Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = tungsten tailing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 12542 KB  
Article
Minor and Trace Elements in Copper Tailings: A Mineralogical and Geometallurgical Approach to Identify and Evaluate New Opportunities
by Zina Habibi, Nigel J. Cook, Kathy Ehrig, Cristiana L. Ciobanu, Yuri T. Campo-Rodriguez and Samuel A. King
Minerals 2025, 15(10), 1018; https://doi.org/10.3390/min15101018 - 26 Sep 2025
Viewed by 607
Abstract
Reliable information on the chemical and physical makeup of mine tailings is critical in meeting environmental and regulatory requirements, as well as identifying whether contained elements, including critical minerals, might be economically recovered in future to meet growing demands. Detailed mineralogical characterization, supported [...] Read more.
Reliable information on the chemical and physical makeup of mine tailings is critical in meeting environmental and regulatory requirements, as well as identifying whether contained elements, including critical minerals, might be economically recovered in future to meet growing demands. Detailed mineralogical characterization, supported by chemical assays and automated mineralogy (MLA) data on different size fractions, underpins a case study of flotation tailings from the processing plant at the Carrapateena mine, South Australia. The study provides valuable insights into the deportment of minor and critical elements, including rare earth elements (REEs), along with uranium (U). REE-minerals are represented by major phosphates (monazite and florencite) and subordinate REE-fluorocarbonates (bastnäsite and synchysite). More than half the REE-minerals are concentrated in the finest size fraction (−10 μm). REEs in coarser fractions are largely locked in gangue, such that economic recovery is unlikely to be viable. MLA data shows that the main REE-minerals all display specific associations with gangue, which change with particle size. Quartz and hematite are the most common associations, followed by sericite. Synchysite shows a strong affiliation to carbonates. The contents of other critical elements (e.g., tungsten, molybdenum, cobalt) are low and for the most part occur within other common minerals as submicron-sized inclusions or in the lattice, rather than discrete minerals. Nevertheless, analysis of mine tailings from a large mining–processing operation provides an opportunity to observe intergrowth and replacement relationships in a composite sample representing different ore types from across the deposit. U-bearing species are brannerite (associated with rutile and chlorite), coffinite (in quartz), and uraninite (in hematite). Understanding the ore mineralogy of the Carrapateena deposit and how the ore has evolved in response to overprinting events is advanced by observation of ore textures, including between hematite and rutile, rutile and brannerite, zircon and xenotime, and the U-carbonate minerals rutherfordine and wyartite, the latter two replacing pre-existing U-minerals (uraninite, coffinite, and brannerite). The results of this study are fundamental inputs into future studies evaluating the technical and economic viability of potentially recovering value metals at Carrapateena. They can also guide efforts in understanding the distributions of valuable metals in analogous tailings from elsewhere. Lastly, the study demonstrates the utility of geometallurgical data on process materials to assist in geological interpretation. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

13 pages, 3522 KB  
Article
High-Purity Tungsten Oxide Production from Low-Grade Scheelite Concentrates at Pilot Plant Scale
by Javier Nieto, Lourdes Yurramendi, Javier Antoñanzas and Jose Luis Aldana
Metals 2025, 15(9), 1051; https://doi.org/10.3390/met15091051 - 20 Sep 2025
Viewed by 488
Abstract
Tungsten is a critical raw material with increasingly important industrial applications. It is primarily found in minerals such as scheelite and wolframite (0.5% W), which are extracted and processed at the mine site to produce a high-grade scheelite concentrate (60% W). This process [...] Read more.
Tungsten is a critical raw material with increasingly important industrial applications. It is primarily found in minerals such as scheelite and wolframite (0.5% W), which are extracted and processed at the mine site to produce a high-grade scheelite concentrate (60% W). This process results in significant tungsten losses in the form of tailings, currently not utilized at the EU level. Deep eutectic solvents and imidazolium-based ionic liquids have been shown to possess excellent utility for recovering tungsten from low-grade concentrates, achieving tungsten oxide (96% purity) at high global yields (80%). In this study, an optimized ionic liquid-based process (involving leaching, solvent extraction, crystallization, and calcination) was developed at the laboratory scale. Important issues such as solvent flammability or the commercial availability of ionic liquids were addressed to ensure the safety and industrial feasibility of the process. Furthermore, a pilot plant was designed, constructed, and operated for a significant period (3 days). Tungsten oxide was produced with improved purity (>99%) and global yield (91.6%) in continuous operation. Full article
Show Figures

Figure 1

15 pages, 1836 KB  
Article
Influence of Environmental Conditions on the Behaviour of Tailings from Tungsten Mining for Sustainable Geotechnical Applications and Storage
by João Pedro Oliveira, Luís Araújo Santos, Joana Ribeiro, Paulo Coelho and António M. G. Pedro
Sustainability 2024, 16(24), 10987; https://doi.org/10.3390/su162410987 - 14 Dec 2024
Cited by 2 | Viewed by 1948
Abstract
Modern societies require increasingly large amounts of minerals and metals for their development. Therefore, huge amounts of waste must be stored in safe and cost-effective massive tailing storage facilities that would benefit from using tailings in sustainable geotechnical applications within the context of [...] Read more.
Modern societies require increasingly large amounts of minerals and metals for their development. Therefore, huge amounts of waste must be stored in safe and cost-effective massive tailing storage facilities that would benefit from using tailings in sustainable geotechnical applications within the context of the circular economy. However, to consider tailings as assets, the long-term behaviour of these unconventional geomaterials under realistic environmental conditions must be assessed. This paper focuses on the effects of the environmental conditions on the behaviour of tailings from tungsten mining by experimentally determining their major physical and mechanical properties for three different conditions: twenty-months-aged undisturbed samples and reconstituted samples, with the latter being fresh and three months. The results confirm that twenty-months-aged undisturbed and fresh reconstituted tailings have significantly different mechanical behaviour, while three-months-aged reconstituted samples show an in-between behaviour as if the material regenerates and improved its behaviour with time due to physical and chemical processes. These ageing processes are experimentally confirmed by measuring the electrical conductivity in the samples. The results confirm that optimising the design of tailing storage facilities and using these geomaterials in sustainable geotechnical applications must consider the existing environmental conditions and the potential tailings’ mechanical changes due to ageing. Full article
(This article belongs to the Section Resources and Sustainable Utilization)
Show Figures

Figure 1

13 pages, 6975 KB  
Article
One-Part Alkali-Activated Binder Produced from Tungsten-Molybdenum (W-Mo) Tailings
by Georgy Lazorenko, Yanshuai Wang, Alexandr Fedotov and Anton Kasprzhitskii
Eng 2024, 5(4), 3148-3160; https://doi.org/10.3390/eng5040165 - 29 Nov 2024
Cited by 1 | Viewed by 1141
Abstract
This study explores the feasibility of preparing a one-part alkali-activated binder produced from tungsten-molybdenum (W-Mo) tailings with sodium metasilicate (SM). A series of alkali-activated mortar samples were prepared, and the effects of the water/binder (W/B) ratio and mixture proportion on mechanical properties were [...] Read more.
This study explores the feasibility of preparing a one-part alkali-activated binder produced from tungsten-molybdenum (W-Mo) tailings with sodium metasilicate (SM). A series of alkali-activated mortar samples were prepared, and the effects of the water/binder (W/B) ratio and mixture proportion on mechanical properties were investigated. Additionally, the microstructure and composition of the alkali-activated W-Mo tailings were characterized by using a combination of scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy techniques. Optimal results were achieved with a W/B ratio of 0.35 and a formulation containing 20% by weight of SM. Under these conditions, the cured samples exhibited an unconfined compressive strength of 11.2 MPa and a bulk density of 1726 kg/m3 after 28 days. The findings show the potential to advance tungsten-molybdenum mine waste upcycling and contribute to the production of environmentally sustainable building materials. Full article
(This article belongs to the Special Issue Green Engineering for Sustainable Development 2024)
Show Figures

Figure 1

17 pages, 7824 KB  
Article
Early Strength and Microscopic Mechanisms of Alkali-Metal Hydroxide-Activated Tungsten Tailings
by Shanmei Li, Lei Wang, Zhikui Liu and Kai Shou
Solids 2024, 5(4), 544-560; https://doi.org/10.3390/solids5040037 - 12 Nov 2024
Viewed by 1252
Abstract
The excellent mechanical properties of alkaline-activated tailings are essential for their increased use in building materials. While numerous studies have been conducted on activated tailings, the strength of alkaline-activated tungsten slag has not been extensively explored due to the low reactivity of silicon [...] Read more.
The excellent mechanical properties of alkaline-activated tailings are essential for their increased use in building materials. While numerous studies have been conducted on activated tailings, the strength of alkaline-activated tungsten slag has not been extensively explored due to the low reactivity of silicon and aluminum in these tailings. This research delves into the early unconfined compressive strength of tungsten tailings activated by two alkali solutions (NaOH and KOH) at three different alkali concentrations (mass ratio of alkali to tungsten tailings), cured at 80 °C over periods of one day, three days, and seven days. The study finds significant improvements in the stability of tungsten tailings when forming (C, N)-A-S-H or (C, K)-A-S-H gels with both alkalis. Scanning Electron Microscope (SEM) results show that the morphology of the (C, N)-A-S-H gels transitions from membranous to flocculated and then to a three-dimensional network as the NaOH content and curing time increase. Conversely, the (C, K)-A-S-H gels primarily exhibit thin-film morphology with some three-dimensional network structures. The presence of flocculation and three-dimensional mesh in the gels fosters the formation of a robust skeletal structure, enhancing the strength of the samples. Furthermore, specimens treated with NaOH solution exhibit a higher gel content compared to those treated with KOH solution. These factors contribute to the superior efficacy of sodium hydroxide in enhancing the strength of tungsten tailings compared to potassium hydroxide. X-ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) results identify the formation of new phases such as pirssonite, buetschliite, potassium bicarbonate, and potassium carbonate. The first new phase results from the carbonization of excess NaOH solution, while the latter phases arise from the carbonization of excess KOH solution. These carbonization processes negatively impact the strength of the materials. Full article
Show Figures

Figure 1

15 pages, 4014 KB  
Article
Phytoremediation of Tungsten Tailings under Conditions of Adding Clean Soil: Microbiological Research by Metagenomic Analysis
by Xiaojun Zheng, Qi Li, Yang Peng, Zongli Wang and Ming Chen
Sustainability 2024, 16(13), 5715; https://doi.org/10.3390/su16135715 - 4 Jul 2024
Cited by 3 | Viewed by 1746
Abstract
Vegetation coverage of metal tailings is an important method for environmental governance. Colonization of plants on some nutrient-poor tailings is difficult. Therefore, the addition of clean soil (CSA) is needed to support plant growth. However, the promotion of plant growth by CSA has [...] Read more.
Vegetation coverage of metal tailings is an important method for environmental governance. Colonization of plants on some nutrient-poor tailings is difficult. Therefore, the addition of clean soil (CSA) is needed to support plant growth. However, the promotion of plant growth by CSA has been widely reported, and there is a lack of reports on the effects of CSA on soil microbial communities and nutrient cycling-related genes. In this study, using ryegrass as the selected plant, the phytoremediation of tungsten tailings was conducted under conditions of CSA. The research focused on investigating the variation in the microbial community’s structure and elucidating variations in the metabolic pathways and relative abundance of nutrient cycling genes. The results suggest that CSA and planting ryegrass increased the microbial richness in tailings. CSA had a negative impact on the microbial community’s evenness (Shannon index) and richness (Simpson index). In all treatments, the relative abundance of Pseudomonadota ranged from 64.4% to 75.2% and dominated the microbial community. High levels of CSA (T3) reduced the relative abundance of Pseudomonadota by 10–13%, and a higher relative abundance of Ascomycota was observed after planting ryegrass. At the genus level, the growth of ryegrass benefitted from a decrease in the abundance of Pseudomonas, Phenobacterum, and Sphingobium after CSA. Cultivation of ryegrass increased the relative abundance of the nitrogen-fixing bacterium Bradyrhizobium (0.9%), which is beneficial for the sustainability of soil remediation in tailings. Metabolism was the primary activity process of microorganisms in tailing soil, with a relative abundance of 71.3% to 72.7%. Generally, the changes in the microbial community’s composition indicated that CSA and cultivation of ryegrass were beneficial for tailings. Still, the negative effects of CSA on microbial evenness (Shannon index) and richness (Simpson index) need attention. Full article
Show Figures

Figure 1

19 pages, 7254 KB  
Article
A Study on the Performance of Self-Leveling Mortar Utilizing Tungsten Tailings as the Aggregate
by Wenyi Zhang, Chen Yang, Lijinhong Huang, Zekai Wang, Chaocong Zeng, Junzhen Zhu and Wanfu Huang
Sustainability 2024, 16(13), 5545; https://doi.org/10.3390/su16135545 - 28 Jun 2024
Cited by 2 | Viewed by 1674
Abstract
A significant quantity of tailings is produced during the development of different metal mines in China. In particular, fine-grained tailings pose challenges to the sustainable development of the mining industry. This study examines the utilization of finely ground tungsten tailings as a replacement [...] Read more.
A significant quantity of tailings is produced during the development of different metal mines in China. In particular, fine-grained tailings pose challenges to the sustainable development of the mining industry. This study examines the utilization of finely ground tungsten tailings as a replacement for natural aggregates in self-leveling mortar (SLM). The study examined the impact of the aggregate-cement ratio, cement mix ratio, and varying substitution levels of different grain sizes of tungsten tailings on the flow properties, mechanical properties, and dimensional change rate of SLM. Additionally, the role of tungsten tailings in SLM was analyzed using XRD, FTIR, and SEM methods. The findings demonstrated that the utilization of sulphoaluminate cement (SAC) had a notable impact on improving the initial strength of the SLM. Additionally, a high aggregate-cement ratio negatively affected the fluidity of the SLM. The doping of tungsten tailings improved the grading relationship of the SLM. Substituting tungsten tailings of 38–75 μm grain size for natural aggregates in the preparation of SLM did not have a negative impact on its performance. In fact, substituting 60% tungsten tailings had a positive effect on the 28-day mechanical properties of the SLM. The compressive and flexural strengths of the SLM after 28 days were 26.53 MPa and 9.06 MPa, respectively, which were enhanced by 18.81% and 26% compared to the control group (C0). According to the environmental leaching test, SLM can effectively fix the heavy metal ions in tungsten tailings, and the leaching concentration of heavy metals is significantly reduced after long-term curing. The doping of finely fragmented tungsten tailings accelerated the process of hydration, resulting in the creation of hydrocalcium zeolite crystals in the latter phases of hydration. Furthermore, an increase in tailings substitution resulted in the production of a greater amount of hydration products, specifically C-S-H gels. Full article
(This article belongs to the Section Resources and Sustainable Utilization)
Show Figures

Figure 1

19 pages, 17953 KB  
Article
An Experimental Study Focusing on the Filling Process and Consolidation Characteristics of Geotextile Tubes Filled with Fine-Grained Tungsten Tailings
by Xiaowen Liu, Zeming Wu, Haisong He and Qing Xu
Sustainability 2024, 16(12), 5270; https://doi.org/10.3390/su16125270 - 20 Jun 2024
Cited by 5 | Viewed by 1742
Abstract
With advancements in mineral processing technology, the disposal of fine-grained tailings has increasingly become a significant challenge. The geotextile tube method, characterized by its use of a permeable fabric and its cost-effectiveness, has gradually been applied in dam construction and other engineering projects [...] Read more.
With advancements in mineral processing technology, the disposal of fine-grained tailings has increasingly become a significant challenge. The geotextile tube method, characterized by its use of a permeable fabric and its cost-effectiveness, has gradually been applied in dam construction and other engineering projects involving tailings. This method offers a novel approach to addressing the storage issues of fine-grained tailings and promotes sustainable utilization. In this paper, the fine tailings that remained after the cyclone classification of Ganzhou tungsten ore were taken as the research object. Specifically, this research endeavored to evaluate the effects of various filling heights and concentrations on the geotextile tube-filling and consolidation process. The results revealed that the filling concentration had a significant impact on the filling benefit of the geotextile tubes, while the filling height had a minimal effect. During the consolidation drainage stage, the dry density, internal friction angle, cohesion, and compression modulus of the tailings in the bags increased with an increasing consolidation time and filling concentration. However, the physical and mechanical properties of the tailings in the geotextile tubes decreased with an increased filling height. Ultimately, this research developed a hyperbolic equation that makes it possible to forecast the ultimate settlement value at various filling heights and concentrations, better representing how the settlement of geotextile tubes changes over the consolidation time. Full article
(This article belongs to the Section Soil Conservation and Sustainability)
Show Figures

Figure 1

21 pages, 14573 KB  
Article
Provenance of Coastal and Seabed Sediments Relative to Mining and Processing Wastes: The Case of Lavrion, Attiki Peninsula, Greece
by Stavros Savvas Triantafyllidis, Georgios Anastasakis, Anastasios Papanastasiou, Charalambos Stylianou, Nikolaos Kavros, Filothei K. Pappa, Stylianos Fotios Tombros, Michalis Fitros and Vasilios Skliros
Minerals 2024, 14(1), 33; https://doi.org/10.3390/min14010033 - 28 Dec 2023
Cited by 1 | Viewed by 1787
Abstract
A detailed textural, mineralogical, and geochemical investigation of beach sands and seabed sediments from Thorikos and Oxygono bays of the eastern coast of Lavrion is performed, with the objective the provenance of the ore types exploited, the processing and beneficiation types employed, and [...] Read more.
A detailed textural, mineralogical, and geochemical investigation of beach sands and seabed sediments from Thorikos and Oxygono bays of the eastern coast of Lavrion is performed, with the objective the provenance of the ore types exploited, the processing and beneficiation types employed, and the respective exploitation periods. The Oxygono Bay beach and seabed sands are highly heterogeneous, predominated by lithic clasts originating from surrounding lithologies. Examination of the fine-grained fraction from the seabed core revealed that only the upper 50 cm was affected by recent and ancient mining activity. Combining the mineralogy and geochemistry of Oxygono Bay sands with the radiochronological model of Pappa et al. (2018), four periods of recent exploitation (mid-19th—late 20th century) are distinguished: (1) The “1860–1875 A.D.”, involving exploitation of the ancient smelter slags, (2) the “1875–1900 A.D.”, with ongoing ancient smelter slag processing and the commencement of underground sulfide ore exploitation, (3) the “1900–1930 A.D.”, where heavy mining of the carbonate-hosted Pb–Zn–Ag ore occurs, (4) the “1930–1980”), where the implementation of flotation-type processing assisted in the exploitation of the poor skarn and porphyry-type ores. The latest “1980 A.D.—to date” period depicts the cessation of all mining and processing activities. The southern Thorikos Bay beach sands are homogeneous and fine-grained, are mainly composed of gangue and pyrite, and show elevated Fe, As, Pb, Zn, and Mn content. The southern Thorikos Bay beach sands clearly point to exploitation and processing by flotation of the carbonate-hosted Pb–Zn–Ag sulfide ore, and the tailings were disposed of from the nearby facilities to southern Thorikos Bay without any environmental concern during the “1930–1980 A.D.” period. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Graphical abstract

14 pages, 4800 KB  
Article
Floatability of Fluorite and Calcite Inhibited by Sodium Hexametaphosphate via Ultrasonic Activation
by Zhehui Yang, Maolin Li, Yingxin Lin, Wei Yao, Yue Wu and Rui Cui
Minerals 2023, 13(12), 1504; https://doi.org/10.3390/min13121504 - 30 Nov 2023
Cited by 7 | Viewed by 1760
Abstract
In order to separate fluorite and calcite inhibited in tungsten tailings, the effect and mechanism of using ultrasonic external field activation to separate fluorite and calcite inhibited by sodium hexametaphosphate in a sodium oleate system were investigated. After pretreatment with an ultrasonic external [...] Read more.
In order to separate fluorite and calcite inhibited in tungsten tailings, the effect and mechanism of using ultrasonic external field activation to separate fluorite and calcite inhibited by sodium hexametaphosphate in a sodium oleate system were investigated. After pretreatment with an ultrasonic external field with a frequency of 40 kHz and sound intensity of 0.56, 0.50 and 0.40 W/cm2, the flotation recovery of calcite could be increased from 16.08% to about 80%, while the flotation recovery of fluorite was only increased from 7.5% to about 20%, with a difference of 60% between the two flotation recoveries, and the larger the sound intensity, the shorter the pretreatment time and the smaller the ultrasonic input energy. The contact angle of the calcite surface increased, sodium oleate adsorption increased, and zeta potential decreased after ultrasonic pretreatment, while the contact angle, sodium oleate adsorption, and zeta potential of fluorite surface were less changed. The results of heat of adsorption and XPS measurements showed that more heat was released from the interaction between sodium hexametaphosphate and fluorite, and the Ca2p peaks on the surface of fluorite were shifted to a greater extent after the interaction, which inferred that the adsorption of fluorite and sodium hexametaphosphate was relatively easier and stronger. It is presumed that the ultrasonic pretreatment can bring the mineral surface to different degrees of desorption according to the adsorption strength of sodium hexametaphosphate, exposing Ca2+ active sites for sodium oleate adsorption, while expanding the floatability difference between fluorite and calcite. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

7 pages, 627 KB  
Proceeding Paper
Application of International Standards to Evaluate the Potential of Sustainable Secondary Production of Tin and Tungsten in Portugal
by Md Ariful Islam, José E. Brito Iria, Georg Meissner, George Barakos and Helmut Mischo
Mater. Proc. 2023, 15(1), 22; https://doi.org/10.3390/materproc2023015022 - 24 Oct 2023
Viewed by 1748
Abstract
The ambitious movement towards industry 5.0 technologies and the green transition drives the efforts towards securing critical metals’ supply chains globally. In Europe, highly economically important Tin and Tungsten are raising concerns regarding supply security due to geographical reserves’ uniformity and socio-political reluctance [...] Read more.
The ambitious movement towards industry 5.0 technologies and the green transition drives the efforts towards securing critical metals’ supply chains globally. In Europe, highly economically important Tin and Tungsten are raising concerns regarding supply security due to geographical reserves’ uniformity and socio-political reluctance to mining. Nevertheless, mines that have seized operations in Portugal due to not being sustainable in the past are attracting renewed attention for further exploitation due to growing market demand and reclamation efforts for environmental concerns. Such abandoned resources need to be reassessed for their feasibility from economic, social, and environmental perspectives to ensure sustainable exploitation. Presenting the production criticality of Tin and Tungsten, this study implements the United Nations Framework Classification for Resources (UNFC) to assess the viability of abandoned mines and tailings dumps in Portugal, considering the indicators of Sustainable Development Goals (SDGs). The work indicates that Portugal’s abandoned Vale das Gatas Tin and Tungsten mine has good potential for further development. Furthermore, social perception towards new and abandoned mining is evaluated by collecting opinions from different parts of the country. It has been identified that sustainable technology and job opportunities are the driving parameters for the social acceptance of mining projects in Portugal. Full article
Show Figures

Figure 1

20 pages, 15669 KB  
Article
Contamination Fingerprints in an Inactive W (Sn) Mine: The Regoufe Mine Study Case (Northern Portugal)
by Helena Sant’Ovaia, Cláudia Cruz, Alexandra Guedes, Helena Ribeiro, Patrícia Santos, Sónia Pereira, Jorge Espinha Marques, Maria dos Anjos Ribeiro, Catarina Mansilha, Helena Cristina Brites Martins, Bruno Valentim, Joana Torres, Ilda Abreu, Fernando Noronha and Deolinda Flores
Minerals 2023, 13(4), 497; https://doi.org/10.3390/min13040497 - 31 Mar 2023
Cited by 3 | Viewed by 2574
Abstract
The target of this study was the tungsten Regoufe mine, whose exploitation stopped in the 1970s. When the mine closed, an unacceptable legacy constituted of mining waste tailings and the ruins of infrastructure was left behind. This work assessed the soil, plants, and [...] Read more.
The target of this study was the tungsten Regoufe mine, whose exploitation stopped in the 1970s. When the mine closed, an unacceptable legacy constituted of mining waste tailings and the ruins of infrastructure was left behind. This work assessed the soil, plants, and water contamination in the mining area; namely their content in potentially toxic elements (PTEs). The global impact of PTEs in the Regoufe mine surface soil points to a very high to ultrahigh degree of contamination of the area having a serious ecological risk level, mainly related to As and Cd contributions. However, establishing the direct relation between As contamination and the anthropogenic effects caused by the mining process cannot be carried out in a straightforward manner, since the soils were already enriched in metals and metalloids as a result of the geological processes that gave origin to the mineral deposits. The studies performed on the plants revealed that the PTE levels in the plants were lower than in the soil, but site-specific soil concentrations in As and Pb positively influence bioaccumulation in plants. The magnetic studies showed the presence of magnetic technogenic particles concentrated in the magnetic fraction, in the form of magnetic spherules. The magnetic technogenic particles probably result from temperature increases induced by some technological process related to ore processing/mining activity. The PTEs in the surface and groundwater samples were similar and relatively low, being unlikely to pose potential health and environmental risks. Arsenic (As) constituted the exception, with levels above reference for drinking water purposes. Full article
(This article belongs to the Special Issue Geochemistry, Environmental Impact and Remediation of Mining Areas)
Show Figures

Figure 1

16 pages, 3913 KB  
Article
Strength Development and Environmental Assessment of Full Tailings Filling Materials with Various Water-to-Binder Ratios
by Zhu Ding, Pai Liu, Peng Cui and Chengyu Hong
Metals 2023, 13(1), 122; https://doi.org/10.3390/met13010122 - 7 Jan 2023
Cited by 5 | Viewed by 1873
Abstract
In order to build green mines, goaf is often filled, supported, and sealed with a high-water material to eliminate a series of environmental problems and safety hazards caused by goaf. In this study, ordinary Portland cement, sulphoaluminate cement, and alkali-activated cement were used [...] Read more.
In order to build green mines, goaf is often filled, supported, and sealed with a high-water material to eliminate a series of environmental problems and safety hazards caused by goaf. In this study, ordinary Portland cement, sulphoaluminate cement, and alkali-activated cement were used as binders to prepare full-tailings high-water materials for filling, with various water-to-cement ratios. The compressive strength development of consolidated tungsten tailings specimens prepared with various curing binders was observed, and the influence of various water–cement ratios on the strength development was analyzed. The environmental impact of mine backfill materials was assessed according to the life cycle theory (LCA), and these mine backfill materials were prepared by using various binders. The results show that when the water-to-binder ratio is 3, the strength of alkali-activated cement can reach 3 MPa at 28 days; at that ratio, the microstructure of alkali-activated cement is more compact. Through LCA analysis, the environmental load of alkali-activated cement is shown to be significantly lower than that of either Portland cement or sulphoaluminate cement; the LCA results show that the primary energy consumption using alkali-activated cement is reduced from the Portland and sulphoaluminate cements by 1319.32 MJ and 945 kg, respectively. These unusual reduction percentages are achieved because the production of alkali-activated cement by LCA does not have any negative environmental impact—the production of alkali-activated cement, with its primary component being industrial byproduct slag, so that the use of alkali-activated cement in tailings’ consolidation has a positive environmental impact. Full article
(This article belongs to the Topic Green Low-Carbon Technology for Metalliferous Minerals)
Show Figures

Figure 1

22 pages, 12589 KB  
Article
Environmental Impact Assessment of the Subsurface in a Former W-Sn Mine: Integration of Geophysical Methodologies
by Hender De Almeida, Maria Cristina Gomes Marques, Helena Sant’Ovaia, Rui Moura and Jorge Espinha Marques
Minerals 2023, 13(1), 55; https://doi.org/10.3390/min13010055 - 28 Dec 2022
Cited by 7 | Viewed by 3007
Abstract
Associated with the exploitation of metallic minerals in Europe during the 20th century, several mining areas were abandoned without adequate environmental intervention. Furthermore, these areas lack studies to characterize the impact of pollution on the hydrogeological system. The area surrounding the tungsten mine [...] Read more.
Associated with the exploitation of metallic minerals in Europe during the 20th century, several mining areas were abandoned without adequate environmental intervention. Furthermore, these areas lack studies to characterize the impact of pollution on the hydrogeological system. The area surrounding the tungsten mine of Regoufe, in northern Portugal, is one such area exploited during the Second World War. The accumulation of sulfide-rich tailings may have caused an acid mine drainage (AMD), where the leaching processes caused by seepage water led to soil contamination, evidenced by its acid character and anomalous concentrations of some Potentially Toxic Elements (PTE) reported in previous studies. The present research proposes an innovative approach that seeks the integration of different geophysical techniques to characterize the impact of mining activity on the subsurface. Electrical resistivity (ER) and electromagnetic (EM) were used to measure subsurface electrical properties. In addition, seismic refraction and Multichannel Analysis of Surface Waves (MASW) were performed to characterize the geometry, depth, and geomechanical behavior of the soil and rock bodies. The integration of these techniques allowed the interpretation of hydrogeological sections and a 3D resistivity volume to gain insight into the distribution of potentially contaminating fluids and tailings material present in the mining valley. Full article
(This article belongs to the Special Issue Geochemistry, Environmental Impact and Remediation of Mining Areas)
Show Figures

Figure 1

8 pages, 997 KB  
Article
A Unified Current-Voltage Model for Metal Oxide-Based Resistive Random-Access Memory
by Harry Chung, Hyungsoon Shin, Jisun Park and Wookyung Sun
Materials 2023, 16(1), 182; https://doi.org/10.3390/ma16010182 - 25 Dec 2022
Cited by 2 | Viewed by 1987
Abstract
Resistive random-access memory (RRAM) is essential for developing neuromorphic devices, and it is still a competitive candidate for future memory devices. In this paper, a unified model is proposed to describe the entire electrical characteristics of RRAM devices, which exhibit two different resistive [...] Read more.
Resistive random-access memory (RRAM) is essential for developing neuromorphic devices, and it is still a competitive candidate for future memory devices. In this paper, a unified model is proposed to describe the entire electrical characteristics of RRAM devices, which exhibit two different resistive switching phenomena. To enhance the performance of the model by reflecting the physical properties such as the length index of the undoped area during the switching operation, the Voltage ThrEshold Adaptive Memristor (VTEAM) model and the tungsten-based model are combined to represent two different resistive switching phenomena. The accuracy of the I–V relationship curve tails of the device is improved significantly by adjusting the ranges of unified internal state variables. Furthermore, the unified model describes a variety of electrical characteristics and yields continuous results by using the device’s current-voltage relationship without dividing its fitting conditions. The unified model describes the optimized electrical characteristics that reflect the electrical behavior of the device. Full article
(This article belongs to the Special Issue Memristive Materials and Devices)
Show Figures

Figure 1

Back to TopTop