Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = ultrathin Cr film

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 4211 KiB  
Communication
Investigation of the Influence of Adhesion Layers on the Gas Sensing Performance of CuO/Cu2O Thin Films
by Christian Maier, Larissa Egger, Anton Köck and Klaus Reichmann
Chemosensors 2025, 13(3), 80; https://doi.org/10.3390/chemosensors13030080 - 2 Mar 2025
Cited by 1 | Viewed by 1143
Abstract
This parameter study examines the impact of two distinct adhesion layers, chromium (Cr) and titanium (Ti), on the performance of CuO/Cu2O-based chemoresistive gas sensors by varying the layer thickness. The sensing material utilised on a Si-SiO2 sensor chip with Pt [...] Read more.
This parameter study examines the impact of two distinct adhesion layers, chromium (Cr) and titanium (Ti), on the performance of CuO/Cu2O-based chemoresistive gas sensors by varying the layer thickness. The sensing material utilised on a Si-SiO2 sensor chip with Pt electrodes is an ultrathin CuO/Cu2O film fabricated through thermal deposition of Cu and subsequent oxidation. The sensors were evaluated by measuring the change in electrical resistance against a range of target gases, including carbon monoxide (CO), carbon dioxide (CO2) and a mixture of hydrocarbons (HCMix), in order to assess any potential cross-sensitivity issues. As the reactions occur at the surface, the surface was characterised by scanning electron microscopy (SEM) and the composition by grazing incidence X-Ray diffraction (GIXRD) measurement to gain further insight into the influence of the adhesion layer on the sensing performance. Full article
(This article belongs to the Special Issue Recent Advances in Metal Oxide-Based Gas Sensors)
Show Figures

Figure 1

10 pages, 3775 KiB  
Article
Growth of Magnetron-Sputtered Ultrathin Chromium Films: In Situ Monitoring and Ex Situ Film Properties
by Alexandr Belosludtsev, Anna Sytchkova, Kazimieras Baltrusaitis, Viktoras Vaicikauskas, Vitalija Jasulaitiene and Tatjana Gric
Coatings 2023, 13(2), 347; https://doi.org/10.3390/coatings13020347 - 2 Feb 2023
Cited by 4 | Viewed by 2886
Abstract
We report a systematic nanoscale investigation on the ultrathin Cr film growth process and properties. Polycrystalline metallic films were manufactured by magnetron sputtering on fused silica substrates. The film growth was observed in situ by broad-band optical monitoring (BBM) and plasma-emission spectroscopy (OES) [...] Read more.
We report a systematic nanoscale investigation on the ultrathin Cr film growth process and properties. Polycrystalline metallic films were manufactured by magnetron sputtering on fused silica substrates. The film growth was observed in situ by broad-band optical monitoring (BBM) and plasma-emission spectroscopy (OES) methods. The ex situ characterization of the Cr films with thicknesses varying from 2.6 nm up to 57 nm were performed by both non-destructive and destructive techniques. Recently, we reported on a novel set of data for optical and electrical properties of sputtered chromium films. The optical and electrical properties of the films are known to be governed by their structure and microstructure, which were analyzed in detail in the present research. Moreover, the optical properties of the films were studied here in a significantly wider optical range and obtained using both in situ and ex situ measurements. Reliable in situ nanoscale characterization of metal films was shown to ensure an unfailing approach in obtaining ultrathin layers with desirable thickness and stable and well-determined optical constants and electrical conductivity. This is of high importance for various industries and novel upcoming applications. Full article
(This article belongs to the Special Issue Advances in Optical and Optoelectronic: Materials and Applications)
Show Figures

Figure 1

63 pages, 10142 KiB  
Review
Brillouin Light Scattering from Magnetic Excitations
by Akira Yoshihara
Materials 2023, 16(3), 1038; https://doi.org/10.3390/ma16031038 - 24 Jan 2023
Cited by 7 | Viewed by 3666
Abstract
Brillouin light scattering (BLS) has been established as a standard technique to study thermally excited sound waves with frequencies up to ~100 GHz in transparent materials. In BLS experiments, one usually uses a Fabry–Pérot interferometer (FPI) as a spectrometer. The drastic improvement of [...] Read more.
Brillouin light scattering (BLS) has been established as a standard technique to study thermally excited sound waves with frequencies up to ~100 GHz in transparent materials. In BLS experiments, one usually uses a Fabry–Pérot interferometer (FPI) as a spectrometer. The drastic improvement of the FPI contrast factor over 1010 by the development of the multipass type and the tandem multipass type FPIs opened a gateway to investigate low energy excitations (ħω ≤ 1 meV) in various research fields of condensed matter physics, including surface acoustic waves and spin waves from opaque surfaces. Over the last four decades, the BLS technique has been successfully applied to study collective spin waves (SWs) in various types of magnetic structures including thin films, ultrathin films, multilayers, superlattices, and artificially arranged dots and wires using high-contrast FPIs. Now, the BLS technique has been fully established as a unique and powerful technique not only for determination of the basic magnetic constants, including the gyromagnetic ratio, the magnetic anisotropy constants, the magnetization, the SW stiffness constant, and other features of various magnetic materials and structures, but also for investigations into coupling phenomena and surface and interface phenomena in artificial magnetic structures. BLS investigations on the Fe/Cr multilayers, which exhibit ferromagnetic-antiferromagnetic arrangements of the adjacent Fe layer’s magnetizations depending on the Cr layer’s thickness, played an important role to open the new field known as “spintronics” through the discovery of the giant magnetoresistance (GMR) effect. In this review, I briefly surveyed the historical development of SW studies using the BLS technique and theoretical background, and I concentrated our BLS SW studies performed at Tohoku University and Ishinomaki Senshu University over the last thirty five years. In addition to the ferromagnetic SW studies, the BLS technique can be also applied to investigations of high-frequency magnetization dynamics in superparamagnetic (SPM) nanogranular films in the frequency domain above 10 GHz. One can excite dipole-coupled SPM excitations under external magnetic fields and observe them via the BLS technique. The external field strength determines the SPM excitations’ frequencies. By performing a numerical analysis of the BLS spectrum as a function of the external magnetic field and temperature, one can investigate the high-frequency magnetization dynamics in the SPM state and determine the magnetization relaxation parameters. Full article
(This article belongs to the Special Issue 100th Anniversary of Brillouin Scattering)
Show Figures

Figure 1

15 pages, 10269 KiB  
Article
Structural and Mechanical Properties of CrN Thin Films Deposited on Si Substrate by Using Magnetron Techniques
by Denis E. Tranca, Arcadie Sobetkii, Radu Hristu, Stefan R. Anton, Eugeniu Vasile, Stefan G. Stanciu, Cosmin K. Banica, Efstathios Fiorentis, David Constantinescu and George A. Stanciu
Coatings 2023, 13(2), 219; https://doi.org/10.3390/coatings13020219 - 17 Jan 2023
Cited by 7 | Viewed by 2505
Abstract
Chromium nitride thin films are known for their good mechanical properties. We present the characteristics of ultrathin chromium nitride films under 400 nm thickness deposited on silicon substrates by direct current and high-power impulse magnetron sputtering techniques. The methods of investigation of the [...] Read more.
Chromium nitride thin films are known for their good mechanical properties. We present the characteristics of ultrathin chromium nitride films under 400 nm thickness deposited on silicon substrates by direct current and high-power impulse magnetron sputtering techniques. The methods of investigation of the CrN films were scanning electron microscopy, atomic force microscopy, and nanoindentation. Qualitative and quantitative analyses were performed using AFM and SEM images by fractal dimension, surface roughness and gray-level co-occurrence matrix methods. Our results show that using magnetron techniques, ultrathin CrN films with excellent mechanical properties were obtained, characterized by values of Young’s modulus between 140 GPa and 250 GPa for the samples obtained using high-power impulse magneton sputtering (HiPIMS) and between 240 GPa and 370 GPa for the samples obtained using direct current sputtering (DC). Stiffness measurements also reveal the excellent mechanical properties of the investigated samples, where the samples obtained using HiPIMS sputtering had stiffness values between 125 N/m and 132 N/m and the samples obtained using DC sputtering had stiffness values between 110 N/m and 119 N/m. Full article
(This article belongs to the Section Thin Films)
Show Figures

Figure 1

10 pages, 2820 KiB  
Article
A Super Anticorrosive Ultrathin Film by Restarting the Native Passive Film on 316L Stainless Steel
by Ying Ren, Yuchen Li, Zhenwei Kang, Xiaoke Zhang, Shaojun Wu, Jun Shen and Genshu Zhou
Nanomaterials 2023, 13(2), 367; https://doi.org/10.3390/nano13020367 - 16 Jan 2023
Cited by 4 | Viewed by 2189
Abstract
The corrosion resistance of stainless steel is attributed to the extraordinary protectiveness of the ultrathin native passive film (~3 nanometers) on alloy surface. This protectiveness, independent of alloying, can possibly be further increased by modifying the native film to resist corrosion in harsh [...] Read more.
The corrosion resistance of stainless steel is attributed to the extraordinary protectiveness of the ultrathin native passive film (~3 nanometers) on alloy surface. This protectiveness, independent of alloying, can possibly be further increased by modifying the native film to resist corrosion in harsh conditions. However, the modification based on the film itself is extremely difficult due to its rapid, self-limiting growth. Here we present a strategy by using low-temperature plasma processing so as to follow the growth kinetics of the native film. The native oxide film is restarted and can uniformly grow up to ~15 nanometers in a self-limiting manner. High-resolution TEM found that the film exhibited a well-defined, chemical-ordering layered structure. The following corrosion tests revealed that the anodic current density of the alloy decreased by two orders of magnitude in 0.6 M NaCl solution with a remarkable increase of pitting potential. This enhancement is also observed in Fe-Cr alloys with Cr contents above ~10.5 wt.%. The superior protectiveness of the alloy is thus attributed to the continuous and thickened high-quality ultrathin Cr2O3 layer in the restarted film. Full article
Show Figures

Figure 1

23 pages, 33348 KiB  
Article
Influence of Substrate Materials on Nucleation and Properties of Iridium Thin Films Grown by ALD
by Paul Schmitt, Vivek Beladiya, Nadja Felde, Pallabi Paul, Felix Otto, Torsten Fritz, Andreas Tünnermann and Adriana V. Szeghalmi
Coatings 2021, 11(2), 173; https://doi.org/10.3390/coatings11020173 - 2 Feb 2021
Cited by 32 | Viewed by 7961
Abstract
Ultra-thin metallic films are widely applied in optics and microelectronics. However, their properties differ significantly from the bulk material and depend on the substrate material. The nucleation, film growth, and layer properties of atomic layer deposited (ALD) iridium thin films are evaluated on [...] Read more.
Ultra-thin metallic films are widely applied in optics and microelectronics. However, their properties differ significantly from the bulk material and depend on the substrate material. The nucleation, film growth, and layer properties of atomic layer deposited (ALD) iridium thin films are evaluated on silicon wafers, BK7, fused silica, SiO2, TiO2, Ta2O5, Al2O3, HfO2, Ru, Cr, Mo, and graphite to understand the influence of various substrate materials. This comprehensive study was carried out using scanning electron and atomic force microscopy, X-ray reflectivity and diffraction, four-point probe resistivity and contact angle measurements, tape tests, and Auger electron spectroscopy. Within few ALD cycles, iridium islands occur on all substrates. Nevertheless, their size, shape, and distribution depend on the substrate. Ultra-thin (almost) closed Ir layers grow on a Ta2O5 seed layer after 100 cycles corresponding to about 5 nm film thickness. In contrast, the growth on Al2O3 and HfO2 is strongly inhibited. The iridium growth on silicon wafers is overall linear. On BK7, fused silica, SiO2, TiO2, Ta2O5, Ru, Cr, and graphite, three different growth regimes are distinguishable. The surface free energy of the substrates correlates with their iridium nucleation delay. Our work, therefore, demonstrates that substrates can significantly tailor the properties of ultra-thin films. Full article
(This article belongs to the Special Issue Recent Advances in Optical Thin Films Coatings)
Show Figures

Graphical abstract

11 pages, 2793 KiB  
Article
Accurate Design of Solar Selective Absorber Based on Measured Optical Constants of Nano-thin Cr Film
by Zheng-Yong Wang, Er-Tao Hu, Qing-Yuan Cai, Jing Wang, Hua-Tian Tu, Ke-Han Yu, Liang-Yao Chen and Wei Wei
Coatings 2020, 10(10), 938; https://doi.org/10.3390/coatings10100938 - 30 Sep 2020
Cited by 18 | Viewed by 3096
Abstract
Solar selective absorbers have significant applications in various photothermal conversion systems. In this work, a global optimization method based on genetic algorithm was developed by directly optimizing the solar photothermal conversion efficiency of a nano-chromium (Cr) film-based solar selective absorber aiming to work [...] Read more.
Solar selective absorbers have significant applications in various photothermal conversion systems. In this work, a global optimization method based on genetic algorithm was developed by directly optimizing the solar photothermal conversion efficiency of a nano-chromium (Cr) film-based solar selective absorber aiming to work at the specified working temperature and solar concentration. In consideration of the semi-transparent metal absorption layer employed in multilayered solar selective absorbers, the optical constants of ultrathin Cr film were measured by spectroscopic ellipsometer and introduced into the optimization process. The ultrathin Cr film-based solar selective absorber was successfully designed and fabricated by the magnetron sputtering method for the working temperature at 600 K and a solar concentration of 1 Sun. The measured reflectance spectra of the sample show a good agreement with the numerical simulations based on measured optical constants of ultrathin Cr film. In comparison, the simulated results by using the optical constants of bulk Cr film or literature data exhibit a large discrepancy with the experimental results. It demonstrates the significance of considering the actual optical constants for the semi-transparent metal absorption layer in the design of nano-metal film-based solar selective absorber. Full article
(This article belongs to the Section Thin Films)
Show Figures

Graphical abstract

9 pages, 3792 KiB  
Article
A Highly Efficient Visible Absorber Coating on a Curved Substrate
by Ruoqian Gao, Heshig Bayan, Fei Yang, Yanchao Wang, Zhen Liu, Hai Liu, Zhenfeng Shen, Qiang Li, Zizheng Li, Xiaoyi Wang and Haigui Yang
Coatings 2020, 10(1), 71; https://doi.org/10.3390/coatings10010071 - 13 Jan 2020
Cited by 1 | Viewed by 3598
Abstract
In this study, we propose and fabricate a perfect absorber on a planar substrate using alternate silicon dioxide and ultrathin metallic lossy chromium (Cr) films. Furthermore, we transfer the absorber to a curved substrate via an optimization design of symmetric structures. The absorber [...] Read more.
In this study, we propose and fabricate a perfect absorber on a planar substrate using alternate silicon dioxide and ultrathin metallic lossy chromium (Cr) films. Furthermore, we transfer the absorber to a curved substrate via an optimization design of symmetric structures. The absorber exhibits a highly efficient absorption and large incident-angular tolerance characteristics in the whole visible region. We investigate each layer contribution to the absorption theoretically, and find that ultrathin (~5 nm) lossy Cr films play a dominant absorptive role. Using the effective interface method, we calculate the phase difference on the lossy Cr front surface. It is close to the destructive interference condition, from which we clarify why the proposed structures can produce a highly efficient absorption. Full article
(This article belongs to the Section Thin Films)
Show Figures

Figure 1

10 pages, 12242 KiB  
Article
A Novel Method for Notable Reducing Phase Transition Temperature of VO2 Films for Smart Energy Efficient Windows
by Huan Guan, Dongping Zhang, Yu Yang, Yi Liu, Aihua Zhong, Qicong He, Jiahua Qi and Ping Fan
Nanomaterials 2020, 10(1), 58; https://doi.org/10.3390/nano10010058 - 25 Dec 2019
Cited by 12 | Viewed by 3519
Abstract
Although Vanadium dioxide (VO2) has a potential application value for smart energy efficient windows because of its unique phase transition characteristic, there are still many obstacles that need to be overcome. One challenge is to reduce its high transition temperature ( [...] Read more.
Although Vanadium dioxide (VO2) has a potential application value for smart energy efficient windows because of its unique phase transition characteristic, there are still many obstacles that need to be overcome. One challenge is to reduce its high transition temperature (ζc = 68 °C) to near room temperature without causing its phase transition performance degradation. In this paper, a novel method was employed that covered a 3 nm ultra-thin heavy Cr-doped VO2 layer on the pure VO2 films. Compared with the as-grown pure VO2, obviously, phase transition temperature decreasing from 59.5 °C to 48.0 °C was observed. Different from previous doping techniques, almost no phase transition performance weakening occurred. Based on the microstructure and electrical parameters measurement results, the mechanism of ζc reducing was discussed. The upper ultra-thin heavy Cr-doped layer may act as the induced role of phase transition. With temperature increasing, carrier concentration increased from the upper heavy Cr-doped layer to the bottom pure VO2 layer by diffusion, and induced the carrier concentration reach to phase transition critical value from top to bottom gradually. The present method is not only a simpler technique, but also avoids expensive alloy targets. Full article
Show Figures

Figure 1

Back to TopTop