Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (75)

Search Parameters:
Keywords = ultra-high dilutions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1696 KiB  
Article
Development of Multiplex qPCR Method for Accurate Detection of Enzyme-Producing Psychrotrophic Bacteria
by Kidane Yalew, Shuwen Zhang, Solomon Gebreyowhans, Ning Xie, Yunna Wang, Jiaping Lv, Xu Li and Xiaoyang Pang
Foods 2025, 14(11), 1975; https://doi.org/10.3390/foods14111975 - 3 Jun 2025
Viewed by 613
Abstract
Microbial detection in milk is crucial for food safety and quality, as beneficial and harmful microorganisms can affect consumer health and dairy product integrity. Identifying and quantifying these microorganisms helps prevent contamination and spoilage. The study employs advanced molecular techniques to detect and [...] Read more.
Microbial detection in milk is crucial for food safety and quality, as beneficial and harmful microorganisms can affect consumer health and dairy product integrity. Identifying and quantifying these microorganisms helps prevent contamination and spoilage. The study employs advanced molecular techniques to detect and quantify the genomic DNA for the target hydrolytic enzyme coding genes lipA and aprX based on the multi-align sequence conserved region, specific primer pair, and hydrolysis probes designed using the singleplex qPCR and multiplex qPCR. Cultured isolates and artificially contaminated sterilized ultra-high-temperature (UHT) milk were analyzed for their specificity, cross-reactivity, and sensitivity. The finding indicated that strains with lipA and aprX genes were amplified while the other strains were not amplified. This indicated that the designed primer pairs/probes were very specific to the target gene of interest. The specificity of each design primer pair was checked using SYBR Green qPCR using 16 different isolate strains from the milk sample. The quantification specificity of each strain target gene was deemed to be with a mean Ct value for positive pseudomonas strain > 16.98 ± 1.76 (p < 0.0001), non-pseudomonas positive strain ≥ 27.47 ± 1.25 (p < 0.0001), no Ct for the negative control and molecular grade water. The sensitivity limit of detection (LOD) analyzed based on culture broth and milk sample was >105 and >104 in PCR amplification while it was >104 and >103 in real-time qPCR, respectively. At the same time, the correlation regression coefficient of the standard curve based on the pure culture cell DNA as the DNA concentration serially diluted (20 ng/µL to 0.0002 ng/µL) was obtained in multiplex without interference and cross-reactivity, yielding R2 ≥ 0.9908 slope (−3.2591) and intercepting with a value of 37, where the efficiency reached the level of 95–102% sensitivity reached up to 0.0002 ng/µL concentration of DNA, and sensitivity of microbial load was up to 1.2 × 102 CFU/mL. Therefore, multiplex TaqMan qPCR simultaneous amplification was considered the best method developed for the detection of the lipA and aprX genes in a single tube. This will result in developing future simultaneous (three- to four-gene) detection of spoilage psychrotrophic bacteria in raw milk. Full article
Show Figures

Figure 1

16 pages, 1210 KiB  
Article
Effect of Thermal Processing by Spray Drying on Key Ginger Compounds
by Alina Warren-Walker, Manfred Beckmann, Alison Watson, Steffan McAllister and Amanda J. Lloyd
Metabolites 2025, 15(6), 350; https://doi.org/10.3390/metabo15060350 - 24 May 2025
Viewed by 821
Abstract
Background/Objectives: Spray drying is a technique widely employed in the food and nutraceutical industries to convert liquid extracts into stable powders, preserving their functional properties. Ginger (Zingiber officinale) is rich in bioactive compounds such as gingerols, shogaols, and zingerone, which contribute [...] Read more.
Background/Objectives: Spray drying is a technique widely employed in the food and nutraceutical industries to convert liquid extracts into stable powders, preserving their functional properties. Ginger (Zingiber officinale) is rich in bioactive compounds such as gingerols, shogaols, and zingerone, which contribute to its health benefits. This study aimed to investigate the impact of spray drying on the chemical profile of ginger, particularly focusing on the transformation of gingerols into shogaols and related compounds. Methods: Fresh ginger juice was spray-dried using various carrier agents, including Clear Gum (CO03), pea protein, and inulin. Mass spectra of the resulting powders were acquired using High-Resolution Flow Infusion Electrospray Ionisation Mass Spectrometry (HR-FIE-MS) to obtain fingerprint data. Key bioactive compounds were tentatively identified to Level 2, and their relative intensities were assessed to evaluate the effects of different carriers on the chemical composition of the ginger powders. Results: Spray drying with the commercial carrier CO03 resulted in an increase in shogaol analogues ([10]-, [8]-, and cis-[8]-shogaol), gingerenone B, and oxidation products such as 6-hydroxyshogaol, 6-dehydroshogaol, and zingerone. In contrast, natural carriers like pea protein and inulin led to lower relative intensities of these bioactives, suggesting limited capacity for promoting thermal transformations. Spray drying without a carrier produced a shogaol-dominant profile but resulted in powders with poor handling properties, such as stickiness and agglomeration. Antioxidant and total polyphenol assays showed that spray drying reduced antioxidant capacity, while total polyphenol content was more preserved; natural carriers such as inulin better maintained bioactivity compared to modified starch or pea protein. Conclusions: Among the five formulations evaluated—ginger juice with no carrier, with CO03 (two dilutions), pea protein, or inulin—CO03-based samples showed the greatest chemical transformation, while inulin and pea protein better preserved antioxidant capacity but induced fewer metabolite changes. Thus, choice of carrier in the spray-drying process influences the chemical profile and functional characteristics of resultant ginger powders. While CO03 effectively enhances the formation of bioactive shogaols and related compounds, its ultra-processed nature may not align with clean-label product trends. Natural carriers, although more label-friendly, may not create the desired chemical transformations. Therefore, optimising carrier selection is important to balance bioactivity, product stability, and consumer acceptability in the development of ginger-based functional products. Full article
Show Figures

Figure 1

16 pages, 10973 KiB  
Article
Enrichment of Trace Selenium in Water Based on Metal−Organic Framework Materials and Reversed−Phase Ultra−High−Performance Liquid Chromatography−Diode Array Determination
by Hanqing Cai, Hongmei Guo, Hanlu Jing, Pingping Wen, Qiuying Wu, Yang Li, Zhirong Suo and Jian Zhang
Separations 2025, 12(3), 62; https://doi.org/10.3390/separations12030062 - 9 Mar 2025
Viewed by 662
Abstract
A method for the determination of trace selenium in water enriched by metal–organic−framework material (MIL−125−NH2) and reversed−phase ultra−high−performance liquid chromatography−diode array detection (UPLC−DAD) was established. The MIL−125−NH2 material, synthesized by the microwave method, was characterized by SEM, XRD, and FT−IR. [...] Read more.
A method for the determination of trace selenium in water enriched by metal–organic−framework material (MIL−125−NH2) and reversed−phase ultra−high−performance liquid chromatography−diode array detection (UPLC−DAD) was established. The MIL−125−NH2 material, synthesized by the microwave method, was characterized by SEM, XRD, and FT−IR. The MIL−125−NH2 material was added to the water sample to enrich the selenium, the enriched selenium was desorbed with dilute HCl, and then the derivative reaction with 0.1 mol·L−1 4−nitro−o−phenylenediamine was performed to produce piaselenole. After extraction with cyclohexane, the retention time and the spectrogram were qualitatively detected by a liquid chromatography−diode array detector, and the peak area was quantitatively detected. The pH, time, amount of material, extractant, and other conditions of derivation and enrichment were optimized in the experiment, and the methodology was verified under optimized conditions. The results showed that the linear correlation coefficient R2 was 0.9998, the detection limit of 0.13 μg·L−1 without enrichment was close to that of the ICP−MS method, the detection limit after 10−fold enrichment was 0.013 μg·L−1, the RSD was 0.7~2.7%, and the recovery was 87.8~102.1%, in the range of 2~1000 μg·L−1. Therefore, the method can be applied for the determination of trace selenium in tap water, river water, mountain spring water, packaged drinking water, and industrial sewage. Full article
Show Figures

Figure 1

24 pages, 5020 KiB  
Article
Interactions of Highly Diluted Arnica montana Extract with Water Across Glass Interfaces
by Igor Jerman, Linda Ogrizek, Jonatan Pihir and Mateja Senica
Int. J. Mol. Sci. 2025, 26(3), 1115; https://doi.org/10.3390/ijms26031115 - 27 Jan 2025
Viewed by 874
Abstract
This study explores the physicochemical changes provoked by the physical transmission of highly diluted (HD) solutions of Arnica montana extract on three receiver solutions differing by their pH. Three dilutions (potencies), one modest (D6), one very high (C30), and another ultra-high (C200) extract [...] Read more.
This study explores the physicochemical changes provoked by the physical transmission of highly diluted (HD) solutions of Arnica montana extract on three receiver solutions differing by their pH. Three dilutions (potencies), one modest (D6), one very high (C30), and another ultra-high (C200) extract of A. montana, were used as a source of HD signal transfer. The HD signal transfer was enhanced by an initial knocking at the start of the experiment and then allowed to interact with the receiver solution for 24 h of exposure. The results confirmed the detectability of the HD signal transfer in solutions with different pH, the general effect of this signal on pH increase, the differential effect of the signal depending on the initial dilution level (potency), and the effect on the decrease in both the electrical voltage in water (ORP) and the conductivity. The overall findings of the study offer valuable new insights and suggest innovative approaches for further research, particularly in detecting the HD signal in solutions with varying pH levels, focusing on interactions with hydroxide and hydronium ions. Full article
Show Figures

Figure 1

23 pages, 8983 KiB  
Article
Ultra-Pressurized Deposition of Hydrophobic Chitosan Surface Coating on Wood for Fungal Resistance
by Suelen P. Facchi, Débora A. de Almeida, Karen K. B. Abrantes, Paula C. dos S. Rodrigues, Dauri J. Tessmann, Elton G. Bonafé, Marcelo F. da Silva, Mazeyar P. Gashti, Alessandro F. Martins and Lúcio Cardozo-Filho
Int. J. Mol. Sci. 2024, 25(20), 10899; https://doi.org/10.3390/ijms252010899 - 10 Oct 2024
Cited by 2 | Viewed by 1602
Abstract
Fungi (Neolentinus lepideus, Nl, and Trametes versicolor, Tv) impart wood rot, leading to economic and environmental issues. To overcome this issue, toxic chemicals are commonly employed for wood preservation, impacting the environment and human health. Surface coatings based [...] Read more.
Fungi (Neolentinus lepideus, Nl, and Trametes versicolor, Tv) impart wood rot, leading to economic and environmental issues. To overcome this issue, toxic chemicals are commonly employed for wood preservation, impacting the environment and human health. Surface coatings based on antimicrobial chitosan (CS) of high molar mass (145 × 105 Da) were tested as wood preservation agents using an innovative strategy involving ultra-pressurizing CS solutions to deposit organic coatings on wood samples. Before coating deposition, the antifungal activity of CS in diluted acetic acid (AcOOH) solutions was evaluated against the rot fungi models Neolentinus lepideus (Nl) and Trametes versicolor (Tv). CS effectively inhibited fungal growth, particularly in solutions with concentrations equal to or higher than 0.125 mg/mL. Wood samples (Eucalyptus sp. and Pinus sp.) were then coated with CS under ultra-pressurization at 70 bar. The polymeric coating deposition on wood was confirmed through X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM) images, and water contact angle measurements. Infrared spectroscopy (FTIR) spectra of the uncoated and coated samples suggested that CS does not penetrate the bulk of the wood samples due to its high molar mass but penetrates in the surface pores, leading to its impregnation in wood samples. Coated and uncoated wood samples were exposed to fungi (Tv and Nl) for 12 weeks. In vivo testing revealed that Tv and Nl fungi did not grow on wood samples coated with CS, whereas the fungi proliferated on uncoated samples. CS of high molar mass has film-forming properties, leading to a thin hydrophobic film on the wood surface (water contact angle of 118°). This effect is mainly attributed to the high molar mass of CS and the hydrogen bonding interactions established between CS chains and cellulose. This hydrophobic film prevents water interaction, resulting in a stable coating with insignificant leaching of CS after the stability test. The CS coating can offer a sustainable strategy to prevent wood degradation, overcoming the disadvantages of toxic chemicals often used as wood preservative agents. Full article
(This article belongs to the Special Issue Bioactive Materials with Antimicrobial Properties: 2nd Edition)
Show Figures

Figure 1

19 pages, 12455 KiB  
Article
The Process Optimization Analysis of CBN Abrasive Cu-Sn-Ti Coating Fabrication via the Ultrasonic-Vibration-Assisted Laser Cladding Method
by Juncai Li, Mingze Ma, Tianbiao Yu, Ming Li and Ji Zhao
Appl. Sci. 2024, 14(17), 7790; https://doi.org/10.3390/app14177790 - 3 Sep 2024
Viewed by 1329
Abstract
Ultra-precision machining has higher requirements for the performance of abrasive tools, but the traditional grinding wheel has some problems such as irregular grain arrangement, limited chip space, and high grinding temperature. Therefore, a structured grinding wheel suitable for ultra-precision machining is proposed. In [...] Read more.
Ultra-precision machining has higher requirements for the performance of abrasive tools, but the traditional grinding wheel has some problems such as irregular grain arrangement, limited chip space, and high grinding temperature. Therefore, a structured grinding wheel suitable for ultra-precision machining is proposed. In this study, the laser cladding method and ultrasonic vibration technology were combined to study the preparation process of a structured grinding wheel. Firstly, the quality evaluation system of the printing layer was established, and the shape coefficient and dilution rate were used to evaluate the laser cladding quality. The effects of laser power, sweep speed, powder feeding speed, and ultrasonic power on the shape coefficient and dilution rate of the printing layer were analyzed by single-factor experiments. The level range of each factor in the orthogonal experiment was established to optimize the process parameters. The surface morphology was observed, and the influence of ultrasonic vibration on the morphology was analyzed. The structured grinding wheel was prepared according to the optimized parameters. Full article
(This article belongs to the Special Issue Precision Manufacturing Technology)
Show Figures

Figure 1

26 pages, 6187 KiB  
Article
Controllability of Pre-Chamber Induced Homogeneous Charge Compression Ignition and Performance Comparison with Pre-Chamber Spark Ignition and Homogeneous Charge Compression Ignition
by Josip Krajnović, Sara Ugrinić, Viktor Dilber and Darko Kozarac
Appl. Sci. 2024, 14(15), 6451; https://doi.org/10.3390/app14156451 - 24 Jul 2024
Cited by 1 | Viewed by 955
Abstract
This paper presents an experimental and numerical evaluation of the pre-chamber induced HCCI combustion concept (PC-HCCI) in terms of engine performance, emissions, and controllability. In this concept, a spark-initiated combustion in the pre-chamber is utilized to trigger the kinetically controlled combustion of an [...] Read more.
This paper presents an experimental and numerical evaluation of the pre-chamber induced HCCI combustion concept (PC-HCCI) in terms of engine performance, emissions, and controllability. In this concept, a spark-initiated combustion in the pre-chamber is utilized to trigger the kinetically controlled combustion of an ultra-lean mixture in the main combustion chamber. The experimental measurements were performed on a single-cylinder engine with a custom-made active pre-chamber. A high compression ratio of 17.5 was used, which limits the maximum achievable engine load due to high knocking tendency but enables both standard PCSI combustion (flame propagation) at very high dilution levels and HCCI combustion at reasonable intake temperatures. The analysis of combustion characteristics and the resulting performance is performed at indicated mean effective pressures (IMEPs) of 3.5 and 3.0 bars, and three different intake temperatures of 80 °C, 90 °C, and 100 °C. The variation in engine load was achieved by adjusting the excess air ratio in the main chamber. On each combination of intake temperature and engine load, a spark sweep and an injected PC fuel mass sweep were performed to obtain the highest indicated efficiency while satisfying the restrictions in terms of combustion stability and knock intensity. It was shown that, unlike in a conventional HCCI engine, the combustion phasing can be directly and reliably controlled by adjusting either spark timing or the reactivity of the pre-chamber mixture, ensuring adequate combustion stability and eliminating potential misfires. A similar indicated efficiency as with conventional HCCI combustion was obtained, while the NOx emissions, although slightly elevated, are still insignificant. Compared to PCSI combustion at the same engine load, a 4-percentage-point increase in indicated efficiency and two times lower NOx emissions were achieved. Compared to the most efficient PCSI operating point, it was 1 percentage point lower, indicating that efficiency was achieved, but the specific NOx emissions are reduced by approximately 70%. Most importantly, very similar performance was obtained with significant variations in intake temperature, proving the reliability and adaptability of this combustion concept. Full article
Show Figures

Figure 1

21 pages, 2622 KiB  
Article
Particulate and Gaseous Emissions from a Large Two-Stroke Slow-Speed Marine Engine Equipped with Open-Loop Scrubber under Real Sailing Conditions
by Achilleas Grigoriadis, Nikolaos Kousias, Anastasios Raptopoulos-Chatzistefanou, Håkan Salberg, Jana Moldanová, Anna-Lunde Hermansson, Yingying Cha, Anastasios Kontses, Zisimos Toumasatos, Sokratis Mamarikas and Leonidas Ntziachristos
Atmosphere 2024, 15(7), 845; https://doi.org/10.3390/atmos15070845 - 17 Jul 2024
Cited by 3 | Viewed by 2009
Abstract
Particulate and gaseous emissions were studied from a large two-stroke slow-speed diesel engine equipped with an open-loop scrubber, installed on a 78,200 metric tonnes (deadweight) containership, under real operation. This paper presents the on-board emission measurements conducted upstream and downstream of the scrubber [...] Read more.
Particulate and gaseous emissions were studied from a large two-stroke slow-speed diesel engine equipped with an open-loop scrubber, installed on a 78,200 metric tonnes (deadweight) containership, under real operation. This paper presents the on-board emission measurements conducted upstream and downstream of the scrubber with heavy fuel oil (HFO) and ultra-low sulfur fuel oil (ULSFO). Particle emissions were examined under various dilution ratios and temperature conditions, and with two thermal treatment setups, involving a thermodenuder (TD) and a catalytic stripper (CS). Our results show a 75% SO2 reduction downstream of the scrubber with the HFO to emission-compliant levels, while the use of the ULSFO further decreased SO2 levels. The operation of the scrubber produced higher particle number levels compared to engine-out, attributed to the condensational growth of nanometer particle cores, salt and the formation of sulfuric acid particles in the smaller size range, induced by the scrubber. The use of a TD and a CS eliminates volatiles but can generate new particles when used in high-sulfur conditions. The results of this study contribute to the generally limited understanding of the particulate and gaseous emission performance of open-loop scrubbers in ships and could feed into emission and air quality models for estimating marine pollution impacts. Full article
(This article belongs to the Special Issue Engine Emissions: Assessment and Control)
Show Figures

Figure 1

18 pages, 3322 KiB  
Article
Protocrystallinity of Monodispersed Ultra-Small Templated Mesoporous Silica Nanoparticles
by Laurent Bonneviot, Belén Albela, Feifei Gao, Pascal Perriat, Thierry Epicier and Mohamad El Eter
Nanomaterials 2024, 14(12), 1052; https://doi.org/10.3390/nano14121052 - 19 Jun 2024
Cited by 2 | Viewed by 1449
Abstract
Monodisperse and semi-faceted ultra-small templated mesoporous silica nanoparticles (US-MSNs) of 20–25 nm were synthesized using short-time hydrolysis of tetraethoxysilane (TEOS) at room temperature, followed by a dilution for nucleation quenching. According to dynamic light scattering (DLS), a two-step pH adjustment was necessary for [...] Read more.
Monodisperse and semi-faceted ultra-small templated mesoporous silica nanoparticles (US-MSNs) of 20–25 nm were synthesized using short-time hydrolysis of tetraethoxysilane (TEOS) at room temperature, followed by a dilution for nucleation quenching. According to dynamic light scattering (DLS), a two-step pH adjustment was necessary for growth termination and colloidal stabilization. The pore size was controlled by cetyltrimethylammonium bromide (CTAB), and a tiny amount of neutral surfactant F127 was added to minimize the coalescence between US-MSNs and to favor the transition towards internal ordering. Flocculation eventually occurred, allowing us to harvest a powder by centrifugation (~60% silica yield after one month). Scanning transmission electron microscopy (STEM) and 3D high-resolution transmission electron microscopy (3D HR-TEM) images revealed that the US-MSNs are partially ordered. The 2D FT transform images provide evidence for the coexistence of four-, five-, and sixfold patterns characterizing an “on-the-edge” crystallization step between amorphous raspberry and hexagonal pore array morphologies, typical of a protocrystalline state. Calcination preserved this state and yielded a powder characterized by packing, developing a hierarchical porosity centered at 3.9 ± 0.2 (internal pores) and 68 ± 7 nm (packing voids) of high potential for support for separation and catalysis. Full article
(This article belongs to the Special Issue Advanced Porous Nanomaterials: Synthesis, Properties, and Application)
Show Figures

Figure 1

16 pages, 804 KiB  
Article
Simultaneous Determination of Multiresidues of Pesticides and Veterinary Drugs in Agricultural Soil Using QuEChERS and UHPLC–MS/MS
by Michele C. Vicari, Janice F. Facco, Sandra C. Peixoto, Gabriel S. de Carvalho, Luana Floriano, Osmar D. Prestes, Martha B. Adaime and Renato Zanella
Separations 2024, 11(6), 188; https://doi.org/10.3390/separations11060188 - 14 Jun 2024
Cited by 2 | Viewed by 2035
Abstract
Soil is one of the main destinations for pesticides and veterinary drugs used in agriculture and animal production. The negative consequences of the accumulation of these compounds in the environment make it important to monitor these compounds in the soil. In this study, [...] Read more.
Soil is one of the main destinations for pesticides and veterinary drugs used in agriculture and animal production. The negative consequences of the accumulation of these compounds in the environment make it important to monitor these compounds in the soil. In this study, we compared different extraction procedures using solvent shaking, ultrasound, or QuEChERS, and their combinations, for the simultaneous determination of 75 pesticide and seven veterinary drug residues in agricultural soil by ultra-high performance liquid chromatography coupled to serial mass spectrometry (UHPLC–MS/MS). The method using QuEChERS combined with shaking showed the best results for soil using the addition of water, followed by extraction with acetonitrile acidified with acetic acid and shaking in a shaker. For partitioning, anhydrous magnesium sulfate and anhydrous sodium acetate were used. The extract was centrifuged, filtered, and diluted (1:4, v/v) in water for determination by UHPLC–MS/MS. Method validation showed adequate accuracy and precision results, with recoveries between 70 and 120% and RSD ≤ 20% for the vast majority of the compounds evaluated at the spike levels of 10, 25, 50, and 100 μg kg−1. The method limits of detection (LOD) and quantification (LOQ) ranged from 3.0 to 7.5 μg kg−1 and from 10 to 25 μg kg−1, respectively. The method was applied to different agricultural soil samples and proved to be efficient for routine analysis. Full article
(This article belongs to the Collection Feature Paper Collection in Section 'Environmental Separations')
Show Figures

Graphical abstract

18 pages, 3856 KiB  
Article
Stability Studies of the Dilution Series of Different Antibiotic Stock Solutions in Culture Medium Incubated at 37 °C
by Ádám Kerek, Bence G. Ecsedi, Ábel Szabó, Zoltán Szimrók, Bianka Paliczné Kustán, Ákos Jerzsele and Gábor Nagy
Antibiotics 2024, 13(6), 549; https://doi.org/10.3390/antibiotics13060549 - 12 Jun 2024
Cited by 2 | Viewed by 3209
Abstract
The long-term stability of antibiotics in culture media remains underexplored in scientific literature. This study evaluated the stability of eight distinct antibiotic stock solutions—amoxicillin, cefotaxime, neomycin, oxytetracycline, florfenicol, enrofloxacin, colistin, and potentiated sulfonamide—and their 10-fold dilution series in tryptone soy broth (TSB) at [...] Read more.
The long-term stability of antibiotics in culture media remains underexplored in scientific literature. This study evaluated the stability of eight distinct antibiotic stock solutions—amoxicillin, cefotaxime, neomycin, oxytetracycline, florfenicol, enrofloxacin, colistin, and potentiated sulfonamide—and their 10-fold dilution series in tryptone soy broth (TSB) at 37 °C, over 12 days. Samples were collected immediately after preparation and on days 1, 2, 5, 7, 9, and 12, with active substance concentrations measured using ultra-high-performance liquid chromatography (UHPLC) coupled with mass spectrometry. The results indicated that among the ultrapure water stock solutions, neomycin, florfenicol, and potentiated sulfonamide maintained stability (>95%). Within the culture medium, florfenicol showed consistent stability (100%) throughout the study, potentiated sulfonamide experienced minor degradation (>85%), and neomycin underwent significant degradation. Amoxicillin, oxytetracycline, and colistin displayed considerable degradation in both solution types but were more stable in ultrapure water solutions. The stability of cefotaxime and enrofloxacin in ultrapure water solutions and in the medium was very similar when compared; however, 3.6% of the former and 88.7% of the latter remained detectable by day 12. These findings are crucial for minimum inhibitory concentration (MIC) assessments, especially in minimum bactericidal concentration (MBC) studies, and in experiments concerning long-term evolution and co-selection. This study underscores the necessity of stability assessments in culture media to validate future experimental outcomes. Full article
Show Figures

Figure 1

22 pages, 7821 KiB  
Article
Semi-Tightly Coupled Robust Model for GNSS/UWB/INS Integrated Positioning in Challenging Environments
by Zhihan Sun, Wang Gao, Xianlu Tao, Shuguo Pan, Pengbo Wu and Hong Huang
Remote Sens. 2024, 16(12), 2108; https://doi.org/10.3390/rs16122108 - 11 Jun 2024
Cited by 6 | Viewed by 2177
Abstract
Currently, the integration of the Global Navigation Satellite System (GNSS), Ultra-Wideband (UWB), and Inertial Navigation System (INS) has become a reliable positioning method for outdoor dynamic vehicular and airborne applications, enabling high-precision and continuous positioning in complex environments. However, environmental interference and limitations [...] Read more.
Currently, the integration of the Global Navigation Satellite System (GNSS), Ultra-Wideband (UWB), and Inertial Navigation System (INS) has become a reliable positioning method for outdoor dynamic vehicular and airborne applications, enabling high-precision and continuous positioning in complex environments. However, environmental interference and limitations of single positioning sources pose challenges. Especially in areas with limited access to satellites and UWB base stations, loosely coupled frameworks for GNSS/INS and UWB/INS are insufficient to support robust estimation. Furthermore, within a tightly coupled framework, parameter estimations from different sources can interfere with each other, and errors in computation can easily contaminate the entire positioning estimator. To balance robustness and stability in integrated positioning, this paper proposes a comprehensive quality control method. This method is based on the semi-tightly coupled concept, utilizing the INS position information and considering the dilution of precision (DOP) skillfully to achieve complementary advantages in GNSS/UWB/INS integrated positioning. In this research, reliable position and variance information obtained by INS are utilized to provide a priori references for a robust estimation of the original data from GNSS and UWB, achieving finer robustness without increasing system coupling, which fully demonstrates the advantages of semi-tight integration. Based on self-collected data, the effectiveness and superiority of the proposed quality control strategy are validated under severely occluded environments. The experimental results demonstrate that the semi-tightly coupled robust estimation method proposed in this paper is capable of accurately identifying gross errors in GNSS and UWB observation data, and it has a significant effect on improving positioning accuracy and smoothing trajectories. Additionally, based on the judgment of the DOP, this method can ensure the output of continuous and reliable positioning results in complex and variable environments. Verified by actual data, under the conditions of severe sky occlusion and NLOS (Non-Line-of-Sight), compared with the loosely coupled GNSS/INS, the positioning accuracy in the E, N, U directions of the semi-tight coupled GNSS/INS proposed in this paper has improved by 37%, 46%, and 28%. Compared with the loosely coupled UWB/INS, the accuracy in the E and N directions of the semi-tight coupled UWB/INS has improved by 60% and 34%. In such environments, GNSS employs the RTD (Real-Time Differential) algorithm, UWB utilizes the two-dimensional plane-positioning algorithm, and the positioning accuracy of the semi-tight coupled robust model of GNSS/UWB/INS in the E, N, U directions is 0.42 m, 0.55 m, and 3.20 m respectively. Full article
(This article belongs to the Section Engineering Remote Sensing)
Show Figures

Figure 1

15 pages, 2450 KiB  
Article
A Dynamic UKF-Based UWB/Wheel Odometry Tightly Coupled Approach for Indoor Positioning
by Ang Liu, Jianguo Wang, Shiwei Lin and Xiaoying Kong
Electronics 2024, 13(8), 1518; https://doi.org/10.3390/electronics13081518 - 17 Apr 2024
Cited by 7 | Viewed by 1707
Abstract
The centimetre-level accuracy of Ultra-wideband (UWB) has attracted significant attention in indoor positioning. However, the precision of UWB positioning is severely compromised by non-line-of-sight (NLOS) conditions that arise from complex indoor environments. On the other hand, odometry is widely applicable to wheeled robots [...] Read more.
The centimetre-level accuracy of Ultra-wideband (UWB) has attracted significant attention in indoor positioning. However, the precision of UWB positioning is severely compromised by non-line-of-sight (NLOS) conditions that arise from complex indoor environments. On the other hand, odometry is widely applicable to wheeled robots due to its reliable short-term accuracy and high sampling frequency, but it suffers from long-term drift. This paper proposes a tightly coupled fusion method with a Dynamic Unscented Kalman Filter (DUKF), which utilises odometry to identify and mitigate NLOS effects on UWB measurements. Horizontal Dilution of Precision (HDOP) was introduced to assess the impact of geometric distribution between robots and UWB anchors on UWB positioning accuracy. By dynamically adjusting UKF parameters based on NLOS condition, HDOP values, and robot motion status, the proposed method achieves excellent UWB positioning results in a severe NLOS environment, which enables UWB positioning even when only one line-of-sight (LOS) UWB anchor is available. Experimental results under severe NLOS conditions demonstrate that the proposed system achieves a Root Mean Square Error (RMSE) of approximately 7.5 cm. Full article
(This article belongs to the Special Issue Advanced Localization System: From Theory to Applications)
Show Figures

Figure 1

16 pages, 5653 KiB  
Article
Multiscale Fabrication Process Optimization of DFB Cavities for Organic Laser Diodes
by Amani Ouirimi, Alex Chamberlain Chime, Nixson Loganathan, Mahmoud Chakaroun, Quentin Gaimard and Alexis P. A. Fischer
Micromachines 2024, 15(2), 260; https://doi.org/10.3390/mi15020260 - 10 Feb 2024
Cited by 1 | Viewed by 1720
Abstract
In the context of the quest for the Organic Laser Diode, we present the multiscale fabrication process optimization of mixed-order distributed-feedback micro-cavities integrated in nanosecond-short electrical pulse-ready organic light-emitting diodes (OLEDs). We combine ultra-short pulsed electrical excitation and laser micro-cavities. This requires the [...] Read more.
In the context of the quest for the Organic Laser Diode, we present the multiscale fabrication process optimization of mixed-order distributed-feedback micro-cavities integrated in nanosecond-short electrical pulse-ready organic light-emitting diodes (OLEDs). We combine ultra-short pulsed electrical excitation and laser micro-cavities. This requires the integration of a highly resolved DFB micro-cavity with an OLED stack and with microwave electrodes. In a second challenge, we tune the cavity resonance precisely to the electroluminescence peak of the organic laser gain medium. This requires precise micro-cavity fabrication performed using e-beam lithography to pattern gratings with a precision in the nanometer scale. Optimal DFB micro-cavities are obtained with 300 nm thick hydrogen silsesquioxane negative-tone e-beam resist on 50 nm thin indium tin oxide anode exposed with a charge quantity per area (i.e., dose) of 620 µC/cm2, developed over 40 min in tetramethylammonium hydroxide diluted in water. We show that the integration of the DFB micro-cavity does not hinder the pulsed electrical operability of the device, which exhibits a peak current density as high as 14 kA/cm2. Full article
(This article belongs to the Special Issue Women’s Special Issue Series: Micromachines 2023)
Show Figures

Figure 1

12 pages, 1151 KiB  
Article
An Ultra-High-Performance Liquid Chromatography Coupled with Tandem Mass Spectrometry Method with Online Solid-Phase Extraction Sample Preparation for the High-Throughput and Sensitive Determination of Ostarine in Human Urine
by Kristián Slíž, Juraj Piešťanský and Peter Mikuš
Methods Protoc. 2024, 7(1), 10; https://doi.org/10.3390/mps7010010 - 23 Jan 2024
Cited by 2 | Viewed by 2780
Abstract
Ostarine is frequently misused as a selective androgen receptor modulator (SARM) in sports. Consequently, there is a pressing need for reliable and simple approaches to monitor its presence in biological systems. In this work, we developed a two-dimensional analytical method utilizing online solid-phase [...] Read more.
Ostarine is frequently misused as a selective androgen receptor modulator (SARM) in sports. Consequently, there is a pressing need for reliable and simple approaches to monitor its presence in biological systems. In this work, we developed a two-dimensional analytical method utilizing online solid-phase extraction (online-SPE) in conjunction with ultra-high-performance liquid chromatography and tandem mass spectrometry (triple quadrupole). This automated 2D separation approach is characterized by minimum manual steps in the sample preparation (only dilute-and-shoot), reflecting high sample throughput and the reliability of analytical data. It provides favorable performance parameters, including a limit of detection of 0.5 pg/mL, high accuracy (relative error = 1.6–7.5%), precision (relative standard deviation = 0.8–4.5%), and sensitivity. Additionally, it demonstrates excellent linearity (r2 = 0.9999) in the calibration range of 0.05 to 25 ng/mL and robustness, with no carryover effects observed. This comparative study revealed a two-decadic-order-lower LOD of the SPE-UHPLC-MS/MS method to the corresponding UHPLC-MS/MS method and the lowest one in the group of currently published LC-MS methods. The World Anti-Doping Agency screening and confirmation criteria were met through the analysis of spiked urine samples from ten healthy volunteers. Accordingly, the proposed method is suitable for routine use in antidoping laboratories. Full article
Show Figures

Figure 1

Back to TopTop