Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = ultraviolet scattering communication

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1609 KiB  
Article
Research on Networking Protocols for Large-Scale Mobile Ultraviolet Communication Networks
by Leitao Wang, Zhiyong Xu, Jingyuan Wang, Jiyong Zhao, Yang Su, Cheng Li and Jianhua Li
Photonics 2025, 12(7), 710; https://doi.org/10.3390/photonics12070710 - 14 Jul 2025
Viewed by 234
Abstract
Ultraviolet (UV) communication, characterized by non-line-of-sight (NLOS) scattering, holds substantial potential for enabling communication networking in unmanned aerial vehicle (UAV) formations within strong electromagnetic interference environments. This paper proposes a networking protocol for large-scale mobile ultraviolet communication networks (LSM-UVCN). In large-scale networks, the [...] Read more.
Ultraviolet (UV) communication, characterized by non-line-of-sight (NLOS) scattering, holds substantial potential for enabling communication networking in unmanned aerial vehicle (UAV) formations within strong electromagnetic interference environments. This paper proposes a networking protocol for large-scale mobile ultraviolet communication networks (LSM-UVCN). In large-scale networks, the proposed protocol establishes multiple non-interfering transmission paths based on a connection matrix simultaneously, ensuring reliable space division multiplexing (SDM) and optimizing the utilization of network channel resources. To address frequent network topology changes in mobile scenarios, the protocol employs periodic maintenance of the connection matrix, significantly reducing the adverse impacts of node mobility on network performance. Simulation results demonstrate that the proposed protocol achieves superior performance in large-scale mobile UV communication networks. By dynamically adjusting the connection matrix update frequency, it adapts to varying node mobility intensities, effectively minimizing control overhead and data loss rates while enhancing network throughput. This work underscores the protocol’s adaptability to dynamic network environments, providing a robust solution for high-reliability communication requirements in complex electromagnetic scenarios, particularly for UAV swarm applications. The integration of SDM and adaptive matrix maintenance highlights its scalability and efficiency, positioning it as a viable technology for next-generation wireless communication systems in challenging operational conditions. Full article
(This article belongs to the Special Issue Free-Space Optical Communication and Networking Technology)
Show Figures

Figure 1

10 pages, 2868 KiB  
Article
Improved UV Photoresponse Performance of ZnO Nanowire Array Photodetector via Effective Pt Nanoparticle Coupling
by Nan Wang, Jianbo Li, Chong Wang, Xiaoqi Zhang, Song Ding, Zexuan Guo, Yuhan Duan and Dayong Jiang
Nanomaterials 2024, 14(17), 1442; https://doi.org/10.3390/nano14171442 - 4 Sep 2024
Cited by 5 | Viewed by 1723
Abstract
Ultraviolet (UV) photodetectors (PDs) based on nanowire (NW) hold significant promise for applications in fire detection, optical communication, and environmental monitoring. As optoelectronic devices evolve towards lower dimensionality, multifunctionality, and integrability, multicolor PDs have become a research hotspot in optics and electronic information. [...] Read more.
Ultraviolet (UV) photodetectors (PDs) based on nanowire (NW) hold significant promise for applications in fire detection, optical communication, and environmental monitoring. As optoelectronic devices evolve towards lower dimensionality, multifunctionality, and integrability, multicolor PDs have become a research hotspot in optics and electronic information. This study investigates the enhancement of detection capability in a light-trapping ZnO NW array through modification with Pt nanoparticles (NPs) via magnetron sputtering and hydrothermal synthesis. The optimized PD exhibits superior performance, achieving a responsivity of 12.49 A/W, detectivity of 4.07 × 1012 Jones, and external quantum efficiency (EQE) of 4.19 × 103%, respectively. In addition, the Pt NPs/ZnO NW/ZnO PD maintains spectral selectivity in the UV region. These findings show the pivotal role of Pt NPs in enhancing photodetection performance through their strong light absorption and scattering properties. This improvement is associated with localized surface plasmon resonance induced by the Pt NPs, leading to enhanced incident light and interfacial charge separation for the specialized configurations of the nanodevice. Utilizing metal NPs for device modification represents a breakthrough that positively affects the preparation of high-performance ZnO-based UV PDs. Full article
(This article belongs to the Special Issue Nanophotonic: Structure, Devices and System)
Show Figures

Figure 1

17 pages, 5880 KiB  
Article
Design and Optimization of an Ultraviolet Scattering Communication System Based on Duty Cycle Regulation
by Yu Jiao, Yingkai Zhao, Li Kuang, Ranxi Lin, Jin Ning and Jianguo Liu
Photonics 2024, 11(7), 662; https://doi.org/10.3390/photonics11070662 - 16 Jul 2024
Cited by 2 | Viewed by 1304
Abstract
In this paper, a novel ultraviolet (UV) scatter communication scheme is presented, designed to dynamically adjust the signal duty cycle to optimize on–off keying (OOK) modulation and reduce the bit error rate (BER), particularly under varying rate settings. This approach addresses the significant [...] Read more.
In this paper, a novel ultraviolet (UV) scatter communication scheme is presented, designed to dynamically adjust the signal duty cycle to optimize on–off keying (OOK) modulation and reduce the bit error rate (BER), particularly under varying rate settings. This approach addresses the significant challenge posed by LED tailing effects, which cause signal fluctuations and increase BER in high-speed communications. This BER suppression scheme is proposed for the first time in UV communication research, enhancing communication performance without the need for additional hardware or complex algorithms. A UV communication model that incorporates both path loss and LED tailing effects is introduced, with the probability density function of the signal from transmitter to receiver derived. By varying the signal duty cycle, tailing-induced BER is effectively minimized. Additionally, a closed-form expression for signal transmission BER using a single-scattering model is provided, and the proposed UV communication system is validated through comprehensive simulations and experimental tests. The results indicate that LED tailing has a pronounced impact on BER at higher communication speeds, while its effects are less significant at lower speeds. By optimizing the duty cycle parameters for various communication rates, findings demonstrate that lower duty cycle settings significantly reduce the BER at higher speeds. This further demonstrates the excellent performance of the proposed UV communication solution for OOK-modulated optical communication. Full article
(This article belongs to the Section Optical Communication and Network)
Show Figures

Figure 1

19 pages, 9702 KiB  
Article
Investigation of Characteristics of Ultraviolet Light Pulse Weak Signal Communication System Based on Fourth-Order Frequency-Shift Keying Modulation
by Yingkai Zhao, Axin Du, Yu Jiao, Li Kuang, Jiawen Chen, Ning Sun and Jianguo Liu
Photonics 2024, 11(5), 395; https://doi.org/10.3390/photonics11050395 - 24 Apr 2024
Cited by 3 | Viewed by 1843
Abstract
In ultraviolet (UV) communication, On–Off Keying (OOK) is the primary modulation technique. Compared to OOK, frequency modulation offers stronger resistance to path attenuation. Currently, research on frequency modulation demodulation schemes for UV communication is limited, mainly employing waveform detection and laser pulse response [...] Read more.
In ultraviolet (UV) communication, On–Off Keying (OOK) is the primary modulation technique. Compared to OOK, frequency modulation offers stronger resistance to path attenuation. Currently, research on frequency modulation demodulation schemes for UV communication is limited, mainly employing waveform detection and laser pulse response methods, which require high detection sensitivity to light. This study presents a novel frequency modulation communication scheme using discrete Poisson channel distribution and optical pulse signal processing algorithms, enhancing the signal processing sensitivity of the existing frequency modulation scheme to the level of photons. The proposed system model is rigorously evaluated through theoretical derivations and simulations. Additionally, a hardware system integrating optical pulse counting, frequency detection, and clock data recovery algorithms is developed. Experimental results show the system achieving a 5 kbps transmission rate under frequency modulation. In non-line-of-sight (NLOS) scenarios, communication reaches up to 65 m, with the receiver elevation angle ranging from 10° to 25° and the bit error rate (BER) stabilized at 10−4, while in line-of-sight (LOS) situations, the BER remains at 10−5 up to 400 m and 10−4 up to 700 m, achieving the farthest distance and fastest communication rate achievable in the current FSK modulation scheme of ultraviolet communication systems. The integrated components enhance its applicability in communication systems. This study offers a valuable addition to UV communication technology. Full article
(This article belongs to the Section Optical Communication and Network)
Show Figures

Figure 1

18 pages, 5728 KiB  
Article
Simultaneous Two- and Three-Photon Deep Imaging of Autofluorescence in Bacterial Communities
by Alma Fernández, Anton Classen, Nityakalyani Josyula, James T. Florence, Alexei V. Sokolov, Marlan O. Scully, Paul Straight and Aart J. Verhoef
Sensors 2024, 24(2), 667; https://doi.org/10.3390/s24020667 - 20 Jan 2024
Cited by 4 | Viewed by 2481
Abstract
The intrinsic fluorescence of bacterial samples has a proven potential for label-free bacterial characterization, monitoring bacterial metabolic functions, and as a mechanism for tracking the transport of relevant components through vesicles. The reduced scattering and axial confinement of the excitation offered by multiphoton [...] Read more.
The intrinsic fluorescence of bacterial samples has a proven potential for label-free bacterial characterization, monitoring bacterial metabolic functions, and as a mechanism for tracking the transport of relevant components through vesicles. The reduced scattering and axial confinement of the excitation offered by multiphoton imaging can be used to overcome some of the limitations of single-photon excitation (e.g., scattering and out-of-plane photobleaching) to the imaging of bacterial communities. In this work, we demonstrate in vivo multi-photon microscopy imaging of Streptomyces bacterial communities, based on the excitation of blue endogenous fluorophores, using an ultrafast Yb-fiber laser amplifier. Its parameters, such as the pulse energy, duration, wavelength, and repetition rate, enable in vivo multicolor imaging with a single source through the simultaneous two- and three-photon excitation of different fluorophores. Three-photon excitation at 1040 nm allows fluorophores with blue and green emission spectra to be addressed (and their corresponding ultraviolet and blue single-photon excitation wavelengths, respectively), and two-photon excitation at the same wavelength allows fluorophores with yellow, orange, or red emission spectra to be addressed (and their corresponding green, yellow, and orange single-photon excitation wavelengths). We demonstrate that three-photon excitation allows imaging over a depth range of more than 6 effective attenuation lengths to take place, corresponding to an 800 micrometer depth of imaging, in samples with a high density of fluorescent structures. Full article
(This article belongs to the Special Issue Recent Advances in Biophotonics Sensors)
Show Figures

Figure 1

18 pages, 5541 KiB  
Article
Photocatalytic Activity of the V2O5 Catalyst toward Selected Pharmaceuticals and Their Mixture: Influence of the Molecular Structure on the Efficiency of the Process
by Sanja J. Armaković, Aleksandra Jovanoski Kostić, Andrijana Bilić, Maria M. Savanović, Nataša Tomić, Aleksandar Kremenović, Maja Šćepanović, Mirjana Grujić-Brojčin, Jovana Ćirković and Stevan Armaković
Molecules 2023, 28(2), 655; https://doi.org/10.3390/molecules28020655 - 9 Jan 2023
Cited by 6 | Viewed by 3063
Abstract
Due to the inability of conventional wastewater treatment procedures to remove organic pharmaceutical pollutants, active pharmaceutical components remain in wastewater and even reach tap water. In terms of pharmaceutical pollutants, the scientific community focuses on β-blockers due to their extensive (over)usage and moderately [...] Read more.
Due to the inability of conventional wastewater treatment procedures to remove organic pharmaceutical pollutants, active pharmaceutical components remain in wastewater and even reach tap water. In terms of pharmaceutical pollutants, the scientific community focuses on β-blockers due to their extensive (over)usage and moderately high solubility. In this study, the photocatalytic activity of V2O5 was investigated through the degradation of nadolol (NAD), pindolol (PIN), metoprolol (MET), and their mixture under ultraviolet (UV) irradiation in water. For the preparation of V2O5, facile hydrothermal synthesis was used. The structural, morphological, and surface properties and purity of synthesized V2O5 powder were investigated by scanning electron microscopy (SEM), X-ray, and Raman spectroscopy. SEM micrographs showed hexagonal-shaped platelets with well-defined morphology of materials with diameters in the range of 10–65 µm and thickness of around a few microns. X-ray diffraction identified only one crystalline phase in the sample. The Raman scattering measurements taken on the catalyst confirmed the result of XRPD. Degradation kinetics were monitored by ultra-fast liquid chromatography with diode array detection. The results showed that in individual solutions, photocatalytic degradation of MET and NAD was relatively insignificant (<10%). However, in the PIN case, the degradation was significant (64%). In the mixture, the photodegradation efficiency of MET and NAD slightly increased (15% and 13%). Conversely, it reduced the PIN to the still satisfactory value of 40%. Computational analysis based on molecular and periodic density functional theory calculations was used to complement our experimental findings. Calculations of the average local ionization energy indicate that the PIN is the most reactive of all three considered molecules in terms of removing an electron from it. Full article
Show Figures

Figure 1

15 pages, 5099 KiB  
Article
Development of Red Ceramic Pigments with Perovskite Structure Prepared through a Traditional Route
by Eva Miguel, Juan Bautista Carda Castelló and Isaac Nebot-Díaz
Eng 2023, 4(1), 159-173; https://doi.org/10.3390/eng4010010 - 3 Jan 2023
Cited by 2 | Viewed by 2127
Abstract
Solid solutions of ceramic pigments of red shade have been synthesized based on YAlO3 perovskite structure doped with chromium by means of conventional synthesis; that is, the “ceramic route”. To optimize this synthesis, an emphasis has been made on the study of stoichiometry, [...] Read more.
Solid solutions of ceramic pigments of red shade have been synthesized based on YAlO3 perovskite structure doped with chromium by means of conventional synthesis; that is, the “ceramic route”. To optimize this synthesis, an emphasis has been made on the study of stoichiometry, calcination conditions and mineralizer incorporation. Various studies have demonstrated the high stability of perovskite structures, which ensures stable coloration at high temperatures. This is a highly important factor in the ceramic sector, given the scarcity of red glazes functional at temperatures close to those required of porcelain stoneware and their environmental constraints. Such a limitation makes it impossible in the European community to manufacture using toxic materials such as Se and Cd (cadmium sulfoselenide) that offer interesting colors at low temperatures. Pigments have been synthesized within the Y1−xCrxAlO3, YCrxAl1−xO3 and Y1−xAl1−yCrx+yO3 chromium-doped systems in molar ratios between n = 0.01 molar and n = 0.10 molar. The pigments obtained have been characterized by X-ray diffraction to identify the crystalline phases responsible for the shade; that is, the formation of the perovskite crystalline structure YAlO3 responsible for the red shade, together with lateral phases of garnet Y3Al5O12 of lower intensity. Visible ultraviolet spectrophotometry shows absorption bands corresponding to Cr(III) in octahedral position and the appearance of Cr(IV) in both octahedral and tetrahedral positions. The morphology of the samples was studied using a scanning electron microscope, obtaining information from the secondary and back scattered electrons. The viability of its use in ceramic glazes was verified after applying them mixed at 4% by weight in a glaze to an industrial porous single-firing cycle, collecting the L*a*b* chromatic coordinates using a visible ultraviolet spectrophotometer based on the CIE L*a*b* system, giving rise to red colorations. Full article
(This article belongs to the Section Materials Engineering)
Show Figures

Figure 1

10 pages, 3259 KiB  
Article
Characteristic Study of Non-Line-of-Sight Scattering Ultraviolet Communication System at Small Elevation Angle
by Axin Du, Yuehui Wang, Jing Zhang, Yingkai Zhao, Ning Sun and Jianguo Liu
Photonics 2022, 9(5), 363; https://doi.org/10.3390/photonics9050363 - 23 May 2022
Cited by 4 | Viewed by 2737
Abstract
Ultraviolet (UV) communication is considered an effective complement to traditional wireless communication. However, the scattering models of existing non-line-of-sight (NLOS) UV, which are complex, are difficult to combine with the test. In this paper, the single scattering isosceles model with a small elevation [...] Read more.
Ultraviolet (UV) communication is considered an effective complement to traditional wireless communication. However, the scattering models of existing non-line-of-sight (NLOS) UV, which are complex, are difficult to combine with the test. In this paper, the single scattering isosceles model with a small elevation angle is proposed first. Then, the relationships between the path loss of single scattering isosceles and elevation angle, emission beam angle, receiving field angle, and transmission distance are studied. Finally, we consider outdoor NLOS UV solar-blind communications test at ranges of up to 100 m and 400 m, with different transmit and receive elevation angles. The results show that the isosceles model is in good agreement with the experiments. In addition, the UV isosceles model exhibits good properties compared with the existing scattering model. The proposed UV isosceles model can be employed as a reference for practical applications in outdoor tests. Full article
(This article belongs to the Section Optical Communication and Network)
Show Figures

Figure 1

15 pages, 4759 KiB  
Review
NLOS Communication: Theory and Experiments in the Atmosphere and Underwater
by Vladimir V. Belov, Irit Juwiler, Nathan Blaunstein, Mikhail V. Tarasenkov and Egor S. Poznakharev
Atmosphere 2020, 11(10), 1122; https://doi.org/10.3390/atmos11101122 - 19 Oct 2020
Cited by 17 | Viewed by 3814
Abstract
In this paper, we present investigations of non-line-of-sight (NLOS) communication carried out in Russia and in collaboration with researchers in Israel. The theories of radiative transfer and linear systems provide the theoretical basis for this joint research, and experimental results demonstrate that maximal [...] Read more.
In this paper, we present investigations of non-line-of-sight (NLOS) communication carried out in Russia and in collaboration with researchers in Israel. The theories of radiative transfer and linear systems provide the theoretical basis for this joint research, and experimental results demonstrate that maximal ranges for NLOS communication through atmospheric channels can reach hundreds of kilometers in the visible range and tens of kilometers in the ultraviolet (UV) range of the spectrum. Finally, we predict the range of bistatic underwater communication systems can reach hundreds of meters. Full article
(This article belongs to the Special Issue Atmospheric and Ocean Optics: Atmospheric Physics II)
Show Figures

Figure 1

14 pages, 4402 KiB  
Article
Performance Modeling of Ultraviolet Atmospheric Scattering of Different Light Sources Based on Monte Carlo Method
by Qiushi Zhang, Xin Zhang, Lingjie Wang, Guangwei Shi, Qiang Fu and Tao Liu
Appl. Sci. 2020, 10(10), 3564; https://doi.org/10.3390/app10103564 - 21 May 2020
Cited by 10 | Viewed by 4080
Abstract
Since the atmosphere has a strong scattering effect on ultraviolet light, the transmission of non-line-of-sight (NLOS) signals can be realized in the atmosphere. In previous articles, ultraviolet (UV) light atmospheric scattering has been characterized by many scattering models based on spot light sources [...] Read more.
Since the atmosphere has a strong scattering effect on ultraviolet light, the transmission of non-line-of-sight (NLOS) signals can be realized in the atmosphere. In previous articles, ultraviolet (UV) light atmospheric scattering has been characterized by many scattering models based on spot light sources with uniformly distributed light intensity. In order to explore the role of light sources in atmospheric transmission, this work proposed a UV light atmospheric transport model under different types of light source, including light-emitting diode (LED), laser, and ordinary light sources, based on the Monte Carlo point probability method. The simulation of the light source in the proposed model is a departure from the use of a light source with uniform intensity distribution in previous articles. The atmospheric transmission efficiency of different light sources was calculated and compared with the data of existing models. The simulation results showed that the type of light source can significantly change the shape of the received signal and the received energy density. The Monte Carlo (MC) point probability method dramatically reduced the calculation time and the number of photons. The transmission characteristics of different ultraviolet light sources in the atmosphere provide a theoretical foundation for the design of ultraviolet detection and near-ultraviolet signal communication in the future. Full article
(This article belongs to the Special Issue Atmospheric Optics)
Show Figures

Figure 1

14 pages, 392 KiB  
Article
An Affordable Open-Source Turbidimeter
by Christopher D. Kelley, Alexander Krolick, Logan Brunner, Alison Burklund, Daniel Kahn, William P. Ball and Monroe Weber-Shirk
Sensors 2014, 14(4), 7142-7155; https://doi.org/10.3390/s140407142 - 22 Apr 2014
Cited by 87 | Viewed by 26221
Abstract
Turbidity is an internationally recognized criterion for assessing drinking water quality, because the colloidal particles in turbid water may harbor pathogens, chemically reduce oxidizing disinfectants, and hinder attempts to disinfect water with ultraviolet radiation. A turbidimeter is an electronic/optical instrument that assesses turbidity [...] Read more.
Turbidity is an internationally recognized criterion for assessing drinking water quality, because the colloidal particles in turbid water may harbor pathogens, chemically reduce oxidizing disinfectants, and hinder attempts to disinfect water with ultraviolet radiation. A turbidimeter is an electronic/optical instrument that assesses turbidity by measuring the scattering of light passing through a water sample containing such colloidal particles. Commercial turbidimeters cost hundreds or thousands of dollars, putting them beyond the reach of low-resource communities around the world. An affordable open-source turbidimeter based on a single light-to-frequency sensor was designed and constructed, and evaluated against a portable commercial turbidimeter. The final product, which builds on extensive published research, is intended to catalyze further developments in affordable water and sanitation monitoring. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Back to TopTop