Enhanced Tunability of Dual-Band Chiral Metasurface in the Mid-Infrared Range via Slotted Nanocircuit Design
Abstract
:1. Introduction
2. Structure and Design Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cabre, A.; Verdaguer, X.; Riera, A. Recent Advances in the Enantioselective Synthesis of Chiral Amines via Transition Metal-Catalyzed Asymmetric Hydrogenation. Chem. Rev. 2022, 122, 269–339. [Google Scholar] [CrossRef]
- Wu, Z.L.; Liu, Y.R.; Hill, E.H.; Zheng, Y.B. Chiral metamaterials via moiré stacking. Nanoscale 2018, 10, 18096–18112. [Google Scholar] [CrossRef]
- Liu, Y.; Xiao, J.; Koo, J.; Yan, B. Chirality-driven topological electronic structure of DNA-like materials. Nat. Mater. 2021, 20, 638–644. [Google Scholar] [CrossRef] [PubMed]
- Farshchi, R.; Ramsteiner, M.; Herfort, J.; Tahraoui, A.; Grahn, H.T. Optical communication of spin information between light emitting diodes. Appl. Phys. Lett. 2011, 98, 162508. [Google Scholar] [CrossRef]
- Li, W.; Coppens, Z.J.; Besteiro, L.V.; Wang, W.; Govorov, A.O.; Valentine, J. Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials. Nat. Commun. 2015, 6, 8379. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, S.; Orrit, M. Optically Probing the Chirality of Single Plasmonic Nanostructures and of Single Molecules: Potential and Obstacles. ACS Photonics 2022, 9, 3486–3497. [Google Scholar] [CrossRef]
- Huang, Y.J.; Xie, X.; Pu, M.B.; Guo, Y.H.; Xu, M.F.; Ma, X.L.; Li, X.; Luo, X.G. Dual-Functional Metasurface toward Giant Linear and Circular Dichroism. Adv. Opt. Mater. 2020, 8, 1902061. [Google Scholar] [CrossRef]
- Lininger, A.; Palermo, G.; Guglielmelli, A.; Nicoletta, G.; Goel, M.; Hinczewski, M.; Strangi, G. Chirality in light–matter interaction. Adv. Mater. 2023, 35, 2107325. [Google Scholar] [CrossRef]
- Novotny, L.; Van Hulst, N. Antennas for light. Nat. Photonics 2011, 5, 83–90. [Google Scholar] [CrossRef]
- Chen, H. Interference theory of metamaterial perfect absorbers. Opt. Express 2012, 20, 7165–7172. [Google Scholar] [CrossRef]
- Yu, N.; Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 2014, 13, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Mahmud, M.S.; Rosenmann, D.; Czaplewski, D.A.; Gao, J.; Yang, X. Chiral plasmonic metasurface absorbers in the mid-infrared wavelength range. Opt. Lett. 2020, 45, 5372–5375. [Google Scholar] [CrossRef] [PubMed]
- Kang, L.; Wang, C.; Guo, X.; Ni, X.; Liu, Z.; Werner, D.H. Nonlinear chiral meta-mirrors: Enabling technology for ultrafast switching of light polarization. Nano Lett. 2020, 20, 2047–2055. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, L.; Wang, W.; Rosenmann, D.; Czaplewski, D.A.; Gao, J.; Yang, X. Near-infrared chiral plasmonic metasurface absorbers. Opt. Express 2018, 26, 31484–31489. [Google Scholar] [CrossRef] [PubMed]
- Go, M.; Lee, D.; Kim, S.; Jang, J.; Kim, K.; Lee, J.; Shim, S.; Kim, J.K.; Rho, J. Facile Fabrication of Titanium Nitride Nanoring Broad-Band Absorbers in the Visible to Near-Infrared by Shadow Sphere Lithography. ACS Appl. Mater. Inter. 2023, 15, 3266–3273. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Chen, H.; Cui, T. A broadband terahertz absorber using multi-layer stacked bars. Appl. Phys. Lett. 2015, 106, 151601. [Google Scholar] [CrossRef]
- Siday, S.T.; Vabishchevich, P.P.; Hale, L.; Harris, C.T.; Luk, T.S.; Reno, J.L.; Brener, I.; Mitrofanov, O. Terahertz Detection with Perfectly-Absorbing Photoconductive Metasurface. Nano Lett. 2019, 19, 2888–2896. [Google Scholar] [CrossRef] [PubMed]
- Akselrod, G.M.; Huang, J.; Hoang, T.B.; Bowen, P.T.; Su, L.; Smith, D.R.; Mikkelsen, M.H. Large-area metasurface perfect absorbers from visible to near-infrared. Adv. Mater. 2015, 27, 8028–8034. [Google Scholar] [CrossRef] [PubMed]
- Zhu, A.Y.; Chen, W.T.; Zaidi, A.; Huang, Y.-W.; Khorasaninejad, M.; Sanjeev, V.; Qiu, C.W.; Capasso, F. Giant intrinsic chiro-optical activity in planar dielectric nanostructures. Light Sci. Appl. 2018, 7, 17158. [Google Scholar] [CrossRef]
- Liu, H.; Ai, Q.; Xie, M. Thermally and electrically tunable narrowband absorber in mid-infrared region. Int. J. Therm. Sci. 2022, 171, 107225. [Google Scholar] [CrossRef]
- Tang, H.; Rosenmann, D.; Czaplewski, D.A.; Yang, X.; Gao, J. Dual-band selective circular dichroism in mid-infrared chiral metasurfaces. Opt. Express 2022, 30, 20063–20075. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, L.; Rosenmann, D.; Czaplewski, D.A.; Gao, J.; Yang, X. Broadband infrared circular dichroism in chiral metasurface absorbers. Nanotechnology 2020, 31, 295203. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Rosenmann, D.; Czaplewski, D.A.; Gao, J.; Yang, X. Mid-infrared chiral metasurface absorbers with split-ellipse structures. Opt. Commun. 2022, 525, 128854. [Google Scholar] [CrossRef]
- Ali, H.; Petronijevic, E.; Pellegrini, G.; Sibilia, C.; Andreani, L.C. Circular dichroism in a plasmonic array of elliptical nanoholes with square lattice. Opt. Express 2023, 31, 14196–14211. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, W.O.; Oliveira, O.N.; Mejía-Salazar, J.R. Magnetochiroptical nanocavities in hyperbolic metamaterials enable sensing down to the few-molecule level. J. Chem. Phys. 2024, 160, 071104. [Google Scholar] [CrossRef]
- Lin, P.T.; Lin, H.Y.G.; Han, Z.; Jin, T.; Millender, R.; Kimerling, L.C.; Agarwal, A. Label-Free Glucose Sensing Using Chip-Scale Mid-Infrared Integrated Photonics. Adv. Opt. Mater. 2016, 4, 1755–1759. [Google Scholar] [CrossRef]
- Lavchiev, V.M.; Jakoby, B. Photonics in the Mid-Infrared: Challenges in Single-Chip Integration and Absorption Sensing. IEEE J. Sel. Top. Quantum. Electron. 2017, 23, 452–463. [Google Scholar] [CrossRef]
- Tang, H.; Stan, L.; Czaplewski, D.A.; Yang, X.; Gao, J. Wavelength-tunable infrared chiral metasurfaces with phase-change materials. Opt. Express 2023, 31, 21118–21127. [Google Scholar] [CrossRef]
- Chen, J.; Zong, S.; Liu, X.; Liu, G.; Zhan, X.; Liu, Z. Gradient-assisted metasurface absorber with dual-band chiral switching and quasi-linearly tunable circular dichroism. Opt. Lett. 2023, 48, 4917–4920. [Google Scholar] [CrossRef] [PubMed]
- Alù, A.; Engheta, N. Wireless at the nanoscale: Optical interconnects using matched nanoantennas. Phys. Rev. Lett. 2010, 104, 213902. [Google Scholar] [CrossRef]
- Alù, A.; Engheta, N. Tuning the scattering response of optical nanoantennas with nanocircuit loads. Nat. Photonics 2008, 2, 307–310. [Google Scholar] [CrossRef]
- Salandrino, A.; Alù, A.; Engheta, N. Parallel, series, and intermediate interconnections of optical nanocircuit elements. 1. Analytical solution. JOSA B 2007, 24, 3007–3013. [Google Scholar] [CrossRef]
- Alù, A.; Engheta, N. Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas. Phys. Rev. Lett. 2008, 101, 043901. [Google Scholar] [CrossRef]
- Zhao, Y.; Engheta, N.; Alù, A. Effects of shape and loading of optical nanoantennas on their sensitivity and radiation properties. JOSA B 2011, 28, 1266–1274. [Google Scholar] [CrossRef]
- Engheta, N.; Salandrino, A.; Alù, A. Circuit elements at optical frequencies: Nanoinductors, nanocapacitors, and nanoresistors. Phys. Rev. Lett. 2005, 95, 095504. [Google Scholar] [CrossRef]
- Malitson, I.H. A redetermination of some optical properties of calcium fluoride. Appl. Opt. 1963, 2, 1103–1107. [Google Scholar] [CrossRef]
- Babar, S.; Weaver, J.H. Optical constants of Cu, Ag, and Au revisited. Appl. Opt. 2015, 54, 477–481. [Google Scholar] [CrossRef]
- Yang, Y.; Zenin, V.A.; Bozhevolnyi, S.I. Anapole-assisted strong field enhancement in individual all-dielectric nanostructures. ACS Photonics 2018, 5, 1960–1966. [Google Scholar] [CrossRef]
- Moretti, G.Q.; Cortés, E.; Maier, S.A.; Bragas, A.V.; Grinblat, G. Engineering gallium phosphide nanostructures for efficient nonlinear photonics and enhanced spectroscopies. Nanophotonics 2021, 10, 4261–4271. [Google Scholar] [CrossRef]
- Yang, A.H.; Moore, S.D.; Schmidt, B.S.; Klug, M.; Lipson, M.; Erickson, D. Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides. Nature 2009, 457, 71–75. [Google Scholar] [CrossRef]
- Tittl, A.; Leitis, A.; Liu, M.; Yesilkoy, F.; Choi, D.Y.; Neshev, D.N.; Kivshar, Y.S.; Altug, H. Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science 2018, 360, 1105–1109. [Google Scholar] [CrossRef] [PubMed]
- Pan, R.; Liu, Z.; Zhu, W.; Du, S.; Gu, C.; Li, J. Asymmetrical chirality in 3D bended metasurface. Adv. Func. Mater. 2021, 31, 2100689. [Google Scholar] [CrossRef]
- Yin, S.; Ji, W.; Xiao, D.; Li, Y.; Li, K.; Yin, Z.; Jiang, S.; Shao, L.; Luo, D.; Liu, Y.J. Intrinsically or extrinsically reconFigureurable chirality in plasmonic chiral metasurfaces. Opt. Commun. 2019, 448, 10–14. [Google Scholar] [CrossRef]
- Ardakani, A.G.; Kamkar, S.; Daneshmandi, O. Using the circular dichroism of a non-chiral metasurface to detect the magnetic fields. J. Magn. Mater. 2022, 553, 169263. [Google Scholar] [CrossRef]
- Wu, J.; Jiang, H.; Guo, Z.; Sun, Y.; Li, Y.; Chen, H. Giant optical chirality in dielectric metasurfaces induced by toroidal dipole resonances. Opt. Lett. 2023, 48, 916–919. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, D.; Ma, W.; You, S.; Zhang, J.; Fan, M.; Zhou, C. Active optical modulation of quasi-BICs in Si–VO2 hybrid metasurfaces. Opt. Lett. 2022, 47, 5517–5520. [Google Scholar] [CrossRef]
Structure | Px (μm) | Py (μm) | ϴ (°) | m1 (μm) | m2 (μm) | n1 (μm) | n2 (μm) |
---|---|---|---|---|---|---|---|
1 | 3 | 1.5 | 30 | 0.4 | 0.65 | 0.3 | 0.6 |
2 | 3 | 1.5 | 30 | A0.4 | 0.65 | 0.45 | 0.6 |
3 | 2.9 | 1.5 | 31 | 0.4 | 0.65 | 0.45 | 0.7 |
4 | 2.9 | 1.5 | 31 | 0.4 | 0.65 | 0.3 | 0.7 |
Reference | Structure | CD Spectra | Incident Angle (°) | Region (μm) | Maximum CD | Minimum CD |
---|---|---|---|---|---|---|
[21] | MIM | Dual-band | 90 | 4–6 | 0.6 | −0.55 |
[42] | Enantiomer | Single-band | 90 | 4–7 | 0.85 | −0.41 |
[23] | MIM | Single-band | 90 | 5–5.9 | 0.67 | −0.53 |
[28] | MIM | Single-band | 90 | 2–3 | 0.51 | −0.44 |
[43] | MIM | Single-band | 90 | 0.9–1 | 0.65 | −0.45 |
[44] | Ag-SiO2 | Multi-band | 60 | 0.75–1 | 0.98 | −0.95 |
[22] | MIM | Broadband | 90 | 1.2–2 | 0.6 | −0.6 |
[29] | BIC | Dual-band | 90 | 2–2.5 | 0.98 | −0.7 |
[45] | BIC | Single-band | 90 | 0.9–1 | 0.99 | −0.55 |
This work | MIM | Dual-band | 90 | 3–5 | 0.8 | −0.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Kuang, H.; Li, W.; Wang, Y.; Luo, H.; Li, C.; Ge, H.; Wang, Q.; Jia, B. Enhanced Tunability of Dual-Band Chiral Metasurface in the Mid-Infrared Range via Slotted Nanocircuit Design. Nanomaterials 2024, 14, 979. https://doi.org/10.3390/nano14110979
Wang S, Kuang H, Li W, Wang Y, Luo H, Li C, Ge H, Wang Q, Jia B. Enhanced Tunability of Dual-Band Chiral Metasurface in the Mid-Infrared Range via Slotted Nanocircuit Design. Nanomaterials. 2024; 14(11):979. https://doi.org/10.3390/nano14110979
Chicago/Turabian StyleWang, Shengyi, Hanzhuo Kuang, Wenjie Li, Yanni Wang, Hao Luo, Chengjun Li, Hua Ge, Qiu Wang, and Bowen Jia. 2024. "Enhanced Tunability of Dual-Band Chiral Metasurface in the Mid-Infrared Range via Slotted Nanocircuit Design" Nanomaterials 14, no. 11: 979. https://doi.org/10.3390/nano14110979
APA StyleWang, S., Kuang, H., Li, W., Wang, Y., Luo, H., Li, C., Ge, H., Wang, Q., & Jia, B. (2024). Enhanced Tunability of Dual-Band Chiral Metasurface in the Mid-Infrared Range via Slotted Nanocircuit Design. Nanomaterials, 14(11), 979. https://doi.org/10.3390/nano14110979