Enhanced Tunability of Dual-Band Chiral Metasurface in the Mid-Infrared Range via Slotted Nanocircuit Design
Abstract
1. Introduction
2. Structure and Design Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cabre, A.; Verdaguer, X.; Riera, A. Recent Advances in the Enantioselective Synthesis of Chiral Amines via Transition Metal-Catalyzed Asymmetric Hydrogenation. Chem. Rev. 2022, 122, 269–339. [Google Scholar] [CrossRef]
- Wu, Z.L.; Liu, Y.R.; Hill, E.H.; Zheng, Y.B. Chiral metamaterials via moiré stacking. Nanoscale 2018, 10, 18096–18112. [Google Scholar] [CrossRef]
- Liu, Y.; Xiao, J.; Koo, J.; Yan, B. Chirality-driven topological electronic structure of DNA-like materials. Nat. Mater. 2021, 20, 638–644. [Google Scholar] [CrossRef] [PubMed]
- Farshchi, R.; Ramsteiner, M.; Herfort, J.; Tahraoui, A.; Grahn, H.T. Optical communication of spin information between light emitting diodes. Appl. Phys. Lett. 2011, 98, 162508. [Google Scholar] [CrossRef]
- Li, W.; Coppens, Z.J.; Besteiro, L.V.; Wang, W.; Govorov, A.O.; Valentine, J. Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials. Nat. Commun. 2015, 6, 8379. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, S.; Orrit, M. Optically Probing the Chirality of Single Plasmonic Nanostructures and of Single Molecules: Potential and Obstacles. ACS Photonics 2022, 9, 3486–3497. [Google Scholar] [CrossRef]
- Huang, Y.J.; Xie, X.; Pu, M.B.; Guo, Y.H.; Xu, M.F.; Ma, X.L.; Li, X.; Luo, X.G. Dual-Functional Metasurface toward Giant Linear and Circular Dichroism. Adv. Opt. Mater. 2020, 8, 1902061. [Google Scholar] [CrossRef]
- Lininger, A.; Palermo, G.; Guglielmelli, A.; Nicoletta, G.; Goel, M.; Hinczewski, M.; Strangi, G. Chirality in light–matter interaction. Adv. Mater. 2023, 35, 2107325. [Google Scholar] [CrossRef]
- Novotny, L.; Van Hulst, N. Antennas for light. Nat. Photonics 2011, 5, 83–90. [Google Scholar] [CrossRef]
- Chen, H. Interference theory of metamaterial perfect absorbers. Opt. Express 2012, 20, 7165–7172. [Google Scholar] [CrossRef]
- Yu, N.; Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 2014, 13, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Mahmud, M.S.; Rosenmann, D.; Czaplewski, D.A.; Gao, J.; Yang, X. Chiral plasmonic metasurface absorbers in the mid-infrared wavelength range. Opt. Lett. 2020, 45, 5372–5375. [Google Scholar] [CrossRef] [PubMed]
- Kang, L.; Wang, C.; Guo, X.; Ni, X.; Liu, Z.; Werner, D.H. Nonlinear chiral meta-mirrors: Enabling technology for ultrafast switching of light polarization. Nano Lett. 2020, 20, 2047–2055. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, L.; Wang, W.; Rosenmann, D.; Czaplewski, D.A.; Gao, J.; Yang, X. Near-infrared chiral plasmonic metasurface absorbers. Opt. Express 2018, 26, 31484–31489. [Google Scholar] [CrossRef] [PubMed]
- Go, M.; Lee, D.; Kim, S.; Jang, J.; Kim, K.; Lee, J.; Shim, S.; Kim, J.K.; Rho, J. Facile Fabrication of Titanium Nitride Nanoring Broad-Band Absorbers in the Visible to Near-Infrared by Shadow Sphere Lithography. ACS Appl. Mater. Inter. 2023, 15, 3266–3273. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Chen, H.; Cui, T. A broadband terahertz absorber using multi-layer stacked bars. Appl. Phys. Lett. 2015, 106, 151601. [Google Scholar] [CrossRef]
- Siday, S.T.; Vabishchevich, P.P.; Hale, L.; Harris, C.T.; Luk, T.S.; Reno, J.L.; Brener, I.; Mitrofanov, O. Terahertz Detection with Perfectly-Absorbing Photoconductive Metasurface. Nano Lett. 2019, 19, 2888–2896. [Google Scholar] [CrossRef] [PubMed]
- Akselrod, G.M.; Huang, J.; Hoang, T.B.; Bowen, P.T.; Su, L.; Smith, D.R.; Mikkelsen, M.H. Large-area metasurface perfect absorbers from visible to near-infrared. Adv. Mater. 2015, 27, 8028–8034. [Google Scholar] [CrossRef] [PubMed]
- Zhu, A.Y.; Chen, W.T.; Zaidi, A.; Huang, Y.-W.; Khorasaninejad, M.; Sanjeev, V.; Qiu, C.W.; Capasso, F. Giant intrinsic chiro-optical activity in planar dielectric nanostructures. Light Sci. Appl. 2018, 7, 17158. [Google Scholar] [CrossRef]
- Liu, H.; Ai, Q.; Xie, M. Thermally and electrically tunable narrowband absorber in mid-infrared region. Int. J. Therm. Sci. 2022, 171, 107225. [Google Scholar] [CrossRef]
- Tang, H.; Rosenmann, D.; Czaplewski, D.A.; Yang, X.; Gao, J. Dual-band selective circular dichroism in mid-infrared chiral metasurfaces. Opt. Express 2022, 30, 20063–20075. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, L.; Rosenmann, D.; Czaplewski, D.A.; Gao, J.; Yang, X. Broadband infrared circular dichroism in chiral metasurface absorbers. Nanotechnology 2020, 31, 295203. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Rosenmann, D.; Czaplewski, D.A.; Gao, J.; Yang, X. Mid-infrared chiral metasurface absorbers with split-ellipse structures. Opt. Commun. 2022, 525, 128854. [Google Scholar] [CrossRef]
- Ali, H.; Petronijevic, E.; Pellegrini, G.; Sibilia, C.; Andreani, L.C. Circular dichroism in a plasmonic array of elliptical nanoholes with square lattice. Opt. Express 2023, 31, 14196–14211. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, W.O.; Oliveira, O.N.; Mejía-Salazar, J.R. Magnetochiroptical nanocavities in hyperbolic metamaterials enable sensing down to the few-molecule level. J. Chem. Phys. 2024, 160, 071104. [Google Scholar] [CrossRef]
- Lin, P.T.; Lin, H.Y.G.; Han, Z.; Jin, T.; Millender, R.; Kimerling, L.C.; Agarwal, A. Label-Free Glucose Sensing Using Chip-Scale Mid-Infrared Integrated Photonics. Adv. Opt. Mater. 2016, 4, 1755–1759. [Google Scholar] [CrossRef]
- Lavchiev, V.M.; Jakoby, B. Photonics in the Mid-Infrared: Challenges in Single-Chip Integration and Absorption Sensing. IEEE J. Sel. Top. Quantum. Electron. 2017, 23, 452–463. [Google Scholar] [CrossRef]
- Tang, H.; Stan, L.; Czaplewski, D.A.; Yang, X.; Gao, J. Wavelength-tunable infrared chiral metasurfaces with phase-change materials. Opt. Express 2023, 31, 21118–21127. [Google Scholar] [CrossRef]
- Chen, J.; Zong, S.; Liu, X.; Liu, G.; Zhan, X.; Liu, Z. Gradient-assisted metasurface absorber with dual-band chiral switching and quasi-linearly tunable circular dichroism. Opt. Lett. 2023, 48, 4917–4920. [Google Scholar] [CrossRef] [PubMed]
- Alù, A.; Engheta, N. Wireless at the nanoscale: Optical interconnects using matched nanoantennas. Phys. Rev. Lett. 2010, 104, 213902. [Google Scholar] [CrossRef]
- Alù, A.; Engheta, N. Tuning the scattering response of optical nanoantennas with nanocircuit loads. Nat. Photonics 2008, 2, 307–310. [Google Scholar] [CrossRef]
- Salandrino, A.; Alù, A.; Engheta, N. Parallel, series, and intermediate interconnections of optical nanocircuit elements. 1. Analytical solution. JOSA B 2007, 24, 3007–3013. [Google Scholar] [CrossRef]
- Alù, A.; Engheta, N. Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas. Phys. Rev. Lett. 2008, 101, 043901. [Google Scholar] [CrossRef]
- Zhao, Y.; Engheta, N.; Alù, A. Effects of shape and loading of optical nanoantennas on their sensitivity and radiation properties. JOSA B 2011, 28, 1266–1274. [Google Scholar] [CrossRef]
- Engheta, N.; Salandrino, A.; Alù, A. Circuit elements at optical frequencies: Nanoinductors, nanocapacitors, and nanoresistors. Phys. Rev. Lett. 2005, 95, 095504. [Google Scholar] [CrossRef]
- Malitson, I.H. A redetermination of some optical properties of calcium fluoride. Appl. Opt. 1963, 2, 1103–1107. [Google Scholar] [CrossRef]
- Babar, S.; Weaver, J.H. Optical constants of Cu, Ag, and Au revisited. Appl. Opt. 2015, 54, 477–481. [Google Scholar] [CrossRef]
- Yang, Y.; Zenin, V.A.; Bozhevolnyi, S.I. Anapole-assisted strong field enhancement in individual all-dielectric nanostructures. ACS Photonics 2018, 5, 1960–1966. [Google Scholar] [CrossRef]
- Moretti, G.Q.; Cortés, E.; Maier, S.A.; Bragas, A.V.; Grinblat, G. Engineering gallium phosphide nanostructures for efficient nonlinear photonics and enhanced spectroscopies. Nanophotonics 2021, 10, 4261–4271. [Google Scholar] [CrossRef]
- Yang, A.H.; Moore, S.D.; Schmidt, B.S.; Klug, M.; Lipson, M.; Erickson, D. Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides. Nature 2009, 457, 71–75. [Google Scholar] [CrossRef]
- Tittl, A.; Leitis, A.; Liu, M.; Yesilkoy, F.; Choi, D.Y.; Neshev, D.N.; Kivshar, Y.S.; Altug, H. Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science 2018, 360, 1105–1109. [Google Scholar] [CrossRef] [PubMed]
- Pan, R.; Liu, Z.; Zhu, W.; Du, S.; Gu, C.; Li, J. Asymmetrical chirality in 3D bended metasurface. Adv. Func. Mater. 2021, 31, 2100689. [Google Scholar] [CrossRef]
- Yin, S.; Ji, W.; Xiao, D.; Li, Y.; Li, K.; Yin, Z.; Jiang, S.; Shao, L.; Luo, D.; Liu, Y.J. Intrinsically or extrinsically reconFigureurable chirality in plasmonic chiral metasurfaces. Opt. Commun. 2019, 448, 10–14. [Google Scholar] [CrossRef]
- Ardakani, A.G.; Kamkar, S.; Daneshmandi, O. Using the circular dichroism of a non-chiral metasurface to detect the magnetic fields. J. Magn. Mater. 2022, 553, 169263. [Google Scholar] [CrossRef]
- Wu, J.; Jiang, H.; Guo, Z.; Sun, Y.; Li, Y.; Chen, H. Giant optical chirality in dielectric metasurfaces induced by toroidal dipole resonances. Opt. Lett. 2023, 48, 916–919. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, D.; Ma, W.; You, S.; Zhang, J.; Fan, M.; Zhou, C. Active optical modulation of quasi-BICs in Si–VO2 hybrid metasurfaces. Opt. Lett. 2022, 47, 5517–5520. [Google Scholar] [CrossRef]
Structure | Px (μm) | Py (μm) | ϴ (°) | m1 (μm) | m2 (μm) | n1 (μm) | n2 (μm) |
---|---|---|---|---|---|---|---|
1 | 3 | 1.5 | 30 | 0.4 | 0.65 | 0.3 | 0.6 |
2 | 3 | 1.5 | 30 | A0.4 | 0.65 | 0.45 | 0.6 |
3 | 2.9 | 1.5 | 31 | 0.4 | 0.65 | 0.45 | 0.7 |
4 | 2.9 | 1.5 | 31 | 0.4 | 0.65 | 0.3 | 0.7 |
Reference | Structure | CD Spectra | Incident Angle (°) | Region (μm) | Maximum CD | Minimum CD |
---|---|---|---|---|---|---|
[21] | MIM | Dual-band | 90 | 4–6 | 0.6 | −0.55 |
[42] | Enantiomer | Single-band | 90 | 4–7 | 0.85 | −0.41 |
[23] | MIM | Single-band | 90 | 5–5.9 | 0.67 | −0.53 |
[28] | MIM | Single-band | 90 | 2–3 | 0.51 | −0.44 |
[43] | MIM | Single-band | 90 | 0.9–1 | 0.65 | −0.45 |
[44] | Ag-SiO2 | Multi-band | 60 | 0.75–1 | 0.98 | −0.95 |
[22] | MIM | Broadband | 90 | 1.2–2 | 0.6 | −0.6 |
[29] | BIC | Dual-band | 90 | 2–2.5 | 0.98 | −0.7 |
[45] | BIC | Single-band | 90 | 0.9–1 | 0.99 | −0.55 |
This work | MIM | Dual-band | 90 | 3–5 | 0.8 | −0.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Kuang, H.; Li, W.; Wang, Y.; Luo, H.; Li, C.; Ge, H.; Wang, Q.; Jia, B. Enhanced Tunability of Dual-Band Chiral Metasurface in the Mid-Infrared Range via Slotted Nanocircuit Design. Nanomaterials 2024, 14, 979. https://doi.org/10.3390/nano14110979
Wang S, Kuang H, Li W, Wang Y, Luo H, Li C, Ge H, Wang Q, Jia B. Enhanced Tunability of Dual-Band Chiral Metasurface in the Mid-Infrared Range via Slotted Nanocircuit Design. Nanomaterials. 2024; 14(11):979. https://doi.org/10.3390/nano14110979
Chicago/Turabian StyleWang, Shengyi, Hanzhuo Kuang, Wenjie Li, Yanni Wang, Hao Luo, Chengjun Li, Hua Ge, Qiu Wang, and Bowen Jia. 2024. "Enhanced Tunability of Dual-Band Chiral Metasurface in the Mid-Infrared Range via Slotted Nanocircuit Design" Nanomaterials 14, no. 11: 979. https://doi.org/10.3390/nano14110979
APA StyleWang, S., Kuang, H., Li, W., Wang, Y., Luo, H., Li, C., Ge, H., Wang, Q., & Jia, B. (2024). Enhanced Tunability of Dual-Band Chiral Metasurface in the Mid-Infrared Range via Slotted Nanocircuit Design. Nanomaterials, 14(11), 979. https://doi.org/10.3390/nano14110979