Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = ultra-high voltage AC power lines

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2006 KiB  
Article
Load Rejection Overvoltage Suppression and Parameter Design Method of UHV AC Transmission Line
by Guanqun Sun, Wang Ma, Yingge Wang, Dian Xu, Haiguang Liu, Rusi Chen and Yixing Ding
Electronics 2025, 14(3), 619; https://doi.org/10.3390/electronics14030619 - 5 Feb 2025
Viewed by 1143
Abstract
UHV (ultra-high voltage) by instant AC transmission system is accompanied by huge reactive power transmission. When the load drops sharply, it is easy to produce serious power frequency overvoltage, which is also defined as load rejection overvoltage. This paper makes an in-depth analysis [...] Read more.
UHV (ultra-high voltage) by instant AC transmission system is accompanied by huge reactive power transmission. When the load drops sharply, it is easy to produce serious power frequency overvoltage, which is also defined as load rejection overvoltage. This paper makes an in-depth analysis from the perspective of voltage increase caused by instantaneous load unloading, and obtains the causes and key influencing factors of load rejection overvoltage. Taking the UHV AC transmission line of a practical project as an example, the suppression effect of the suppression strategy represented by the installation of opening resistance and shunt reactor on the load rejection overvoltage is analyzed. The simulation results show that the above method has an obvious inhibitory effect on load rejection overvoltage. Based on the optimal suppression principle, the optional interval range of the opening resistance and shunt reactor parameters are designed. Full article
(This article belongs to the Special Issue Advanced Online Monitoring and Fault Diagnosis of Power Equipment)
Show Figures

Figure 1

29 pages, 5068 KiB  
Article
Two-Stage Locating and Capacity Optimization Model for the Ultra-High-Voltage DC Receiving End Considering Carbon Emission Trading and Renewable Energy Time-Series Output Reconstruction
by Lang Zhao, Zhidong Wang, Hao Sheng, Yizheng Li, Tianqi Zhang, Yao Wang and Haifeng Yu
Energies 2024, 17(21), 5508; https://doi.org/10.3390/en17215508 - 4 Nov 2024
Viewed by 1050
Abstract
With the load center’s continuous expansion and development of the AC power grid’s scale and construction, the recipient grid under the multi-feed DC environment is facing severe challenges of DC commutation failure and bipolar blocking due to the high strength of AC-DC coupling [...] Read more.
With the load center’s continuous expansion and development of the AC power grid’s scale and construction, the recipient grid under the multi-feed DC environment is facing severe challenges of DC commutation failure and bipolar blocking due to the high strength of AC-DC coupling and the low level of system inertia, which brings many complexities and uncertainties to economic scheduling. In addition, the large-scale grid integration of wind power, photovoltaic, and other intermittent energy sources makes the ultra-high-voltage (UHV) DC channel operation state randomized. The deterministic scenario-based timing power simulation is no longer suitable for the current complex and changeable grid operation state. In this paper, we first start with the description and analysis of the uncertainty in renewable energy (RE) sources, such as wind and solar, and reconstruct the time-sequence power model by using the stochastic differential equation model. Then, a carbon emission trading cost (CET) model is constructed based on the CET mechanism, and the two-stage locating and capacity optimization model for the UHV DC receiving end is proposed under the constraint of dispatch safety and stability. Among them, the first stage starts with the objective of maximizing the carrying capacity of the UHV DC receiving end grid; the second stage checks its dynamic safety under the basic and fault modes according to the results of the first stage and corrects the drop point and capacity of the UHV DC line with the objective of achieving safe and stable UHV DC operation at the lowest economic investment. In addition, the two-stage model innovatively proposes UHV DC relative inertia constraints, peak adjustment margin constraints, transient voltage support constraints under commutation failure conditions, and frequency support constraints under a DC blocking state. In addition, to address the problem that the probabilistic constraints of the scheduling model are difficult to solve, the discrete step-size transformation and convolution sequence operation methods are proposed to transform the chance-constrained planning into mixed-integer linear planning for solving. Finally, the proposed model is validated with a UHV DC channel in 2023, and the results confirm the feasibility and effectiveness of the model. Full article
(This article belongs to the Section F6: High Voltage)
Show Figures

Figure 1

16 pages, 6303 KiB  
Article
Spatial-Temporal Kinetic Behaviors of Micron-Nano Dust Adsorption along Epoxy Resin Insulator Surfaces and the Physical Mechanism of Induced Surface Flashover
by Naifan Xue, Bei Li, Yuan Wang, Ning Yang, Ruicheng Yang, Feichen Zhang and Qingmin Li
Polymers 2024, 16(4), 485; https://doi.org/10.3390/polym16040485 - 9 Feb 2024
Cited by 3 | Viewed by 1557
Abstract
The advanced Gas Insulated Switchgear/Gas Insulated Lines (GIS/GIL) transmission equipment serves as an essential physical infrastructure for establishing a new energy power system. An analysis spanning nearly a decade on faults arising from extra/ultra-high voltage discharges reveals that over 60% of such faults [...] Read more.
The advanced Gas Insulated Switchgear/Gas Insulated Lines (GIS/GIL) transmission equipment serves as an essential physical infrastructure for establishing a new energy power system. An analysis spanning nearly a decade on faults arising from extra/ultra-high voltage discharges reveals that over 60% of such faults are attributed to the discharge of metal particles and dust. While existing technical means, such as ultra-high frequency and ultrasonic sensing, exhibit effectiveness in online monitoring of particles larger than sub-millimeter dimensions, the inherent randomness and elusive nature of micron-nano dust pose challenges for effective characterization through current technology. This elusive micron-nano dust, likely concealed as a latent threat, necessitates special attention due to its potential as a “safety killer”. To address the challenges associated with detecting micron-nano dust and comprehending its intricate mechanisms, this paper introduces a micron-nano dust adsorption experimental platform tailored for observation and practical application in GIS/GIL operations. The findings highlight that micron-nano dust’s adsorption state in the electric field predominantly involves agglomerative adsorption along the insulator surface and diffusive adsorption along the direction of the ground electrode. The pivotal factors influencing dust movement include the micron-nano dust’s initial position, mass, material composition, and applied voltage. Further elucidation emphasizes the potential of micron-nano dust as a concealed safety hazard. The study reveals specific physical phenomena during the adsorption process. Agglomerative adsorption results in micron-nano dust speckles forming on the epoxy resin insulator’s surface. With increasing voltage, these speckles undergo an “explosion”, forming an annular dust halo with deepening contours. This phenomenon, distinct from the initial adsorption, is considered a contributing factor to flashovers along the insulator’s surface. The physical mechanism behind flashovers triggered by micron-nano dust is uncovered, highlighting the formation of a localized short circuit area and intense electric field distortion constituted by dust speckles. These findings establish a theoretical foundation and technical support for enhancing the safe operational performance of AC and DC transmission pipelines’ insulation. Full article
(This article belongs to the Special Issue New Studies of Polymer Surfaces and Interfaces)
Show Figures

Figure 1

14 pages, 1967 KiB  
Article
AC Tie-Line Power Oscillation Mechanism and Peak Value Calculation for a Two-Area AC/DC Parallel Interconnected Power System Caused by LCC-HVDC Commutation Failures
by Li Sun, Hongbo Liu and Chenglian Ma
Energies 2020, 13(5), 1221; https://doi.org/10.3390/en13051221 - 6 Mar 2020
Cited by 5 | Viewed by 2678
Abstract
With the rapid development of ultra-high-voltage (UHV) AC/DC, especially the step-by-step upgrading of the UHV DC transmission scale, security presents new challenges. Commutation failure (CF) is a common fault in line commutated converter (LCC) high-voltage direct current (HVDC) power systems. Once failure happens, [...] Read more.
With the rapid development of ultra-high-voltage (UHV) AC/DC, especially the step-by-step upgrading of the UHV DC transmission scale, security presents new challenges. Commutation failure (CF) is a common fault in line commutated converter (LCC) high-voltage direct current (HVDC) power systems. Once failure happens, it may cause power oscillations in a system. In this paper, taking a two-area AC/DC parallel interconnected power system as the example, based on the impulse response model of second-order linear system, the mechanism of power oscillation on the AC tie-line caused by CF are clarified. It is proved that the peak value of the AC tie-line power oscillation is mainly determined by the DC power and the equivalent CF duration, the frequency and damping ratio of dominant area oscillation mode. Meanwhile, the peak time is mainly determined by the oscillation frequency. Finally, the correctness and effectiveness of the algorithms are verified by a simulation analysis of an extended IEEE-39-bus AC/DC parallel interconnected power system. These research results can provide a basis for the arrangement of the operating modes and the formulation of control measures for interconnected power grids. Full article
Show Figures

Graphical abstract

14 pages, 3387 KiB  
Article
Corona Onset Characteristics of Bundle Conductors in UHV AC Power Lines at 2200 m Altitude
by Shilong Huang, Yunpeng Liu, Shaoshuai Chen, Guangyang Zhou and Wenbing Zhuang
Energies 2018, 11(5), 1047; https://doi.org/10.3390/en11051047 - 25 Apr 2018
Cited by 15 | Viewed by 5158
Abstract
The corona onset characteristic of bundle conductors is an important limiting factor for the design of UHV AC power lines in high-altitude areas. An experimental study on the corona characteristics of 8 × LGJ630, 6 × LGJ720, 8 × LGJ720 and 10 × [...] Read more.
The corona onset characteristic of bundle conductors is an important limiting factor for the design of UHV AC power lines in high-altitude areas. An experimental study on the corona characteristics of 8 × LGJ630, 6 × LGJ720, 8 × LGJ720 and 10 × LGJ720 bundle conductors commonly used in UHV power lines under dry and wet conductor conditions, as well as artificial moderate and heavy rain conditions, was conducted in Ping’an County, Xining City (elevation 2200 m). By using the tangent line method, the corona onset voltages and onset electric field of four types of conductors at high altitudes are obtained for the first time. In addition, the calculation model of corona onset voltage considering the outer strands’ effect on the electric field and the geometric factor in the corona cage in high altitude areas is established. The comparison of the calculation results and experimental results under dry conditions verifies the model’s correctness. Based on the results, an optimal selection scheme for high altitudes is proposed. The roughness coefficient was also calculated and analysed: the roughness coefficient of bundled conductors was between 0.59 and 0.77, and the roughness coefficient of the wet conductor was between the dry and rainy conditions. Both the experimental data and the calculation model can provide a reference for conductor selection for UHV AC power lines for use in high-altitude areas. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

10 pages, 3105 KiB  
Article
Effect of Altitude on the Audible Noise Level of AC Power lines
by Wangling He, Baoquan Wan, Lei Lan, Chunming Pei, Jiangong Zhang, Yuchao Chen, Xiaoyue Chen and Xishan Wen
Energies 2017, 10(7), 1055; https://doi.org/10.3390/en10071055 - 21 Jul 2017
Cited by 14 | Viewed by 4812
Abstract
The audible noise (AN) induced by corona discharge of AC transmission lines is more severe at high altitudes than at low altitudes; this has become a crucial limiting factor for the structural design of power lines and their environmental impact assessment. To determine [...] Read more.
The audible noise (AN) induced by corona discharge of AC transmission lines is more severe at high altitudes than at low altitudes; this has become a crucial limiting factor for the structural design of power lines and their environmental impact assessment. To determine the altitude effect and correction of AN level for AC power lines, a corona cage test system was used to measure the acoustic power level of four bundled conductors at five elevations, namely Wuhan (23 m), Tianshui (1100 m), Xining (2261 m), Gonghe (2943 m), and Yangbajain (4300 m). We obtained the AN characteristics for different altitudes, bundle numbers, and subconductor diameters through a statistical analysis of measured data. The analysis and comparison results indicate that the actual AN correction values are slightly less than the Bonneville Power Administration term of 1 dB/300 m at altitudes below 3200 m. Above 3200 m, the difference increases gradually. A correction term 2.85 dB/1000 m is recommended for more accurate evaluation. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

12 pages, 3761 KiB  
Article
Audible Noise Performance of Conductor Bundles Based on Cage Test Results and Comparison with Long Term Data
by Baoquan Wan, Wangling He, Chunming Pei, Xiaorui Wu, Yuchao Chen, Yemao Zhang and Lei Lan
Energies 2017, 10(7), 958; https://doi.org/10.3390/en10070958 - 10 Jul 2017
Cited by 18 | Viewed by 4646
Abstract
A reasonable acoustic power formula is vital to precisely evaluate the audible noise (AN) level of ultra-high-voltage (UHV) AC power lines. This study derived a formula by taking several AN measurements under heavy rain conditions, using multiple conductor bundles in a UHV corona [...] Read more.
A reasonable acoustic power formula is vital to precisely evaluate the audible noise (AN) level of ultra-high-voltage (UHV) AC power lines. This study derived a formula by taking several AN measurements under heavy rain conditions, using multiple conductor bundles in a UHV corona cage, and then subjecting these measured values to least squares fitting. The validity of the proposed formula was subsequently verified with statistical data obtained from two long-term stations at Henan and Hubei Province, which are located under the Jindongnan-Nanyang-Jingmen UHV AC transmission lines operating at 1000 kV. The deviation between the prediction and the long-term (L50) value was 0.76 dB for the Henan station and 0.17 dB for the Hubei station. It shows that the acoustic power formula derived in this paper is more accurate than the widely used Bonneville Power Administration formula, in which the corresponding deviations are much larger (3.07 and 2.53 dB). Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

16 pages, 3008 KiB  
Article
An Improved Multi-Infeed Effective Short-Circuit Ratio for AC/DC Power Systems with Massive Shunt Capacitors Installed
by Shiwu Liao, Wei Yao, Xiaomeng Ai, Jinyu Wen, Qing Liu, Yanhong Jiang, Jian Zhang and Jingzhe Tu
Energies 2017, 10(3), 396; https://doi.org/10.3390/en10030396 - 20 Mar 2017
Cited by 11 | Viewed by 5555
Abstract
The multi-infeed effective short-circuit ratio (MESCR) is widely used in indicating the strength of multi-infeed AC/DC power systems. However, when the widely used MESCR was adopted to evaluate the stability margin of the Eastern China Grid including three infeed ultra-high-voltage DC (UHVDC) and [...] Read more.
The multi-infeed effective short-circuit ratio (MESCR) is widely used in indicating the strength of multi-infeed AC/DC power systems. However, when the widely used MESCR was adopted to evaluate the stability margin of the Eastern China Grid including three infeed ultra-high-voltage DC (UHVDC) and five high-voltage DC transmission lines in 2016, the MESCR result indicated the system was strong enough but in fact occasionally collapses after the N-1 contingency. To determine the reason for this conflict, this paper theoretically analyzes the limitations of the existing MESCR. The theoretical analysis reveals that when a large amount of capacitor compensations are concentratively installed in the system, the conventional MESCR will not be able to reflect the capacitor compensations’ influence on the system stability, and no matter how many capacitors are installed or where the capacitors are installed, the MESCR almost retains the same value; namely, the MESCR is saturated in such systems. To address the saturation problem of conventional MESCR, this paper proposes an improved multi-infeed effective short-circuit ratio (IMESCR) which considers the influences of all capacitor compensations by converting all capacitors installed throughout the system to virtual capacitors at the DC inverter station. Case studies are carried out based on the New England 39-bus system and the Eastern China Grid, respectively. The simulation results verify the theoretical analysis of the MESCR’s limitations in evaluating the stability of power systems with massive capacitors installed, and proves that the proposed IMESCR could accurately indicate the strength of AC/DC power systems. Therefore, the proposed IMESCR provides a new index for evaluating the stability margin of power systems with massive capacitor compensations installed. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

Back to TopTop