Contamination Fingerprints in an Inactive W (Sn) Mine: The Regoufe Mine Study Case (Northern Portugal)
Abstract
:1. Introduction
- To assess the geochemical composition of soils/waste mining tails; namely, their content in potentially toxic elements (PTEs), which include metals and metalloids that, in high concentration levels, can lead to social and human health-risk concerns;
- To trace anthropogenic pollution, by applying environmental magnetism techniques; namely, identifying ferromagnetic minerals in soils and waste mining tails sampled in the surrounding area of the Regoufe mine;
- To investigate the possible influence of site-specific PTE concentrations in soils and waste mining tails in plant bioaccumulation by accessing their chemical composition;
- To evaluate the possible impact of mining in the chemical composition of groundwater.
2. Geological Setting
3. Materials and Methods
3.1. Sampling Procedures
3.2. Geochemistry Analysis
3.3. Magnetic Methodologies
Potentially Toxic Elements (PTEs) in mg/kg | |||||||||
---|---|---|---|---|---|---|---|---|---|
Samples | As | Mn | Zn | Cu | Cr | Ni | Pb | Cd | Co |
R1 | 1088.4 | 811.0 | 193.8 | 2.6 | 3.0 | 3.3 | 13.1 | 3.1 | 0.3 |
R2 | 967.2 | 772.0 | 84.5 | 3.0 | 8.0 | 8.5 | 14.1 | 1.1 | 0.4 |
R3 | 1353.8 | 940.0 | 235.7 | 31.1 | 10.0 | 5.0 | 106.7 | 5.8 | 4.3 |
R4 | 745.9 | 856.0 | 155.5 | 13.5 | 7.0 | 5.4 | 67.6 | 0.6 | 1.0 |
R5 | 7784.2 | 1072.0 | 504.5 | 87.4 | 22.0 | 19.3 | 1977.4 | 12.0 | 6.4 |
R6 | 2905.4 | 821.0 | 166.1 | 17.3 | 7.0 | 5.1 | 41.3 | 2.2 | 1.4 |
R7 | 3412.6 | 921.0 | 187.6 | 20.4 | 8.0 | 4.9 | 78.5 | 3.2 | 1.3 |
R8 | 7418.8 | 722.0 | 195.6 | 38.4 | 9.0 | 6.4 | 177.0 | 5.2 | 1.3 |
R9 | 2513.0 | 932.0 | 310.9 | 22.3 | 13.0 | 12.2 | 154.9 | 3.5 | 2.9 |
R12 | 3194.7 | 1045.0 | 209.0 | 19.8 | 6.0 | 3.8 | 101.9 | 3.9 | 1.4 |
R13 | 421.4 | 567.0 | 115.2 | 6.2 | 6.0 | 3.6 | 45.2 | 0.1 | 1.5 |
R14 | 2900.7 | 889.0 | 191.6 | 7.9 | 6.0 | 4.1 | 432.3 | 3.8 | 1.2 |
R15 | 1271.6 | 986.0 | 216.2 | 7.3 | 5.0 | 3.8 | 32.9 | 2.7 | 1.8 |
R16 | >10,000.0 | 1133.0 | 280.4 | 42.5 | 14.0 | 4.6 | 216.5 | 9.3 | 1.5 |
R17 | 3224.6 | 794.0 | 253.3 | 34.0 | 7.0 | 5.2 | 49.3 | 3.8 | 1.2 |
R18 | 1600.6 | 716.0 | 297.1 | 28.3 | 7.0 | 4.6 | 122.6 | 2.7 | 1.8 |
R19 | 2644.0 | 617.0 | 343.3 | 32.2 | 14.0 | 7.9 | 247.7 | 10.0 | 2.1 |
STD OREAS45H | 18.4 | 422 | 36.7 | 791.1 | 693 | 465.0 | 12.12 | <0.02 | 93.3 |
STD OREAS501D | 12.3 | 394 | 86.7 | 2642.3 | 44 | 22.9 | 24.84 | 0.24 | 9.9 |
Median | 2578.5 | 856.0 | 209.0 | 20.4 | 7.0 | 5.0 | 101.9 | 3.5 | 1.4 |
Max | >10,000.0 | 1133.0 | 504.5 | 87.4 | 22.0 | 19.3 | 1977.4 | 12.0 | 6.4 |
Min | 421.4 | 567.0 | 84.5 | 2.6 | 3.0 | 3.3 | 13.1 | 0.1 | 0.3 |
WRBS | 11.4 | 571 | 67.8 | 28.2 | 70.9 | 17.8 | 28.4 | 0.49 |
3.4. Plant Analysis
3.5. Water Analysis
4. Results and Discussion
4.1. Soil Geochemistry
4.2. Magnetic Characterization
4.3. Plant Analysis
4.4. Hydrogeochemistry
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sluijk, D. Geology and Tin-Tugsten Deposits of the Regoufe Area, Northern Portugal. Ph.D. Thesis, Universiteit van Amsterdam, Amsterdam, The Netherlands, 1963. [Google Scholar]
- Kicińska, A. Risk assessment of children’s exposure topotentially harmful elements (PHE) in selected urban parksof the Silesian agglomeration. In Proceedings of the 1st International Conference on the Sustainable Energy and Environment Development (SEED 2016), Krakow, Poland, 17–19 May 2016. [Google Scholar]
- Kicińska, A.; Smreczak, B.; Jadczyszyn, J. SoilBioavailability of Cadmium, Lead, and Zinc in the Areas ofZn-Pb Ore Mining and Processing(Bukowno, Olkusz). J. Ecol. Eng. 2019, 20, 84–92. [Google Scholar] [CrossRef]
- Durães, N.; Portela, L.; Sousa, S.; Patinha, C.; Silva, E. Environmental Impact Assessment in the Former Mining Area of Regoufe (Arouca, Portugal): Contributions to Future Remediation Measures. Int. J. Environ. Res. Public Health 2021, 18, 1180. [Google Scholar] [CrossRef] [PubMed]
- Almeida, H.D.; Gomes Marques, M.C.; Sant’Ovaia, H.; Moura, R.; Espinha Marques, J. Environmental Impact Assessment of the Subsurface in a Former W-Sn Mine: Integration of Geophysical Methodologies. Minerals 2023, 13, 55. [Google Scholar] [CrossRef]
- Lötze, F. Zur Gliederung der Varisciden der Iberishen Meseta. Geotekt. Forschg. 1945, 6, 78–92. [Google Scholar]
- Julivert, M.; Fontboté, J.M.; Ribeiro, A.; Conde, L.E. Memória Explicativa del Mapa Tectónico de la Península Ibérica y Baleares; Instituto Geológico y Minero de España: Madrid, Spain, 1974; 113p. [Google Scholar]
- Farias, P.; Gallastegui, G.; Lodeiro, F.; Marquinez, J.; Parra, L.; Catalán, J.; Macia, J.; Rodriguez Fernandez, L.R. Aportaciones al Conocimiento de la Litoestratigrafia y Estructura de Galícia Central. IX Reunião de Geologia do Oeste Peninsular, Porto, 1985; Memórias Museu Laboratório Mineralogia Geologia da Faculdade Ciências Universidade Porto: Porto, Portugal, 1987; Volume 1, pp. 411–431. [Google Scholar]
- Ribeiro, A.; Pereira, E.; Dias, R. Structure in the Northwest of the Iberian Peninsula. In Pre-Mesozoic Geology of Iberia; Dallmeyer, R.D., Martínez Garcia, E., Eds.; Springer: Berlin/Heidelberg, Germany, 1990; pp. 220–236. [Google Scholar]
- Kroner, U.; Romer, R.L. Two plates-Many subduction zones: The Variscan orogeny reconsidered. Gondwana Res. 2013, 24, 298–329. [Google Scholar] [CrossRef]
- Noronha, F.; Ramos, J.M.F.; Rebelo, J.A.; Ribeiro, A.; Ribeiro, M.L. Essai de corrélation des phases de déformation hercyniennes dans le nord-ouest Péninsulaire. Leidse Geol. Mededel 1981, 52, 87–91. [Google Scholar]
- Ferreira, N.; Iglésias, M.; Noronha, F.; Pereira, E.; Ribeiro, A.; Ribeiro, M.L. Granitóides da Zona Centro Ibérica e Seu Enquadramento Geodinâmico. In Geología de los Granitoides y Rocas Asociadas del Macizo Hesperico: Libro de Homenaje a L.C. García de Figuerola; Bea, F., Carnicero, A., Gonzalo, J., Lopez Plaza, M., Rodriguez Alonso, M., Eds.; Editorial Rueda: Madrid, Spain, 1987; pp. 37–51. [Google Scholar]
- Dias, G.; Leterrier, J.; Mendes, A.; Simões, P.P.; Bertrand, J.M. U-Pb zircon and monazite geochronology of postcollisional Hercynian granitoids from the Central Iberian Zone (northern Portugal). Lithos 1998, 45, 349–369. [Google Scholar] [CrossRef] [Green Version]
- Noronha, F.; Martins, H.C.B.; Sant’ovaia, H. Field trip 3, Post-tectonic plutonism Vila Pouca de Aguiar region. In Variscan Plutonism in the Central Iberian Zone. Northern Portugal, Eurogranites 2000, Field Meeting; Dias, G., Noronha, F., Ferreira, N., Eds.; Universidade do Minho: Braga, Portugal, 2000; pp. 109–126. [Google Scholar]
- Vriend, S.P.; Oosterom, M.G.; Bussink, R.W.; Jansen, J.B.H. Trace element behaviour in the W-Sn granite of Regoufe, Portugal. J. Geochem. Explor. 1985, 23, 13–25. [Google Scholar] [CrossRef]
- Sousa, M.B. Litoestratigrafia e Estrutura do “Complexo Xisto-Grauváquico”—Grupo do Douro (Nordeste de Portugal). Ph.D. Thesis, University Coimbra, Coimbra, Portugal, 1982. [Google Scholar]
- Valle Aguado, B.; Azevedo, M.R.; Schaltegger, U.; Martínez Catalán, J.R.; Nolan, J. U-Pb zircon and monazite of Variscan magmatism related to syn-convergence extension in central northern Portugal. Lithos 2005, 82, 169–184. [Google Scholar] [CrossRef] [Green Version]
- Pinto, M.C.S.; Martín, C.C.; Ibarrola, E.; Castañón, L.G.C.; Portugal-Ferreira, M.R. Síntese geocronológica dos granitóides do Maciço Hespérico. In Geología de los Granitoides y rocas asociadas del Macizo Hespérico Libro Homenaje a L.C. García de Figuerola; Editorial Rueda: Madrid, Spain, 1987. [Google Scholar]
- Instituto Português do Mar e da Atmosfera(IPMA). Boletim Climatológico Mensal—Fevereiro 2022; IPMA: Lisboa, Portugal, 2022; 18p. [Google Scholar]
- Evans, M.E.; Heller, F. Environmental Magnetism—Principles and Applications of Enviromagnetics; Academic Press: Cambridge, MA, USA, 2003; ISBN 0-12-243851. [Google Scholar]
- Dearing, J.A.; Dann, R.J.L.; Hay, K.; Lees, J.A.; Loveland, P.J.; Maher, B.A.; O’Grady, K. Frequency-dependent susceptibility measurements of environmental materials. Geophys. J. Int. 1996, 124, 228–240. [Google Scholar] [CrossRef] [Green Version]
- Robertson, D.J.; France, D.E. Discrimination of remanence-carrying minerals in mixtures, using isothermal remanent magnetization acquisition curves. Phys. Earth Planet. Inter. 1994, 84, 297–312. [Google Scholar]
- Kruiver, P.; Dekkers, M.J.; Heslop, D. Quantification of magnetic coercivity components by the analysis of acquisition curves of isothermal remanent magnetization. Earth Planet. Sci. Lett. 2001, 189, 269–276. [Google Scholar] [CrossRef]
- Maxbauer, D.P.; Feinberg, J.M.; Fox, D.L. MAX UnMix: A web application for unmixing magnetic coercivity Distributions. Comput. Geosci. 2016, 95, 140–145. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar] [CrossRef]
- Egli, R. Characterization of individual rock magnetic components by analysis of remanence curves. Fundamental properties of coercivity distributions. Phys. Chem. Earth 2004, 29, 851–867. [Google Scholar] [CrossRef]
- Mansilha, C.; Melo, A.; Flores, D.; Ribeiro, J.; Rocha, J.R.; Martins, V.; Santos, P.; Espinha Marques, J. Irrigation with Coal Mining Effluents: Sustainability and Water Quality Considerations (São Pedro da Cova, North Portugal). Water 2021, 13, 2157. [Google Scholar] [CrossRef]
- Mourinha, C.; Palma, P.; Alexandre, C.; Cruz, N.; Rodrigues, S.M.; Alvarenga, P. Potentially Toxic Elements’ Contamination of Soils Affected by Mining Activities in the Portuguese Sector of the Iberian Pyrite Belt and Optional Remediation Actions: A Review. Environments 2022, 9, 11. [Google Scholar] [CrossRef]
- Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the Quality of Water Intended for Human Consumption. Available online: http://data.europa.eu/eli/dir/2020/2184/oj (accessed on 23 December 2020).
- World Health Organization WHO. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the first and second Addenda; WHO: Geneva, Switzerland, 2022; ISBN 978-92-4-004506-4. [Google Scholar]
- Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the field of Water Policy. Available online: http://data.europa.eu/eli/dir/2000/60/oj (accessed on 22 December 2000).
- Guy Howard. Drinking-Water and Health Risks Substitution in Arsenic Mitigation: A Discussion Paper; WHO: Geneva, Switzerland, 2003; WHO/SDE/WSH/03.06. [Google Scholar]
- World Health Organization WHO. Arsenic. Available online: https://www.who.int/news-room/fact-sheets/detail/arsenic (accessed on 7 December 2020).
- Water Europe (WE). The Value of Water: Towards a Future-Proof European Water-Smart Society. Available online: https://watereurope.eu/wp-content/uploads/2020/04/WE-Water-Vision-english_online.pdf (accessed on 1 March 2023).
- Water Europe (WE). Addressing Pollutants of Surface and Ground Water. Available online: https://watereurope.eu/wp-content/uploads/WE-Position-Paper-List-of-Pollutants-1.pdf (accessed on 1 March 2023).
- Magiera, T.; G.rka-Kostrubiec, B.; Szumiata, T.; Małgorzata, W. Technogenic magnetic particles from steel metallurgy and iron mining in topsoil: Indicative characteristic by magnetic parameters and Mossbauer spectra. Sci. Total Environ. 2021, 775, 145605. [Google Scholar] [CrossRef]
- Muller, G. Index of Geoaccumulation in Sediments of the Rhine River. GeoJournal 1969, 2, 108–118. [Google Scholar]
- Hakanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Abrahim, G.M.S.; Parker, R.J. Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environ. Monit. Assess. 2008, 136, 227–238. [Google Scholar] [CrossRef]
- Guo, W.; Liu, X.; Liu, Z.; Li, G. Pollution and Potential Ecological Risk Evaluation of Heavy Metals in the Sediments around Dongjiang Harbor, Tianjin. Procedia Environ. Sci. 2010, 2, 729–736. [Google Scholar] [CrossRef] [Green Version]
Plants | Local | Elements in mg/kg | ||||||
---|---|---|---|---|---|---|---|---|
Sedum anglicum | As | Mn | Zn | Cu | Ni | Pb | Co | |
Flowers | R1 | 0.0586 | 3.5078 | 3.8842 | b.d.l. | b.d.l. | 0.0048 | b.d.l. |
R2 | 0.1176 | 2.0857 | 1.7413 | b.d.l. | b.d.l. | 0.0046 | 0.0523 | |
R8 | 0.0488 | 0.6784 | 2.2794 | 0.0449 | 0.0359 | 0.0053 | 0.0952 | |
R16 | 0.0271 | 0.5278 | 2.1711 | 0.0346 | 0.0367 | 0.0046 | 0.0621 | |
Roots | R1 | 0.1050 | 0.3352 | 0.7441 | b.d.l. | b.d.l. | 0.0082 | b.d.l. |
R2 | 0.6471 | 0.8506 | 0.8251 | b.d.l. | b.d.l. | 0.0977 | b.d.l. | |
R8 | 0.0815 | 0.1937 | 1.0175 | b.d.l. | b.d.l. | 0.0089 | 0.0721 | |
Lolium sp. | ||||||||
Flowers | R1 | b.d.l. | 3.1807 | 0.6624 | 0.1032 | 0.0911 | 0.0029 | 0.1300 |
R2 | b.d.l. | 1.1557 | 0.6543 | b.d.l. | b.d.l. | 0.0022 | b.d.l. | |
R4 | b.d.l. | 0.7326 | 0.2014 | b.d.l. | b.d.l. | 0.0016 | b.d.l. | |
R5 | 0.2343 | 0.4484 | 1.1662 | 0.0595 | b.d.l. | 0.0057 | b.d.l. | |
R8 | b.d.l. | 0.3340 | 0.2768 | 0.0542 | b.d.l. | 0.0015 | b.d.l. | |
R16 | b.d.l. | 1.1594 | 0.4435 | 0.0391 | b.d.l. | 0.0016 | b.d.l. | |
Roots | R1 | 0.2977 | 2.7767 | 1.0309 | b.d.l. | b.d.l. | 0.0055 | 0.0941 |
R2 | 0.0623 | 0.7919 | 0.3445 | b.d.l. | b.d.l. | 0.0042 | b.d.l. | |
R4 | b.d.l. | 0.8389 | 0.4403 | b.d.l. | b.d.l. | 0.0084 | b.d.l. | |
R5 | 2.5720 | 0.5265 | 1.1577 | 0.0461 | b.d.l. | 0.0060 | b.d.l. | |
R16 | 0.0519 | 0.9566 | 0.7133 | b.d.l. | b.d.l. | 0.0037 | 0.0485 | |
Median | 0.0932 | 0.8154 | 0.7846 | 0.0461 | 0.0367 | 0.0047 | 0.0721 | |
Max | 2.5720 | 3.5078 | 3.8842 | 0.1032 | 0.0911 | 0.0977 | 0.1300 | |
Min | 0.0271 | 0.1937 | 0.2014 | 0.0346 | 0.0359 | 0.0015 | 0.0485 |
Water Samples | Temperature (°C) | pH | Electrical Conductivity (µS/cm) | Cations (mg/L) | Anions (mg/L) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Na+ | K+ | Ca2+ | Mg2+ | Cl− | HCO3− | SO42− | ||||
P1 | 22 | 6.0 | 24 | 2.84 | 0.35 | 1.01 | 0.32 | 4.17 | 2.21 | 2.63 |
P2 | 21 | 5.7 | 26 | 2.72 | 0.35 | 1.08 | 0.30 | 3.92 | 2.21 | 3.36 |
P3 | 22 | 6.0 | 26 | 3.05 | 1.03 | 0.84 | 0.24 | 4.63 | 2.21 | 2.13 |
Water Samples | Fe | Mn | As | Cd | Cu | Al |
---|---|---|---|---|---|---|
P1 | 131.0 | 2.7 | 238.5 | 4.1 | 15.2 | 8.2 |
P2 | 63.2 | 10.0 | 190.5 | 3.2 | 3.1 | 38.9 |
P3 | 15.2 | 8.2 | 71.8 | 1.1 | b.d.l. | 15.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sant’Ovaia, H.; Cruz, C.; Guedes, A.; Ribeiro, H.; Santos, P.; Pereira, S.; Espinha Marques, J.; Ribeiro, M.d.A.; Mansilha, C.; Martins, H.C.B.; et al. Contamination Fingerprints in an Inactive W (Sn) Mine: The Regoufe Mine Study Case (Northern Portugal). Minerals 2023, 13, 497. https://doi.org/10.3390/min13040497
Sant’Ovaia H, Cruz C, Guedes A, Ribeiro H, Santos P, Pereira S, Espinha Marques J, Ribeiro MdA, Mansilha C, Martins HCB, et al. Contamination Fingerprints in an Inactive W (Sn) Mine: The Regoufe Mine Study Case (Northern Portugal). Minerals. 2023; 13(4):497. https://doi.org/10.3390/min13040497
Chicago/Turabian StyleSant’Ovaia, Helena, Cláudia Cruz, Alexandra Guedes, Helena Ribeiro, Patrícia Santos, Sónia Pereira, Jorge Espinha Marques, Maria dos Anjos Ribeiro, Catarina Mansilha, Helena Cristina Brites Martins, and et al. 2023. "Contamination Fingerprints in an Inactive W (Sn) Mine: The Regoufe Mine Study Case (Northern Portugal)" Minerals 13, no. 4: 497. https://doi.org/10.3390/min13040497