characteristics
by Jie Wei and Shaohua Li
Appl. Sci. 2024, 14(6), 2241; https://doi.org/10.3390/app14062241 - 7 Mar 2024
Cited by 1 | Viewed by 1295
Abstract
After many years of exploitation in the petroleum field, most of the oil fields are in advanced stages of development, with a strong non-homogeneity of the reservoir, more residual oil, and low recovery efficiency. Therefore, research on various methods has been carried out [...] Read more.
After many years of exploitation in the petroleum field, most of the oil fields are in advanced stages of development, with a strong non-homogeneity of the reservoir, more residual oil, and low recovery efficiency. Therefore, research on various methods has been carried out by scholars to improve the rate of recovery and to understand the distribution pattern of residual oil in reservoirs. Among the whole clastic reservoirs, fluvial reservoirs occupy a large proportion, so fluvial reservoirs will be the priority for future reservoir research in China. The key to the fine characterization of fluvial-phase reservoirs is to able to reproduce the continuous curvature of the channel, and one important parameter is the width of the channel. The width of the channel sand body is one of the key factors in designing well programs, and accurately identifying the channel boundary is the key to identifying a single channel. Traditional research methods cannot accurately characterize the continuous bending and oscillating morphology of underwater diversion channels, and it is not easy to quantitatively characterize the spatial structure. Therefore, in this paper, a deep learning method is applied to quantitatively identify the width of a single channel within an underwater diversion channel at the delta front edge. Based on the sedimentary background of the block and modern depositional studies, we established candidate models for underwater diversion channels with channel widths of 100, 130, 160, 190, 220, and 250 m based on target simulation and human–computer interactions. The results show that when the width of the underwater diversion channel is 160 m, it has the highest matching rate with the conditional data and corresponds to the actual situation. Therefore, it can be determined that it is the common width of underwater diversion channel in the study area. And it is shown that the method can accurately identify the width of underwater diversion channels, and the results provide a basis for reservoir fine characterization studies. Full article
Show Figures

Figure 1

17 pages, 9190 KiB  
Article
Sedimentary Microfacies Types and Patterns of Chang 6 Member of Triassic Yanchang Formation in the Dalugou Area of Jing’an Oilfield in Ordos Basin, China
by Jiayu Zheng, Zhigang Wen and Chenjun Wu
Sustainability 2023, 15(20), 14875; https://doi.org/10.3390/su152014875 - 14 Oct 2023
Viewed by 1389
Abstract
The sixth member of the Triassic Yanchang Formation (Chang 6 member) in the Dalugou area of the Jing’an Oilfield in the Ordos Basin is a typical ultra-low-permeability lithological reservoir. The Dalugou area has achieved some development progress in the past few years. With [...] Read more.
The sixth member of the Triassic Yanchang Formation (Chang 6 member) in the Dalugou area of the Jing’an Oilfield in the Ordos Basin is a typical ultra-low-permeability lithological reservoir. The Dalugou area has achieved some development progress in the past few years. With the development of the Chang 6 member in the Dalugou area, a better understanding of the sedimentary microfacies and depositional patterns is needed for precise oil development. The purpose of the study of the reservoir description is to understand the reservoir more accurately and provide a solid geological basis for the adjustment of the development strategy of the Chang 6 reservoir. The Chang 6 member of the Triassic Yanchang Formation in the Dalugou area of the Jing’an Oilfield belongs to the subfacies of the delta front, and the reservoir in the study area is mainly the underwater distributary channel deposition. There are two main depositional patterns in the study area: the dendritic sandstone depositional pattern and the lobate sandstone depositional pattern. The study on the sedimentary types and patterns of the Chang 6 member of the Triassic Yanchang Formation in the Dalugou Area of the Jing’an Oilfield can provide significant information for the evaluation of reservoir characterization. Furthermore, the heterogeneity of the Chang 6 reservoir under various depositional patterns has an important influence on oil enrichment. Full article
Show Figures

Figure 1

27 pages, 29979 KiB  
Article
Provenance, Depositional Environment, and Paleoclimatic Conditions of a Near-Source Fan Delta: A Case Study of the Permian Jiamuhe Formation in the Shawan Sag, Junggar Basin
by Zongquan Yao, Haitao Yu, Fan Yang, Deleqiati Jianatayi, Boxuan Zhang, Tianming Li, Chunming Jia, Tuo Pan, Zhaohui Zhang, Naibi Aibibuli and Wenshuo Zhao
Minerals 2023, 13(10), 1251; https://doi.org/10.3390/min13101251 - 25 Sep 2023
Cited by 3 | Viewed by 1403
Abstract
The science of the provenance, sedimentary system, and distribution of sand bodies is unclear, limiting oil and gas exploration. Here, we combined heavy mineral, rare earth element, petrographic, and outcrop data to shed new light on the provenance, depositional environment, and paleoclimatic conditions [...] Read more.
The science of the provenance, sedimentary system, and distribution of sand bodies is unclear, limiting oil and gas exploration. Here, we combined heavy mineral, rare earth element, petrographic, and outcrop data to shed new light on the provenance, depositional environment, and paleoclimatic conditions of the Permian Jiamuhe Formation. The provenance is characterized by “a main provenance system, and four provenance zones,” and this result could be interpreted from analyses of its seismic reflection, clastic composition, REES, and heavy minerals. A detailed sedimentological study performed in the excellent outcrops, a comprehensive analysis of logging, and the legalistic cores of this formation allowed for the identification of ten lithofacies and three lithofacies associations. Four distributary/underwater channels were observed. Furthermore, the redox and paleoclimatic conditions based on trace elements (Th/U, V/(V + Ni), V/Cr, Cu/Zn, Sr/Ba, and Sr/Cu) suggested a weak reduction in the environment, as well as semi-humid and semi-dry conditions of the Jiamuhe Formation. These conditions are also supported by the mudstone color and plant fossils. The tectonic setting belongs to the acid island arc area based on the trace element discrimination diagram of La-Th-SC and the values of the La, Ce, ΣREE, L/H, La/Yb, and (La/Yb)N criteria. The research results further confirm that there are differences in the mineral compositions in the same provenance area, and they provide a geological basis for the fine sedimentary facies characterization and a favorable zone prediction in this area. Full article
Show Figures

Figure 1

17 pages, 33260 KiB  
Article
Coupling Relationships between Sedimentary Microfacies, Sand Bodies, and Tectonic Fracture Characteristics in Braided River Deltas: A Case Study of the Bashijiqike Formation in the Keshen 2 Area
by Zhuangsheng Wang, Xiaobing Lin, Songbai Zhu, Junming Fan and Yuchao Zheng
Minerals 2023, 13(8), 1020; https://doi.org/10.3390/min13081020 - 30 Jul 2023
Cited by 2 | Viewed by 1964
Abstract
Fractures are crucial as main natural gas transport channels in tight sandstone reservoirs. In order to reveal the correlation between the combination of fractures in Block Keshen 2 and sandstone, we have collected drilling core data, logging curve data, imaging logging data, and [...] Read more.
Fractures are crucial as main natural gas transport channels in tight sandstone reservoirs. In order to reveal the correlation between the combination of fractures in Block Keshen 2 and sandstone, we have collected drilling core data, logging curve data, imaging logging data, and rock thin-section data from the Bashjiqike Formation in the Keshen 2 area, and by classifying and statistically analyzing the different influencing factors of fractures, we have established a correlation between the development of fractures and sandstone thickness, lithology, and sedimentary microfacies. The results reveal the following: (1) frequent vertical superposition and lateral migration occur in the sedimentary sand bodies of the Bashijiqike Formation. Three types of patterns of sand bodies have been identified according to the changes in microfacies. Type I refers to the patterns of sand bodies developed in main subaqueous distributary channels, type II refers to the patterns of sand bodies developed in secondary subaqueous distributary channels or mouth bars, and type III refers to the patterns of sand bodies developed in isolated subaqueous distributary channels; (2) three types of fracture patterns have been described in the various sand bodies of the Bashijiqike Formation in the Keshen area, including high–medium-angle branch-like fracture patterns, medium-angle reticular fracture patterns, and isolated fractures; (3) the coupling relationship among sedimentary microfacies, sand body patterns, and fracture patterns has been established. The high–medium-angle branch-like fracture patterns mainly develop in the main underwater distributary channel and the type I sand body patterns. The medium-angle reticular fracture patterns mainly develop in the secondary underwater distributary channel and mouth bars, as well as the type II sand body patterns. Isolated fractures can occur in all sedimentary microfacies but are sporadically distributed within the three types of sand body patterns. The research results present the regularity of fracture development in fractured reservoirs, which can be applied to oil and gas fields with the same background, providing certain geological evidence for exploration and development. Full article
Show Figures

Figure 1

15 pages, 39029 KiB  
Article
Interpretation of Sand Body Architecture in Complex Fault Block Area of Craton Basin: Case Study of TIII in Sangtamu Area, Tarim Basin
by Chao Wang, Chunjing Yan, Zhengjun Zhu, Shaohua Li, Duanchuan Lv, Xixin Wang and Dawang Liu
Energies 2023, 16(8), 3454; https://doi.org/10.3390/en16083454 - 14 Apr 2023
Cited by 4 | Viewed by 1958
Abstract
The complex fault block oilfields in the craton basin contain vast reserves of oil and gas resources. During the development of an oilfield, the flow of oil, gas, and water, is controlled by faults and configuration boundaries. The distribution of remaining oil and [...] Read more.
The complex fault block oilfields in the craton basin contain vast reserves of oil and gas resources. During the development of an oilfield, the flow of oil, gas, and water, is controlled by faults and configuration boundaries. The distribution of remaining oil and gas depends on the interpretation of the reservoir’s architecture. However, recognizing the faults and the architecture boundary remains a challenge, hindering the efficient development of these resources. This study proposes a new idea for interpreting the configuration of thick sand bodies. This study was conducted in order to interpret the fine architecture of thick sand bodies in the Sangtamu area, using core samples, well logging, and production data, guided by sedimentation patterns from ancient to modern times. Results indicate that the Sangtamu area is a braided river delta front sedimentary system, dominated by the backbone underwater distributary channel and branch-type underwater distributary channels. The backbone channel is larger in scale, with a relatively large rock grain size and a box-shaped logging curve, whereas the smaller-scale branch channels have a bell-shaped logging curve resulting from the gradual weakening of water energy. Sandstone bodies from different types of underwater distributary channels are spatially overlapped, forming thick plate-like sandstones. The architecture interface between channels can be used as the fluid seepage boundary and can help prevent bottom water intrusion to a certain extent. The remaining oil is primarily concentrated in the architecture boundary area, which presents the next potential tapping area. Full article
Show Figures

Figure 1

13 pages, 7030 KiB  
Article
Sedimentary Microfacies and Sand Body Characteristics at Segment 2 of the Sangonghe Formation in Oilfield A on the South Slope District of the Mahu Depression
by Lijuan Liu, Fuhua Gong, Yuan Qi and Jinqiang Ma
Sustainability 2023, 15(5), 3920; https://doi.org/10.3390/su15053920 - 21 Feb 2023
Cited by 1 | Viewed by 1715
Abstract
The South Slope District of the Mahu Depression in the Junggar Basin, a major favorable zone for middle and superficial oil–gas exploration, has experienced industrial gas flow. However, research on the sedimentary microfacies characteristics of Segment 2 of the Sangonghe Formation, the main [...] Read more.
The South Slope District of the Mahu Depression in the Junggar Basin, a major favorable zone for middle and superficial oil–gas exploration, has experienced industrial gas flow. However, research on the sedimentary microfacies characteristics of Segment 2 of the Sangonghe Formation, the main oil-bearing formation, remains lacking. In this study, the rock type, sedimentary tectonics, and sedimentary microfacies of Segment 2 of the Jurassic Sangonghe Formation in the South Slope District of the Mahu Depression were thoroughly investigated through 3D seismic, rock core, and logging data. Moreover, the sedimentary modes and distribution characteristics of the sand bodies in the study area were further analyzed. Results showed that subfacies at the front edge of the braided river delta are developed at Segment 2 of the Sangonghe Formation, which can be further divided into four microfacies types, namely, underwater distributary channel, sheet sand, estuary dam, and interdistributary bay. The estuary dam is only developed at local positions in the work area. The vertical evolutionary laws from Segment 2 of the Sangonghe Formation to Segment 3 of the Sangonghe Formation are explicit and manifest as retrogradation from the subfacies at the front edge of the braided river delta to the prodelta. The sand bodies formed by frequent swings of the underwater distributary channels are the main reservoir bodies, and the lithology is mainly fine-grained feldspar lithic sandstone, and sedimentary tectonics have diverse forms. On the basis of deposition microphase analysis, the sand bodies’ planar distribution characteristics under phase-controlled conditions were analyzed using a seismic model inversion technology to provide theoretical guidance for oilfield expansion, exploration, and exploitation. Full article
(This article belongs to the Special Issue Sustainability in Geology and Earth Science)
Show Figures

Figure 1

19 pages, 9828 KiB  
Article
Effect of Authigenic Chlorite on the Pore Structure of Tight Clastic Reservoir in Songliao Basin
by Yangchen Zhang, Xiyu Qu, Changsheng Miao, Jianfeng Zhu, Wen Xu and Weiming Wang
Int. J. Environ. Res. Public Health 2023, 20(2), 1406; https://doi.org/10.3390/ijerph20021406 - 12 Jan 2023
Cited by 5 | Viewed by 1946
Abstract
Authigenic chlorite is a common clay mineral in clastic rock reservoirs, and it has an important influence on the pore structure of tight clastic rock reservoirs. In this paper, the tight clastic reservoirs in the Lower Cretaceous Yingcheng Formation in the Longfengshan subsag [...] Read more.
Authigenic chlorite is a common clay mineral in clastic rock reservoirs, and it has an important influence on the pore structure of tight clastic rock reservoirs. In this paper, the tight clastic reservoirs in the Lower Cretaceous Yingcheng Formation in the Longfengshan subsag in the Changling fault depression in the Songliao Basin were investigated. Polarized light microscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), high-pressure mercury injection (HPMI), and low temperature nitrogen adsorption (LTNA) were used to study the influence of authigenic chlorite on the pore structure of tight clastic reservoirs. The results show that the authigenic chlorite in the study area was mainly generated in the form of pore linings. The formation of the authigenic chlorite was mainly controlled by the parent rock type and the sedimentary microfacies in the provenance area. The hydrolysis and dissolution of the iron- and magnesium-rich intermediate-mafic magmatic rocks and the high-energy, open, weakly alkaline reducing environment in the delta-front underwater distributary channel were the key factors controlling the formation of the authigenic chlorite in the study area. The pore-lining chlorite slowed down compaction and inhibited quartz overgrowth, protecting the original pores. Moreover, there are a large number of intercrystalline pores in the chlorite, which provided channels for the flow of acidic water and thus the formation of secondary pores, playing a positive role in the physical properties of the tight clastic rock reservoirs. However, the pore-filling chlorite also blocked the pore throats, playing a negative role in the physical properties of the tight clastic rock reservoirs. The tight clastic rock reservoirs with pore-lining chlorite generally had low displacement pressures and large pore throat radii. The morphology of the nano-scale pores was mainly parallel plate-shaped slit pores. There were many primary pores and a small number of secondary pores in the reservoir. Some of the pores were connected by narrow-necked or curved sheet-like throats, and the pore structure was relatively good. A higher relative content of chlorite led to a larger nano-scale pore throat radius, a smaller specific surface area, a smoother pore surface, and stronger homogeneity. Authigenic chlorite played a positive role in the formation of the tight clastic reservoirs in the study area. Full article
Show Figures

Figure 1

20 pages, 6097 KiB  
Article
Channel Evolution under the Control of Base-Level Cycle Change and the Influence on the Sustainable Development of the Remaining Oil—A Case in Jiang Ling Depression, Jiang Han Basin, China
by Wei Zhu, Mingsu Shen, Shixin Dai, Kuanning Liu and Yongdi Qi
Sustainability 2022, 14(19), 12518; https://doi.org/10.3390/su141912518 - 30 Sep 2022
Cited by 2 | Viewed by 1864
Abstract
The extension of river channels is one of the key factors in determining the remaining oil distribution. Different sedimentary facies and bedding types of oil layers will form specific characteristics of remaining oil distribution after water injection development. Using massive drilling, core, logging, [...] Read more.
The extension of river channels is one of the key factors in determining the remaining oil distribution. Different sedimentary facies and bedding types of oil layers will form specific characteristics of remaining oil distribution after water injection development. Using massive drilling, core, logging, seismic, and production data, on the basis of sequence stratigraphy base-level cycle change, the river records and development history are restored, and the fine connectivity of reservoirs and the configuration relationship of production wells are studied. The following conclusions are drawn: (1) A sequence stratigraphic division scheme is established. In the established sequence framework, the types and characteristics of reservoir sand bodies are analyzed. The 2nd and 6th members of Yu yang formation can be divided into 2 long-term base level cycles, 5 medium-term base level cycles, and 17 short-term base level cycles. The evolution of the second and sixth members of the Yu yang formation shows a pattern of base level rising, falling and rising again; (2) the vertical sedimentary evolution sequence is underwater distributary channel distributary channel meandering channel distributary channel flood plain. The types of channel sand bodies developed from little overlap to more vertical or lateral overlap and then gradually changed to isolated type; (3) according to the structural location and development sequence, different types of reservoirs are identified. Combined with the statistics of the drilled data of Yu yang formation k2y4 in Fu I fault block, it is found that the connectivity rate of oil layer thickness (the ratio of oil layer connectivity thickness to total thickness of sand layer) within the oil-bearing area is 84.4%, and the connectivity rate of the number of layers (8) is 60%. The connectivity condition is relatively good. Full article
(This article belongs to the Special Issue Geographic Big Data Analysis and Urban Sustainable Development)
Show Figures

Figure 1

Back to TopTop