Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = twisted and coiled polymer artificial muscle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 9905 KiB  
Proceeding Paper
Production Parameters and Thermo-Mechanical Performance of Twisted and Coiled Artificial Muscles (TCAMs)
by Salvatore Garofalo, Chiara Morano, Leonardo Pagnotta and Luigi Bruno
Eng. Proc. 2025, 85(1), 1; https://doi.org/10.3390/engproc2025085001 - 13 Feb 2025
Viewed by 483
Abstract
High-strength polymer fibers such as nylon 6, nylon 6,6, and polyethylene are utilized to produce Twisted and Coiled Artificial Muscles (TCAMs) through the twisting of low-cost fibers. These artificial muscles exhibit high displacement and specific power, particularly under electrothermal actuation, which requires conductive [...] Read more.
High-strength polymer fibers such as nylon 6, nylon 6,6, and polyethylene are utilized to produce Twisted and Coiled Artificial Muscles (TCAMs) through the twisting of low-cost fibers. These artificial muscles exhibit high displacement and specific power, particularly under electrothermal actuation, which requires conductive elements. An experimental setup was developed to produce, thermally treat, and characterize commercially available nylon 6,6 fibers coated with silver. The results demonstrate that TCAMs can contract by over 15% and generate forces up to 2.5 N with minimal energy input. Key factors such as motor speed, applied load, and fiber geometry affect the overall performance. Full article
Show Figures

Figure 1

12 pages, 4598 KiB  
Article
Sandwich-Structured Carbon Nanotube Composite Films for Multifunctional Sensing and Electrothermal Application
by Canyi Lu, Encheng Liu, Qi Sun and Yiqin Shao
Polymers 2024, 16(17), 2496; https://doi.org/10.3390/polym16172496 - 1 Sep 2024
Cited by 1 | Viewed by 1625
Abstract
Electro-conductive films with excellent flexibility and thermal behavior have great potential in the fields of wearable electronics, artificial muscle, and soft robotics. Herein, we report a super-elastic and electro-conductive composite film with a sandwich structure. The composite film was constructed by spraying Polyvinyl [...] Read more.
Electro-conductive films with excellent flexibility and thermal behavior have great potential in the fields of wearable electronics, artificial muscle, and soft robotics. Herein, we report a super-elastic and electro-conductive composite film with a sandwich structure. The composite film was constructed by spraying Polyvinyl alcohol (PVA) polymers onto a buckled conductive carbon nanotube-polydimethylsiloxane (CNTs-PDMS) composite film. In this system, the PVA and PDMS provide water sensing and stretchability, while the coiled CNT film offers sufficient conductivity. Notably, the composite film possesses high stretchability (205%), exceptional compression sensing ability, humility sensing ability, and remarkable electrical stability under various deformations. The produced CNT composite film exhibited deformation (bending/twisting) and high electro-heating performance (108 °C) at a low driving voltage of 2 V. The developed CNT composite film, together with its exceptional sensing and electrothermal performance, provides the material with promising prospects for practical applications in wearable electronics. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Figure 1

29 pages, 10949 KiB  
Article
HBS-1.2: Lightweight Socially Assistive Robot with 6-Ply Twisted Coiled Polymer Muscle-Actuated Hand
by Abhishek Pratap Singh, Darshan Palani, Onan Ahmed, Pawandeep Singh Matharu, Tristan Linn, Trung Nguyen and Yonas Tadesse
Actuators 2023, 12(8), 312; https://doi.org/10.3390/act12080312 - 1 Aug 2023
Cited by 6 | Viewed by 4133
Abstract
In this paper, a new socially assistive robot (SARs) called HBS-1.2 is presented, which uses 6-ply twisted and coiled polymer (TCP) artificial muscles in its hand to perform physical tasks. The utilization of 6-ply TCP artificial muscles in a humanoid robot hand is [...] Read more.
In this paper, a new socially assistive robot (SARs) called HBS-1.2 is presented, which uses 6-ply twisted and coiled polymer (TCP) artificial muscles in its hand to perform physical tasks. The utilization of 6-ply TCP artificial muscles in a humanoid robot hand is a pioneering advancement, offering cost effective, lightweight, and compact solution for SARs. The robot is designed to provide safer human–robot interaction (HRI) while performing physical tasks. The paper explains the procedures for fabrication and testing of the 6-ply TCP artificial muscles, along with improving the actuation response by using a Proportional-Integral-Derivative (PID) control method. Notably, the robot successfully performed a vision-based pick and place experiment, showing its potential for use in homecare and other settings to assist patients who suffer from neurological diseases like Alzheimer’s disease. The study also found an optimal light intensity range between 34 to 108 lumens/m2, which ensures minimal variation in calculated distance with 95% confidence intervals for robust performance from the vison system. The findings of this study have important implications for the development of affordable and accessible robotic systems to support elderly patients with dementia, and future research should focus on further improving the use of TCP actuators in robotics. Full article
(This article belongs to the Special Issue Actuators in Assistive and Rehabilitation Robotics)
Show Figures

Figure 1

11 pages, 3441 KiB  
Article
Characteristic Analysis of Heterochiral TCP Muscle as a Extensile Actuator for Soft Robotics Applications
by Beau Ragland and Lianjun Wu
Actuators 2023, 12(5), 189; https://doi.org/10.3390/act12050189 - 28 Apr 2023
Cited by 3 | Viewed by 2455
Abstract
A soft actuator is an essential component in a soft robot that enables it to perform complex movements by combining different fundamental motion modes. One type of soft actuator that has received significant attention is the twisted and coiled polymer artificial muscle (TCP [...] Read more.
A soft actuator is an essential component in a soft robot that enables it to perform complex movements by combining different fundamental motion modes. One type of soft actuator that has received significant attention is the twisted and coiled polymer artificial muscle (TCP actuator). Despite many recent advancements in TCP actuator research, its use as an extensile actuator is less common in the literature. This works introduces the concept of using TCP actuators as thermal-driven extensile actuators for robotics applications. The low-profile actuator can be easily fabricated to offer two unique deformation capabilities. Results from the characterization indicate that extensile actuators, made with various rod diameters and under different load conditions, display remarkable elongation deformation. Additionally, a proof-of-concept soft-earthworm robot was developed to showcase the potential application of the extensile actuator and to demonstrate the benefits of combining different types of motion modes. Full article
(This article belongs to the Special Issue Soft Actuators and Robotics)
Show Figures

Figure 1

10 pages, 6579 KiB  
Article
Design and Application of a Twisted and Coiled Polymer Driven Artificial Musculoskeletal Actuation Module
by Chunbing Wu, Wen Zheng, Zhiyi Wang, Biao Yan, Jia Ma and Guangqiang Fang
Materials 2022, 15(22), 8261; https://doi.org/10.3390/ma15228261 - 21 Nov 2022
Viewed by 2059
Abstract
Twisted and coiled polymer (TCP) artificial muscles can exhibit unidirectional actuation similar to skeletal muscles. This paper presents a TCP driven artificial musculoskeletal actuation module that can be used in soft robots. This module can contract in the axis direction, and the contraction [...] Read more.
Twisted and coiled polymer (TCP) artificial muscles can exhibit unidirectional actuation similar to skeletal muscles. This paper presents a TCP driven artificial musculoskeletal actuation module that can be used in soft robots. This module can contract in the axis direction, and the contraction displacement and force can be controlled easily. The main body of the actuation module consists of TCP muscles and leaf springs, and the deformation of the module is actuated by the TCP muscles. A prototype was made to test the performance of the module. The design and experimental results of the module are presented. The module can provide contraction motion. Results show that the module can provide a contraction force of 0.7 N with displacement of approximately 6.8 mm at 120 °C when exposed to electrical power of 24 V. The proposed artificial musculoskeletal actuation module can potentially be applied in biomimetic robots and the aerospace field. Full article
Show Figures

Figure 1

14 pages, 5187 KiB  
Article
Effect of Twisted and Coiled Polymer Actuator (TCPA) on Crack Dispersion Properties of HPFRCC
by Takatsune Kikuta and Tomoya Nishiwaki
Materials 2022, 15(16), 5701; https://doi.org/10.3390/ma15165701 - 18 Aug 2022
Cited by 1 | Viewed by 1665
Abstract
To achieve high durability and excellent mechanical performances of cementitious materials, research on fiber-reinforced cementitious composites (FRCC) containing various fibers has been actively conducted. On the other hand, in robotics and other fields, research on artificial muscles using Twisted and Coiled Polymer Actuator [...] Read more.
To achieve high durability and excellent mechanical performances of cementitious materials, research on fiber-reinforced cementitious composites (FRCC) containing various fibers has been actively conducted. On the other hand, in robotics and other fields, research on artificial muscles using Twisted and Coiled Polymer Actuator (TCPA), which have similar functions to human muscle fibers, has attracted much attention. In this study, use of this TCPA as a reinforcing fiber in high performance FRCC (HPFRCC) was proposed. The employed TCPA has a structure of coiled nylon fibers with wrapping stainless-steel fibers. The effect of the TCPA and its shrinkage motion on the crack dispersion properties of HPFRCC was investigated. The experimental results showed that the strain-hardening with multiple cracks in HPFRCC continued up to more than 7% of the ultimate strain when the TCPA was electrically stimulated to shrinkage motion. This information indicates that the TCPA has high potential to further improve HPFRCC performance. Full article
(This article belongs to the Special Issue Advances in Functional Cement and Concrete Materials)
Show Figures

Figure 1

16 pages, 31233 KiB  
Article
A Twisted and Coiled Polymer Artificial Muscles Driven Soft Crawling Robot Based on Enhanced Antagonistic Configuration
by Chunbing Wu, Zhuang Zhang and Wen Zheng
Machines 2022, 10(2), 142; https://doi.org/10.3390/machines10020142 - 16 Feb 2022
Cited by 17 | Viewed by 4236
Abstract
Twisted and coiled polymer (TCP) actuators are becoming increasingly prevalent in soft robotic fields due to their powerful and hysteresis-free stroke, large specific work density, and ease of fabrication. This paper presents a soft crawling robot with spike-inspired robot feet which can deform [...] Read more.
Twisted and coiled polymer (TCP) actuators are becoming increasingly prevalent in soft robotic fields due to their powerful and hysteresis-free stroke, large specific work density, and ease of fabrication. This paper presents a soft crawling robot with spike-inspired robot feet which can deform and crawl like an inchworm. The robot mainly consists of two leaf springs, connection part, robot feet, and two TCP actuators. A system level model of a soft crawling robot is presented for flexible and effective locomotion. Such a model can offer high-efficiency design and flexible locomotion of the crawling robot. Results show that the soft crawling robot can move at a speed of 0.275 mm/s when TCP is powered at 24 V. Full article
(This article belongs to the Section Bioengineering Technology)
Show Figures

Figure 1

11 pages, 16713 KiB  
Article
A NIR-Light-Driven Twisted and Coiled Polymer Actuator with a PEDOT-Tos/Nylon-6 Composite for Durable and Remotely Controllable Artificial Muscle
by Inwook Hwang, Seongcheol Mun, Hyungcheol Shin and Sungryul Yun
Polymers 2022, 14(3), 432; https://doi.org/10.3390/polym14030432 - 21 Jan 2022
Cited by 11 | Viewed by 2741
Abstract
In this paper, we proposed a novel light-driven polymer actuator that could produce remotely controllable tensile stroke in response to near infrared (NIR) light. The light-driven polymer actuator was composed of a twisted and coiled nylon-6 fiber (TCN) and a thin poly(3,4-ethylenedioxythiophene) doped [...] Read more.
In this paper, we proposed a novel light-driven polymer actuator that could produce remotely controllable tensile stroke in response to near infrared (NIR) light. The light-driven polymer actuator was composed of a twisted and coiled nylon-6 fiber (TCN) and a thin poly(3,4-ethylenedioxythiophene) doped with p-toluenesulfonate (PEDOT-Tos) layer. By adopting dip-coating methodology with thermal polymerization process, we constructed a thin and uniform PEDOT-Tos layer on the surface of the three-dimensional TCN structure. Thanks to the PEDOT-Tos layer with excellent NIR light absorption characteristic, the NIR light illumination via a small LEDs array allowed the multiple PEDOT-Tos coated TCN actuators to be photo-thermally heated to a fairly consistent temperature and to simultaneously produce a contractile strain that could be modulated as high as 8.7% with light power. The actuation performance was reversible without any significant hysteresis and highly durable during 3000 cyclic operations via repetitive control of the LEDs. Together with its simple structure and facile fabrication, the light-driven actuator can lead to technical advances in artificial muscles due to its attractive benefits from remote controllability without complex coupled instruments and electromagnetic interference. Full article
(This article belongs to the Special Issue Stretchable and Smart Polymers II)
Show Figures

Graphical abstract

14 pages, 2272 KiB  
Article
A Modeling of Twisted and Coiled Polymer Artificial Muscles Based on Elastic Rod Theory
by Chunbing Wu and Wen Zheng
Actuators 2020, 9(2), 25; https://doi.org/10.3390/act9020025 - 7 Apr 2020
Cited by 28 | Viewed by 10276
Abstract
Twisted and coiled polymer (TCP) can generate large stroke and output high power density, making it a promising artificial muscle. Thermally induced muscles fabricated from nylon or other polymer fibers can be used in robotic, biomedical devices, and energy-harvesting equipment. While fibers with [...] Read more.
Twisted and coiled polymer (TCP) can generate large stroke and output high power density, making it a promising artificial muscle. Thermally induced muscles fabricated from nylon or other polymer fibers can be used in robotic, biomedical devices, and energy-harvesting equipment. While fibers with different shapes and materials have different optimal process parameters. Understanding mechanisms of TCP forming and the impact of process parameters is critical to explore stronger, more powerful artificial muscles. In this paper, an elastic-rod-theory-based model was established for capturing the quantitative relationship between tensile actuation and fabrication load. Further experimental results agree with model calculation and TCP muscles used in our research reaches maximum stroke of 52.6%, strain up to 9.8 MPa, and power density of 211.89 J/kg. Full article
(This article belongs to the Special Issue Polymeric Actuators 2020)
Show Figures

Figure 1

Back to TopTop