Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (60)

Search Parameters:
Keywords = tunable dual-wavelength

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2223 KiB  
Article
Plasmonic Sensing Design for Measuring the Na+/K+ Concentration in an Electrolyte Solution Based on the Simulation of Optical Principles
by Hongfu Chen, Shubin Yan, Yi Sun, Youbo Hu, Taiquan Wu and Yuntang Li
Photonics 2025, 12(8), 758; https://doi.org/10.3390/photonics12080758 - 28 Jul 2025
Viewed by 205
Abstract
Based on the theory of optical sensing, we propose a high-precision plasmonic refractive index nanosensor, which consists of a symmetric rectangular waveguide and a circular ring containing a rectangular cavity. The designed novel tunable micro-resonant circular cavity filter based on surface plasmon excitations [...] Read more.
Based on the theory of optical sensing, we propose a high-precision plasmonic refractive index nanosensor, which consists of a symmetric rectangular waveguide and a circular ring containing a rectangular cavity. The designed novel tunable micro-resonant circular cavity filter based on surface plasmon excitations is able to confine light to sub-wavelength dimensions. The data show that different geometrical factors have different effects on sensing, with the geometry of the rectangular cavity and the radius of the circular ring being the key factors affecting the Fano resonance. Furthermore, the resonance bifurcation enables the structure to achieve a tunable dual Fano resonance system. The structure was tuned to obtain optimal sensitivity (S) and figure of merit values up to 3066 nm/RIU and 78. The designed structure has excellent sensing performance with sensitivities of 0.4767 nm·(mg/dL1) and 0.6 nm·(mg/dL1) in detecting Na+ and K+ concentrations in the electrolyte solution, respectively, and can be easily achieved by the spectrometer. The wavelength accuracy of 0.001 nm can be easily achieved by a spectrum analyzer, which has a broad application prospect in the field of optical integration. Full article
Show Figures

Figure 1

9 pages, 1553 KiB  
Communication
Orthogonally Polarized Pr:LLF Red Laser at 698 nm with Tunable Power Ratio
by Haotian Huang, Menghan Jia, Yuzhao Li, Jing Xia, Nguyentuan Anh and Yanfei Lü
Photonics 2025, 12(7), 666; https://doi.org/10.3390/photonics12070666 - 1 Jul 2025
Viewed by 171
Abstract
A continuous-wave (CW) orthogonally polarized single-wavelength red laser (OPSRL) at 698 nm with a tunable power ratio within a wide range between the two polarized components was demonstrated using two Pr3+:LiLuF4 (Pr:LLF) crystals for the first time. Through control of [...] Read more.
A continuous-wave (CW) orthogonally polarized single-wavelength red laser (OPSRL) at 698 nm with a tunable power ratio within a wide range between the two polarized components was demonstrated using two Pr3+:LiLuF4 (Pr:LLF) crystals for the first time. Through control of the waist location of the pump beam in the active media, the output power ratio of the two polarized components of the OPSRL could be adjusted. Under pumping by a 20 W, 444 nm InGaN laser diode (LD), a maximum total output power of 4.12 W was achieved with equal powers for both polarized components, corresponding to an optical conversion efficiency of 23.8% relative to the absorbed pump power. Moreover, by a type-II critical phase-matched (CPM) BBO crystal, a CW ultraviolet (UV) second-harmonic generation (SHG) at 349 nm was also obtained with a maximum output power of 723 mW. OPSRLs can penetrate deep tissues and demonstrate polarization-controlled interactions, and are used in bio-sensing and industrial cutting with minimal thermal distortion, etc. The dual-polarized capability of OPSRLs also supports multi-channel imaging and high-speed interferometry. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

11 pages, 3520 KiB  
Communication
Diode-End-Pumped Continuous-Wave Tunable Nd3+:LiYF4 Laser Operating on the 4F3/24I13/2 Transition
by Chu Chu, Shuang Wang, Xinhua Fu and Zhenhua Du
Photonics 2025, 12(6), 613; https://doi.org/10.3390/photonics12060613 - 14 Jun 2025
Viewed by 305
Abstract
A laser diode (LD) end-pumped continuous-wave (CW) tunable Nd3+:LiYF4 (Nd:YLF) laser operating on the 4F3/24I13/2 transition was performed. Four single-wavelength (SW) lasing at 1321, 1314, 1371, and 1364 nm in the π-polarized direction and [...] Read more.
A laser diode (LD) end-pumped continuous-wave (CW) tunable Nd3+:LiYF4 (Nd:YLF) laser operating on the 4F3/24I13/2 transition was performed. Four single-wavelength (SW) lasing at 1321, 1314, 1371, and 1364 nm in the π-polarized direction and three SW lasing at 1314, 1326, and 1371 nm in the σ-polarized direction were achieved using a tuning prism. At 20 W pump power, the σ-polarized 1314 nm emission generated 7.3 W power output with 39.4% slope efficiency. Further, the three-pair of switchable π-polarized dual-wavelengths (DWs) at 1321/1314 nm, 1371/1364 nm, and 1321/1364 nm and the two-pair of switchable σ-polarized DWs at 1314/1326 nm and 1314/1371 nm were also realized by rotating an intracavity birefringence filter (BF). In addition, by employing dual intracavity BFs, the balanced DW output power was attained, achieving 6.4 W total maximum output at 1314/1321 nm in the π-polarized direction. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

12 pages, 7173 KiB  
Article
Sb3+-Doped Rb2HfCl6 Perovskites as High-Performance Thermally Stable Single-Component Phosphors for White Light-Emitting Diodes
by Yanbiao Li and Yuefeng Gao
Materials 2025, 18(9), 1896; https://doi.org/10.3390/ma18091896 - 22 Apr 2025
Viewed by 534
Abstract
Stable and efficient inorganic lead-free double perovskites are crucial for high-reliability optoelectronic devices. However, dual-doped perovskite phosphors often suffer from poor color stability due to differences in thermal activation energies and electron–phonon interactions between the doped ions. To address this, single-doped Sb3+ [...] Read more.
Stable and efficient inorganic lead-free double perovskites are crucial for high-reliability optoelectronic devices. However, dual-doped perovskite phosphors often suffer from poor color stability due to differences in thermal activation energies and electron–phonon interactions between the doped ions. To address this, single-doped Sb3+-incorporated Rb2HfCl6 perovskite crystals were synthesized via a co-precipitation method. Under UV excitation, Rb2HfCl6:Sb exhibits broad dual emission bands, attributed to singlet and triplet self-trapped exciton radiative transitions induced by Jahn–Teller distortion in [SbCl6]3− octahedra. This dual emission endows the material with high sensitivity to excitation wavelengths, enabling tunable luminescence from cyan to orange-red across 400–800 nm. Utilizing this dual emission, a white LED was fabricated, showcasing a high color rendering index and excellent long-term stability. Remarkably, the material exhibits breakthrough thermal stability, maintaining more than 90% of its emission intensity at 100 °C, while also exhibiting remarkable resistance to humidity and oxygen exposure. Compared to co-doped phosphors, Rb2HfCl6:Sb offers advantages such as environmental friendliness, simple fabrication, and stable performance, making it an ideal candidate for WLEDs. This study demonstrates notable progress in developing thermally stable and reliable optoelectronic devices. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

12 pages, 5092 KiB  
Article
Design of Real-Time Demodulation for FBG Sensing Signals Based on All-Dielectric Subwavelength Gratings Edge Filters
by Jingliang Lin, Ping Tang, Kaihao Chen, Jiancai Xue, Ziming Meng and Jinyun Zhou
Nanomaterials 2025, 15(7), 536; https://doi.org/10.3390/nano15070536 - 1 Apr 2025
Viewed by 592
Abstract
Accurate real-time temperature measurement under extreme thermal-pressure conditions remains challenging in aerospace. Sapphire fiber Bragg gratings (FBGs), exhibiting temperature measurement capabilities up to 1900 °C, demonstrate suitability for such extreme environments. However, the development of a high-performance demodulation system capable of processing sapphire [...] Read more.
Accurate real-time temperature measurement under extreme thermal-pressure conditions remains challenging in aerospace. Sapphire fiber Bragg gratings (FBGs), exhibiting temperature measurement capabilities up to 1900 °C, demonstrate suitability for such extreme environments. However, the development of a high-performance demodulation system capable of processing sapphire FBG signals over wide spectral ranges at elevated speeds remains a technical challenge. This study presents a real-time FBG signal demodulation system that incorporates an all-dielectric subwavelength grating edge filter. The designed grating, comprising a TiO2/Si3N4 subwavelength unit array, modulates Mie-type electric and magnetic multipole resonances to achieve precisely tailored transmission and reflection spectra. Simulation results indicate that the grating exhibits low ohmic loss, excellent linearity, complementary transmission/reflection characteristics, a wide linear range, and angular-dependent tunability. The designed edge-filter-based demodulation system incorporates dual single-point detectors to simultaneously monitor the transmitted and reflected signals. Leveraging the functional relationship between the center wavelength of the FBG and the detected signals, this system enables high-speed, wide-range interrogation of the center wavelength, thus facilitating real-time demodulation for wide-range temperature sensing. The proposed method and system are validated through theoretical modeling, offering an innovative approach for sapphire FBG signal demodulation under extreme thermal-pressure conditions. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

11 pages, 6537 KiB  
Article
Cavity Wavelength on Erbium-Doped Fiber Ring Laser Depending on Fabry–Pérot Etalon Steering Angle
by Cheng-Kai Yao, Ting-Po Fan, Ming-Che Chan and Peng-Chun Peng
Appl. Sci. 2025, 15(2), 822; https://doi.org/10.3390/app15020822 - 15 Jan 2025
Viewed by 1004
Abstract
This study presents the liquid crystal Fabry–Pérot etalon (LC-FP) as the preferred laser wavelength tuning solution within a erbium-doped fiber ring laser architecture. The laser cavity wavelength can be adjusted by applying varying voltages to the LC-FP. Furthermore, tuning the laser wavelength can [...] Read more.
This study presents the liquid crystal Fabry–Pérot etalon (LC-FP) as the preferred laser wavelength tuning solution within a erbium-doped fiber ring laser architecture. The laser cavity wavelength can be adjusted by applying varying voltages to the LC-FP. Furthermore, tuning the laser wavelength can be facilitated by modifying the incident light through changes in the steering angle of the LC-FP, which is attributed to the angular dispersion characteristics of the device. The operational range for the steering angle of the LC-FP is ± 4 to 18 degrees. This architectural framework is adept at facilitating the generation of single-wavelength and dual-wavelength lasers within the C band. The tunable range for a single wavelength is approximately 13 nm, while the tunable range for dual wavelengths is around 14 nm, with a wavelength spacing of approximately 17.5 nm. These capabilities are primarily influenced by the operational wavelength of the erbium-doped fiber amplifier (EDFA), the operating wavelength of the collimator that directs the fiber optic beam into the LC-FP, and the fixed thickness of the LC-FP. Full article
(This article belongs to the Section Optics and Lasers)
Show Figures

Figure 1

17 pages, 1729 KiB  
Review
Recent Advances in Tunable External Cavity Diode Lasers
by Yan Wang and Yue Song
Appl. Sci. 2025, 15(1), 206; https://doi.org/10.3390/app15010206 - 29 Dec 2024
Cited by 2 | Viewed by 2576
Abstract
A narrow linewidth tunable laser source is a critical component in various fields, including laser radar, quantum information, coherent communication, and precise measurement. Tunable external cavity diode lasers (ECDLs) demonstrate excellent performance, such as narrow linewidth, wide tunable range, and low threshold current, [...] Read more.
A narrow linewidth tunable laser source is a critical component in various fields, including laser radar, quantum information, coherent communication, and precise measurement. Tunable external cavity diode lasers (ECDLs) demonstrate excellent performance, such as narrow linewidth, wide tunable range, and low threshold current, making them increasingly versatile and widely applicable. This article provides an overview of the fundamental structures and recent advancements in external cavity semiconductor lasers. In particular, we discuss external cavity semiconductor lasers based on quantum well and quantum dot gain chips. The structure of the gain chip significantly influences laser’s performance. External cavity quantum well laser has a narrower linewidth, higher power, and better mode stability. Conversely, external cavity quantum dot laser provides a wider tunable range and a remarkably lower threshold current. Furthermore, dual-wavelength external cavity tunable diode lasers are gaining importance in applications such as optical switching and terahertz radiation generation. With the continuous optimization of chips and external cavity structures, external cavity diode lasers are increasingly recognized as promising light sources with narrow linewidth and wide tunability, opening up broader application prospects. Full article
(This article belongs to the Special Issue Optical Sensors: Applications, Performance and Challenges)
Show Figures

Figure 1

16 pages, 10770 KiB  
Article
A Tunable and Switchable Multi-Wavelength Erbium-Doped Fiber Laser Based on a Curvature Mach–Zehnder Interferometer Filter Using Thin-Core Fiber
by Christian Perezcampos-Mayoral, Jaime Gutiérrez-Gutiérrez, José Luis Cano-Pérez, Marciano Vargas-Treviño, Lorenzo Tepech-Carrillo, Erick Israel Guerra-Hernández, Itandehui Belem Gallegos-Velasco, Pedro Antonio Hernández-Cruz, Eeduardo Pérez-Campos-Mayoral, Victor Hugo Ojeda-Meixueiro, Julián Moisés Estudillo-Ayala, Juan Manuel Sierra-Hernandez and Roberto Rojas-Laguna
Appl. Sci. 2024, 14(24), 11578; https://doi.org/10.3390/app142411578 - 11 Dec 2024
Cited by 2 | Viewed by 1256
Abstract
We propose and demonstrate a tunable and switchable multi-wavelength fiber ring laser configuration based on a Mach–Zehnder interferometer (MZI) filter. The MZI was fabricated using a core-offset splicing technique, with a 2 cm piece of thin-core erbium-doped fiber (TCEDF), with a core diameter [...] Read more.
We propose and demonstrate a tunable and switchable multi-wavelength fiber ring laser configuration based on a Mach–Zehnder interferometer (MZI) filter. The MZI was fabricated using a core-offset splicing technique, with a 2 cm piece of thin-core erbium-doped fiber (TCEDF), with a core diameter of 2.90 µm, coupled in the central region of the MZI between two segments of single-mode fiber (SMF). By applying curvature to the MZI filter, we generated lasing single-, double-, triple-, and quadruple-emission lines with a curvature range from 2.3452 m−1 to 6.0495 m−1. A single-emission lasing line can be tuned from 1556.63 nm to 1564.25 nm with a tuning span of 7.62 nm and an SMSR of 49.80 dB. The laser emission can be switched to quadruple- and triple-emission lasing signals, with SMSR values of 39.96 dB and 36.83 dB, respectively. The dual-narrow emission lasing signal can be tuned from 1564.56 nm to 1561.34 nm, with an SMSR of 40.46 dB. Another lasing dual-emission signal can be tuned from 1585.69 nm to 1576.89 nm, producing an 8.8 nm tuning range, and from 1572.53 nm to 1563.66 nm, producing an 8.87 nm range, with the best SMSR of 42.35 dB. Full article
(This article belongs to the Special Issue Recent Trends in Fiber Optic Sensor: Technology and Applications)
Show Figures

Figure 1

13 pages, 2569 KiB  
Article
Ga2O3-Based Optoelectronic Memristor and Memcapacitor Synapse for In-Memory Sensing and Computing Applications
by Hye Jin Lee, Jeong-Hyeon Kim, Seung Hun Lee and Sung-Nam Lee
Nanomaterials 2024, 14(23), 1972; https://doi.org/10.3390/nano14231972 - 8 Dec 2024
Cited by 6 | Viewed by 1490
Abstract
This study presents the fabrication and characterization of a dual-functional Pt/Ga2O3/Pt optoelectronic synaptic device, capable of operating as both a memristor and a memcapacitor. We detail the optimized radio frequency (RF) sputtering parameters, including a base pressure of 8.7 [...] Read more.
This study presents the fabrication and characterization of a dual-functional Pt/Ga2O3/Pt optoelectronic synaptic device, capable of operating as both a memristor and a memcapacitor. We detail the optimized radio frequency (RF) sputtering parameters, including a base pressure of 8.7 × 10−7 Torr, RF power of 100 W, working pressure of 3 mTorr, and the use of high-purity Ga2O3 and Pt targets. These precisely controlled conditions facilitated the formation of an amorphous Ga2O3 thin film, as confirmed by XRD and AFM analyses, which demonstrated notable optical and electrical properties, including light absorption properties in the visible spectrum. The device demonstrated distinct resistive and capacitive switching behaviors, with memory characteristics highly dependent on the wavelength of the applied light. Ultraviolet (365 nm) exposure facilitated long-term memory retention, while visible light (660 nm) supported short-term memory behavior. Paired-pulse facilitation (PPF) measurements revealed that capacitance showed slower decay rates than EPSC, suggesting a more stable memory performance due to the dynamics of carrier trapping and detrapping at the insulator interface. Learning simulations further highlighted the efficiency of these devices, with improved memory retention upon repeated exposure to UV light pulses. Visual encoding simulations on a 3 × 3 pixel array also demonstrated effective multi-level memory storage using varying light intensities. These findings suggest that Ga2O3-based memristor and memcapacitor devices have significant potential for neuromorphic applications, offering tunable memory performance across various wavelengths from ultraviolet to red. Full article
Show Figures

Figure 1

12 pages, 4110 KiB  
Article
Wavelength Locking and Calibration of Fiber-Optic Ultrasonic Sensors Using Single-Sideband-Modulated Laser
by Mohammed Alshammari and Ming Han
Photonics 2024, 11(11), 1063; https://doi.org/10.3390/photonics11111063 - 13 Nov 2024
Viewed by 1222
Abstract
Implementation of edge-filter detection for interrogating optical interferometric ultrasonic sensors is often hindered by the lack of cost-effective laser sources with agile wavelength tunability and good noise performance. The detected signal can also be affected by optical power variations and locking-point drift, negatively [...] Read more.
Implementation of edge-filter detection for interrogating optical interferometric ultrasonic sensors is often hindered by the lack of cost-effective laser sources with agile wavelength tunability and good noise performance. The detected signal can also be affected by optical power variations and locking-point drift, negatively affecting the sensor accuracy. Here, we report the use of laser single-sideband generation with a dual-parallel Mach–Zehnder interferometer (DP-MZI) for laser wavelength tuning and locking in edge-filter detection of fiber-optic ultrasonic sensors. We also demonstrate real-time in situ calibration of the sensor response to ultrasound-induced wavelength shift tuning. The DP-MZI is employed to generate a known wavelength modulation of the laser, whose response is used to gauge the sensor response to the ultrasound-induced wavelength shifts in real time and in situ. Experiments were performed on a fiber-optic ultrasonic sensor based on a high-finesse Fabry–Perot interferometer formed by two fiber Bragg gratings. The results demonstrated the effectiveness of the laser locking against laser wavelength drift and temperature variations and the effectiveness of the calibration method against optical power variations and locking-point drift. These techniques can enhance the operational robustness and increase the measurement accuracy of optical ultrasonic sensors. Full article
(This article belongs to the Special Issue Recent Research on Optical Sensing and Precision Measurement)
Show Figures

Figure 1

16 pages, 16410 KiB  
Article
A Tunable and Switchable Multi-Wavelength Erbium-Doped Fiber Ring Laser Enabled by Adjusting the Spectral Fringe Visibility of a Mach-Zehnder Fiber Interferometer
by Romeo Emmanuel Nuñez Gomez, Gilberto Anzueto Sánchez, Alejando Martínez Ríos, Ariel Fong González, Alfredo Olarte Paredes, Areli Marlen Salgado Delgado, Jesús Castrellón Uribe and René Salgado Delgado
Appl. Sci. 2024, 14(21), 9846; https://doi.org/10.3390/app14219846 - 28 Oct 2024
Cited by 3 | Viewed by 2425
Abstract
This paper presents a tunable, switchable multi-wavelength emission from an erbium-doped fiber ring laser, enabled by adjusting the spectral fringe visibility of a fiber interferometer filter. The filter is formed with specially designed concatenated tapered fibers to configure a Mach-Zehnder fiber interferometer (MZFI). [...] Read more.
This paper presents a tunable, switchable multi-wavelength emission from an erbium-doped fiber ring laser, enabled by adjusting the spectral fringe visibility of a fiber interferometer filter. The filter is formed with specially designed concatenated tapered fibers to configure a Mach-Zehnder fiber interferometer (MZFI). The laser emission is highly flexible and reconfigurable, allowing for tuning between single- and dual-wavelength operation. The laser can switch sequentially from one up to six wavelengths by fixing the curvature and adjusting the polarization state. The lasing emission is generated over a stable wavelength range between 1559.59 nm and 1563.54 nm, exhibiting an optical signal-to-noise ratio (OSNR) exceeding ~35 dB. The performance of amplitude and wavelength fluctuations were evaluated, indicating an appropriate stability of ~3 dB and a shift less than 0.1 nm within a 45 min period at room temperature. A detailed comparison with the literature is given. Full article
(This article belongs to the Special Issue Recent Trends in Fiber Optic Sensor: Technology and Applications)
Show Figures

Figure 1

18 pages, 6433 KiB  
Article
Dual-Wavelength Interferometric Detection Technology for Wind and Temperature Fields in the Martian Middle and Upper Atmosphere Based on LCTF
by Yanqiang Wang, Biyun Zhang, Chunmin Zhang, Shiping Guo, Tingyu Yan, Yifan He and William Ward
Remote Sens. 2024, 16(19), 3591; https://doi.org/10.3390/rs16193591 - 26 Sep 2024
Viewed by 1006
Abstract
A dual-wavelength spaceborne Martian polarized wind imaging Michelson interferometer based on liquid crystal tunable filters (LCTF-MPWIMI) has been proposed for the remote sensing detection of dynamic parameters such as wind speed and temperature in the middle and upper atmosphere of Mars. Using the [...] Read more.
A dual-wavelength spaceborne Martian polarized wind imaging Michelson interferometer based on liquid crystal tunable filters (LCTF-MPWIMI) has been proposed for the remote sensing detection of dynamic parameters such as wind speed and temperature in the middle and upper atmosphere of Mars. Using the detected Martian oxygen atom emission lines at 557.7 nm and 630.0 nm as observation spectral lines, this technology extends the detection altitude range for Martian atmospheric wind speed and temperature to 60–180 km. By leveraging the different spectral line visibility of the interferograms at the two wavelengths, a novel method for measuring Martian atmospheric temperature is proposed: the dual-wavelength spectral line visibility product method. This new approach reduces the uncertainty of temperature detection compared to traditional single spectral line visibility methods, while maintaining the precision of wind speed measurements. The feasibility of the LCTF-MPWIMI for measuring wind and temperature fields in the Martian middle and upper atmosphere has been validated through theoretical modeling and computer simulations. The interferometer, as a key component of the system, has been designed and analyzed. The proposed LCTF-MPWIMI instrument is free of mechanical moving parts, offering flexible wavelength selection and facilitating miniaturization. The dual-wavelength temperature measurement method introduced in this work provides superior temperature measurement precision compared to any single spectral line when the signal-to-noise ratio (SNR) of the interferograms is comparable. Moreover, this method does not impose specific requirements on the atomic state of the spectral lines, making it broadly applicable to similar interferometric wind measurement instruments. These innovations offer advanced tools and methodologies for measuring wind speeds and temperatures in the atmospheres of Mars and other planets. Full article
Show Figures

Figure 1

13 pages, 4106 KiB  
Article
A Multi-Format, Multi-Wavelength Erbium-Doped Fiber Ring Laser Using a Tunable Delay Line Interferometer
by Cheng-Kai Yao, Amare Mulatie Dehnaw and Peng-Chun Peng
Appl. Sci. 2024, 14(16), 6933; https://doi.org/10.3390/app14166933 - 8 Aug 2024
Cited by 2 | Viewed by 1756
Abstract
This work demonstrates the use of an erbium-doped fiber amplifier (EDFA), a tunable bandpass filter (TBF), and a tunable delay line interferometer (TDLI) to form a ring laser that produces multi-format, multi-wavelength laser beams. The TDLI serves as the core of the proposed [...] Read more.
This work demonstrates the use of an erbium-doped fiber amplifier (EDFA), a tunable bandpass filter (TBF), and a tunable delay line interferometer (TDLI) to form a ring laser that produces multi-format, multi-wavelength laser beams. The TDLI serves as the core of the proposed laser generation system. TDLI harnesses the weak Fabry–Pérot (FP) interferences generated by its built-in 50/50 beamsplitter (BS) with unalterable filtering characteristics and the interferences with free spectral range (FSR) adjustable from each of its two outputs with nearly complementary phases to superpose and generate a variable interference standing wave. The interferometric standing wave and weak FP interferences are used to form a spatial-hole burning to promote the excitation of multi-format and multi-wavelength lasers. The proposed system enables dual-wavelength spacing ranging from 0.3 nm to 3.35 nm, with a switchable wavelength position at approximately 1527 nm to 1535 nm, providing flexible tunability. Full article
(This article belongs to the Special Issue Advanced Optical-Fiber-Related Technologies)
Show Figures

Figure 1

12 pages, 3643 KiB  
Article
A Frequency-Reconfigurable Dual-Band RF Crossover Based on Coupled Lines and Open Stubs
by Abdullah J. Alazemi and Danah H. Almatar
Electronics 2024, 13(13), 2641; https://doi.org/10.3390/electronics13132641 - 5 Jul 2024
Cited by 1 | Viewed by 1029
Abstract
This paper presents a frequency-reconfigurable dual-band radio frequency (RF) crossover based on quarter-wavelength coupled lines (CLs) and open stubs. Initially, an even–odd-mode analysis was conducted for the design, and closed-form equations were found. Then an advanced design system (ADS) was utilized to support [...] Read more.
This paper presents a frequency-reconfigurable dual-band radio frequency (RF) crossover based on quarter-wavelength coupled lines (CLs) and open stubs. Initially, an even–odd-mode analysis was conducted for the design, and closed-form equations were found. Then an advanced design system (ADS) was utilized to support and further optimize the theoretical analysis. Afterwards, high-frequency simulation software (HFSS) was used to simulate the proposed design. The proposed device is printed on a 1.524 mm RO4003C printed-circuit board (εr=3.55). The frequency tunability is achieved by employing two varactor diodes connected to the open stubs. When the biasing voltage is altered, the capacitance of the SMV1405 varactor can change from 2.67 pF to 0.63 pF. Accordingly, the two operating frequencies can be continuously tuned from 2.06 GHz to 2.40 GHz and from 5.44 GHz to 5.84 GHz. For the low-frequency range, return loss and isolation are above 15 dB, and the insertion loss is less than 1.1 dB. As for the high-frequency range, the return loss is greater than 20 dB, the isolation is better than 15 dB, and the insertion loss is lower than 1.6 dB. The measurement results agreed well with the simulation results, and the crossover overall size is 45.5 mm × 29.4 mm. The proposed device can be utilized for various application areas, such as 5G smartphone applications and satellite communication. Full article
(This article belongs to the Special Issue Microwave Devices: Analysis, Design, and Application)
Show Figures

Figure 1

12 pages, 3481 KiB  
Article
Enhanced Tunability of Dual-Band Chiral Metasurface in the Mid-Infrared Range via Slotted Nanocircuit Design
by Shengyi Wang, Hanzhuo Kuang, Wenjie Li, Yanni Wang, Hao Luo, Chengjun Li, Hua Ge, Qiu Wang and Bowen Jia
Nanomaterials 2024, 14(11), 979; https://doi.org/10.3390/nano14110979 - 5 Jun 2024
Cited by 3 | Viewed by 1751
Abstract
Multi-band circular dichroism (CD) response and tunability on the chiral metasurface are crucial for this device’s applications in sensing and detection. This work proposes a dual-band CD Au-CaF2-Au dimer elliptical metasurface absorber, where chiroptical sensing is realized by breaking the geometric [...] Read more.
Multi-band circular dichroism (CD) response and tunability on the chiral metasurface are crucial for this device’s applications in sensing and detection. This work proposes a dual-band CD Au-CaF2-Au dimer elliptical metasurface absorber, where chiroptical sensing is realized by breaking the geometric symmetry between two ellipses. The proposed metasurface can achieve high CD values of 0.8 and −0.74 for the dual-band within the 3–5 μm region, and the CD values can be manipulated by independently adjusting the geometric parameters of the metasurface. Furthermore, a slotted nanocircuit is introduced onto the metasurface to enhance its tunability by manipulating the geometry parameter in the design process, and the related mechanism is explained using an equivalent circuit model. The simulation of the sensing model revealed that the slotted nanocircuit enhances the sensor’s tunability and significantly improves its bandwidth and sensitivity, achieving peak enhancements at approximately 753 nm and 1311 nm/RIU, respectively. Due to the strong dual-band positive (and negative) responses of the CD values, flexible wavelength tunability, and nonlinear sensitivity enhancement, this design provides a new approach for the development and application of mid-infrared chiroptical devices. Full article
(This article belongs to the Special Issue Optical Composites, Nanophotonics and Metamaterials)
Show Figures

Figure 1

Back to TopTop