Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = tubulin destabilization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 6384 KiB  
Article
Antiproliferative and Pro-Apoptotic Activity and Tubulin Dynamics Modulation of 1H-Benzimidazol-2-yl Hydrazones in Human Breast Cancer Cell Line MDA-MB-231
by Denitsa Yancheva, Maria Argirova, Irina Georgieva, Vanya Milanova, Maya Guncheva, Miroslav Rangelov, Nadezhda Todorova and Rumiana Tzoneva
Molecules 2024, 29(10), 2400; https://doi.org/10.3390/molecules29102400 - 20 May 2024
Cited by 3 | Viewed by 1681
Abstract
(1) Background: The aim of the work is the evaluation of in vitro antiproliferative and pro-apoptotic activity of four benzimidazole derivatives containing colchicine-like and catechol-like moieties with methyl group substitution in the benzimidazole ring against highly invasive breast cancer cell line MDA-MB-231 and [...] Read more.
(1) Background: The aim of the work is the evaluation of in vitro antiproliferative and pro-apoptotic activity of four benzimidazole derivatives containing colchicine-like and catechol-like moieties with methyl group substitution in the benzimidazole ring against highly invasive breast cancer cell line MDA-MB-231 and their related impairment of tubulin dynamics. (2) Methods: The antiproliferative activity was assessed with the MTT assay. Alterations in tubulin polymerization were evaluated with an in vitro tubulin polymerization assay and a docking analysis. (3) Results: All derivatives showed time-dependent cytotoxicity with IC50 varying from 40 to 60 μM after 48 h and between 13 and 20 μM after 72 h. Immunofluorescent and DAPI staining revealed the pro-apoptotic potential of benzimidazole derivatives and their effect on tubulin dynamics in living cells. Compound 5d prevented tubulin aggregation and blocked mitosis, highlighting the importance of the methyl group and the colchicine-like fragment. (4) Conclusions: The benzimidazole derivatives demonstrated moderate cytotoxicity towards MDA-MB-231 by retarding the initial phase of tubulin polymerization. The derivative 5d containing a colchicine-like moiety and methyl group substitution in the benzimidazole ring showed potential as an antiproliferative agent and microtubule destabilizer by facilitating faster microtubule aggregation and disrupting cellular and nuclear integrity. Full article
Show Figures

Figure 1

17 pages, 3877 KiB  
Article
Novel Brain-Penetrant, Small-Molecule Tubulin Destabilizers for the Treatment of Glioblastoma
by Lilian A. Patrón, Helen Yeoman, Sydney Wilson, Nanyun Tang, Michael E. Berens, Vijay Gokhale and Teri C. Suzuki
Biomedicines 2024, 12(2), 406; https://doi.org/10.3390/biomedicines12020406 - 9 Feb 2024
Cited by 1 | Viewed by 2615
Abstract
Glioblastoma (GB) is the most lethal brain cancer in adults, with a 5-year survival rate of 5%. The standard of care for GB includes maximally safe surgical resection, radiation, and temozolomide (TMZ) therapy, but tumor recurrence is inevitable in most GB patients. Here, [...] Read more.
Glioblastoma (GB) is the most lethal brain cancer in adults, with a 5-year survival rate of 5%. The standard of care for GB includes maximally safe surgical resection, radiation, and temozolomide (TMZ) therapy, but tumor recurrence is inevitable in most GB patients. Here, we describe the development of a blood–brain barrier (BBB)-penetrant tubulin destabilizer, RGN3067, for the treatment of GB. RGN3067 shows good oral bioavailability and achieves high concentrations in rodent brains after oral dosing (Cmax of 7807 ng/mL (20 μM), Tmax at 2 h). RGN3067 binds the colchicine binding site of tubulin and inhibits tubulin polymerization. The compound also suppresses the proliferation of the GB cell lines U87 and LN-18, with IC50s of 117 and 560 nM, respectively. In four patient-derived GB cell lines, the IC50 values for RGN3067 range from 148 to 616 nM. Finally, in a patient-derived xenograft (PDX) mouse model, RGN3067 reduces the rate of tumor growth compared to the control. Collectively, we show that RGN3067 is a BBB-penetrant small molecule that shows in vitro and in vivo efficacy and that its design addresses many of the physicochemical properties that prevent the use of microtubule destabilizers as treatments for GB and other brain cancers. Full article
(This article belongs to the Special Issue Glioblastoma: Current Status and Future Prospects)
Show Figures

Figure 1

16 pages, 2905 KiB  
Article
2-Methoxyestradiol as an Antiproliferative Agent for Long-Term Estrogen-Deprived Breast Cancer Cells
by Masayo Hirao-Suzuki, Koki Kanameda, Masufumi Takiguchi, Narumi Sugihara and Shuso Takeda
Curr. Issues Mol. Biol. 2023, 45(9), 7336-7351; https://doi.org/10.3390/cimb45090464 - 9 Sep 2023
Cited by 5 | Viewed by 2286
Abstract
To identify effective treatment modalities for breast cancer with acquired resistance, we first compared the responsiveness of estrogen receptor-positive breast cancer MCF-7 cells and long-term estrogen-deprived (LTED) cells (a cell model of endocrine therapy-resistant breast cancer) derived from MCF-7 cells to G-1 and [...] Read more.
To identify effective treatment modalities for breast cancer with acquired resistance, we first compared the responsiveness of estrogen receptor-positive breast cancer MCF-7 cells and long-term estrogen-deprived (LTED) cells (a cell model of endocrine therapy-resistant breast cancer) derived from MCF-7 cells to G-1 and 2-methoxyestradiol (2-MeO-E2), which are microtubule-destabilizing agents and agonists of the G protein-coupled estrogen receptor 1 (GPER1). The expression of GPER1 in LTED cells was low (~0.44-fold), and LTED cells displayed approximately 1.5-fold faster proliferation than MCF-7 cells. Although G-1 induced comparable antiproliferative effects on both MCF-7 and LTED cells (IC50 values of >10 µM), 2-MeO-E2 exerted antiproliferative effects selective for LTED cells with an IC50 value of 0.93 μM (vs. 6.79 μM for MCF-7 cells) and induced G2/M cell cycle arrest. Moreover, we detected higher amounts of β-tubulin proteins in LTED cells than in MCF-7 cells. Among the β-tubulin (TUBB) isotype genes, the highest expression of TUBB2B (~3.2-fold) was detected in LTED cells compared to that in MCF-7 cells. Additionally, siTUBB2B restores 2-MeO-E2-mediated inhibition of LTED cell proliferation. Other microtubule-targeting agents, i.e., paclitaxel, nocodazole, and colchicine, were not selective for LTED cells. Therefore, 2-MeO-E2 can be an antiproliferative agent to suppress LTED cell proliferation. Full article
(This article belongs to the Special Issue Advanced Molecular Solutions for Cancer Therapy)
Show Figures

Figure 1

14 pages, 1806 KiB  
Article
High Tumoral STMN1 Expression Is Associated with Malignant Potential and Poor Prognosis in Patients with Neuroblastoma
by Kenjiro Ogushi, Takehiko Yokobori, Sumihito Nobusawa, Takahiro Shirakura, Junko Hirato, Bilguun Erkhem-Ochir, Haruka Okami, Gendensuren Dorjkhorloo, Akira Nishi, Makoto Suzuki, Sayaka Otake, Hiroshi Saeki and Ken Shirabe
Cancers 2023, 15(18), 4482; https://doi.org/10.3390/cancers15184482 - 8 Sep 2023
Cited by 2 | Viewed by 2010
Abstract
Background. Stathmin 1 (STMN1), a marker for immature neurons and tumors, controls microtubule dynamics by destabilizing tubulin. It plays an essential role in cancer progression and indicates poor prognosis in several cancers. This potential protein has not been clarified in clinical patients with [...] Read more.
Background. Stathmin 1 (STMN1), a marker for immature neurons and tumors, controls microtubule dynamics by destabilizing tubulin. It plays an essential role in cancer progression and indicates poor prognosis in several cancers. This potential protein has not been clarified in clinical patients with neuroblastoma. Therefore, this study aimed to assess the clinical significance and STMN1 function in neuroblastoma with and without MYCN amplification. Methods. Using immunohistochemical staining, STMN1 expression was examined in 81 neuroblastoma samples. Functional analysis revealed the association among STMN1 suppression, cellular viability, and endogenous or exogenous MYCN expression in neuroblastoma cell lines. Result. High levels of STMN1 expression were associated with malignant potential, proliferation potency, and poor prognosis in neuroblastoma. STMN1 expression was an independent prognostic factor in patients with neuroblastoma. Furthermore, STMN1 knockdown inhibited neuroblastoma cell growth regardless of endogenous and exogenous MYCN overexpression. Conclusion. Our data suggest that assessing STMN1 expression in neuroblastoma could be a powerful indicator of prognosis and that STMN1 might be a promising therapeutic candidate against refractory neuroblastoma with and without MYCN amplification. Full article
Show Figures

Figure 1

21 pages, 6972 KiB  
Article
S-72, a Novel Orally Available Tubulin Inhibitor, Overcomes Paclitaxel Resistance via Inactivation of the STING Pathway in Breast Cancer
by Zhenyan Hou, Songwen Lin, Tingting Du, Mingjin Wang, Weida Wang, Shen You, Nina Xue, Yichen Liu, Ming Ji, Heng Xu and Xiaoguang Chen
Pharmaceuticals 2023, 16(5), 749; https://doi.org/10.3390/ph16050749 - 15 May 2023
Cited by 2 | Viewed by 3136
Abstract
Microtubule-targeting agents are widely used as active anticancer drugs. However, drug resistance always emerges after their long-term use, especially in the case of paclitaxel, which is the cornerstone of all subtypes of breast cancer treatment. Hence, the development of novel agents to overcome [...] Read more.
Microtubule-targeting agents are widely used as active anticancer drugs. However, drug resistance always emerges after their long-term use, especially in the case of paclitaxel, which is the cornerstone of all subtypes of breast cancer treatment. Hence, the development of novel agents to overcome this resistance is vital. This study reports on a novel, potent, and orally bioavailable tubulin inhibitor called S-72 and evaluated its preclinical efficacy in combating paclitaxel resistance in breast cancer and the molecular mechanisms behind it. We found that S-72 suppresses the proliferation, invasion and migration of paclitaxel-resistant breast cancer cells in vitro and displays desirable antitumor activities against xenografts in vivo. As a characterized tubulin inhibitor, S-72 typically inhibits tubulin polymerization and further triggers mitosis-phase cell cycle arrest and cell apoptosis, in addition to suppressing STAT3 signaling. Further studies showed that STING signaling is involved in paclitaxel resistance, and S-72 blocks STING activation in paclitaxel-resistant breast cancer cells. This effect further restores multipolar spindle formation and causes deadly chromosomal instability in cells. Our study offers a promising novel microtubule-destabilizing agent for paclitaxel-resistant breast cancer treatment as well as a potential strategy that can be used to improve paclitaxel sensitivity. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Graphical abstract

24 pages, 8138 KiB  
Article
A Molecular Docking Study Reveals That Short Peptides Induce Conformational Changes in the Structure of Human Tubulin Isotypes αβI, αβII, αβIII and αβIV
by Oluwakemi Ebenezer, Nkululeko Damoyi, Michael Shapi, Gane Ka-Shu Wong and Jack A. Tuszynski
J. Funct. Biomater. 2023, 14(3), 135; https://doi.org/10.3390/jfb14030135 - 28 Feb 2023
Cited by 4 | Viewed by 2503
Abstract
Microtubules are cylindrical protein polymers assembled in the cytoplasm of all eukaryotic cells by polymerization of aβ tubulin dimers, which are involved in cell division, migration, signaling, and intracellular traffic. These functions make them essential in the proliferation of cancerous cells and metastases. [...] Read more.
Microtubules are cylindrical protein polymers assembled in the cytoplasm of all eukaryotic cells by polymerization of aβ tubulin dimers, which are involved in cell division, migration, signaling, and intracellular traffic. These functions make them essential in the proliferation of cancerous cells and metastases. Tubulin has been the molecular target of many anticancer drugs because of its crucial role in the cell proliferation process. By developing drug resistance, tumor cells severely limit the successful outcomes of cancer chemotherapy. Hence, overcoming drug resistance motivates the design of new anticancer therapeutics. Here, we retrieve short peptides obtained from the data repository of antimicrobial peptides (DRAMP) and report on the computational screening of their predicted tertiary structures for the ability to inhibit tubulin polymerization using multiple combinatorial docking programs, namely PATCHDOCK, FIREDOCK, and ClusPro. The interaction visualizations show that all the best peptides from the docking analysis bind to the interface residues of the tubulin isoforms αβl, αβll, αβlll, and αβlV, respectively. The docking studies were further confirmed by a molecular dynamics simulation, in which the computed root-mean-square deviation (RMSD), and root-mean-square fluctuation (RMSF), verified the stable nature of the peptide–tubulin complexes. Physiochemical toxicity and allergenicity studies were also performed. This present study suggests that these identified anticancer peptide molecules might destabilize the tubulin polymerization process and hence can be suitable candidates for novel drug development. It is concluded that wet-lab experiments are needed to validate these findings. Full article
(This article belongs to the Section Biomaterials for Cancer Therapies)
Show Figures

Figure 1

14 pages, 1179 KiB  
Article
Exploring Synthetic Dihydrobenzofuran and Benzofuran Neolignans as Antiprotozoal Agents against Trypanosoma cruzi
by Mariana C. Pagotti, Herbert J. Dias, Ana Carolina B. B. Candido, Thaís A. S. Oliveira, Alexandre Borges, Nicoli D. Oliveira, Carla D. Lopes, Renato P. Orenha, Renato L. T. Parreira, Antônio E. M. Crotti and Lizandra G. Magalhães
Pharmaceutics 2023, 15(3), 754; https://doi.org/10.3390/pharmaceutics15030754 - 24 Feb 2023
Cited by 10 | Viewed by 2936
Abstract
Chagas disease is a neglected tropical disease that affects more than 8 million people. Although there are therapies against this disease, the search for new drugs is important because the current treatments show limited effectiveness and high toxicity. In this work, eighteen dihydrobenzofuran-type [...] Read more.
Chagas disease is a neglected tropical disease that affects more than 8 million people. Although there are therapies against this disease, the search for new drugs is important because the current treatments show limited effectiveness and high toxicity. In this work, eighteen dihydrobenzofuran-type neolignans (DBNs) and two benzofuran-type neolignans (BNs) were synthesized and evaluated against amastigote forms of two Trypanosoma cruzi strains. The in vitro cytotoxicity and hemolytic activity of the most active compounds were also evaluated and their relationships with T. cruzi tubulin DBNs were investigated by an in silico approach. Four DBNs demonstrated activity against the T. cruzi Tulahuen lac-Z strain (IC50 from 7.96 to 21.12 µM), and DBN 1 exhibited the highest activity against the amastigote forms of the T. cruzi Y strain (IC50 3.26 μM). Compounds 14 showed CC50 values higher than antitrypanosomal activities, except for DBN 3. All DBNs with antitrypanosomal activity demonstrated CH50 higher than 100 µM. The in silico results indicated that DBNs 1, 2, and 4 are capable of destabilizing the dynamics of the tubulin-microtubule from the vinca site. These compounds displayed promising in vitro activity against T. cruzi, especially compound 1, and can be considered molecular prototypes for the development of new antiparasitic drugs. Full article
Show Figures

Graphical abstract

18 pages, 9430 KiB  
Article
Panobinostat Synergistically Enhances the Cytotoxicity of Microtubule Destabilizing Drugs in Ovarian Cancer Cells
by María Ovejero-Sánchez, Gloria Asensio-Juárez, Myriam González, Pilar Puebla, Miguel Vicente-Manzanares, Rafael Pélaez, Rogelio González-Sarmiento and Ana Belén Herrero
Int. J. Mol. Sci. 2022, 23(21), 13019; https://doi.org/10.3390/ijms232113019 - 27 Oct 2022
Cited by 7 | Viewed by 2425
Abstract
Ovarian cancer (OC) is one of the most common gynecologic neoplasia and has the highest mortality rate, which is mainly due to late-stage diagnosis and chemotherapy resistance. There is an urgent need to explore new and better therapeutic strategies. We have previously described [...] Read more.
Ovarian cancer (OC) is one of the most common gynecologic neoplasia and has the highest mortality rate, which is mainly due to late-stage diagnosis and chemotherapy resistance. There is an urgent need to explore new and better therapeutic strategies. We have previously described a family of Microtubule Destabilizing Sulfonamides (MDS) that does not trigger multidrug-mediated resistance in OC cell lines. MDS bind to the colchicine site of tubulin, disrupting the microtubule network and causing antiproliferative and cytotoxic effects. In this work, a novel microtubule-destabilizing agent (PILA9) was synthetized and characterized. This compound also inhibited OC cell proliferation and induced G2/M cell cycle arrest and apoptosis. Interestingly, PILA9 was significantly more cytotoxic than MDS. Here, we also analyzed the effect of these microtubule-destabilizing agents (MDA) in combination with Panobinostat, a pan-histone deacetylase inhibitor. We found that Panobinostat synergistically enhanced MDA-cytotoxicity. Mechanistically, we observed that Panobinostat and MDA induced α-tubulin acetylation and that the combination of both agents enhanced this effect, which could be related to the observed synergy. Altogether, our results suggest that MDA/Panobinostat combinations could represent new therapeutic strategies against OC. Full article
(This article belongs to the Special Issue Novel Therapeutic Strategies for Cancer)
Show Figures

Figure 1

22 pages, 3933 KiB  
Article
Discovery of Putative Dual Inhibitor of Tubulin and EGFR by Phenotypic Approach on LASSBio-1586 Homologs
by Gisele Barbosa, Luis Gabriel Valdivieso Gelves, Caroline Marques Xavier Costa, Lucas Silva Franco, João Alberto Lins de Lima, Cristiane Aparecida-Silva, John Douglas Teixeira, Claudia dos Santos Mermelstein, Eliezer J. Barreiro and Lidia Moreira Lima
Pharmaceuticals 2022, 15(8), 913; https://doi.org/10.3390/ph15080913 - 23 Jul 2022
Cited by 7 | Viewed by 2506
Abstract
Combretastatin A-4 (CA-4, 1) is an antimicrotubule agent used as a prototype for the design of several synthetic analogues with anti-tubulin activity, such as LASSBio-1586 (2). A series of branched and unbranched homologs of the lead-compound 2, and vinyl, [...] Read more.
Combretastatin A-4 (CA-4, 1) is an antimicrotubule agent used as a prototype for the design of several synthetic analogues with anti-tubulin activity, such as LASSBio-1586 (2). A series of branched and unbranched homologs of the lead-compound 2, and vinyl, ethinyl and benzyl analogues, were designed and synthesized. A comparison between the cytotoxic effect of these homologs and 2 on different human tumor cell lines was performed from a cell viability study using MTT with 48 h and 72 h incubations. In general, the compounds were less potent than CA-4, showing CC50 values ranging from 0.030 μM to 7.53 μM (MTT at 72 h) and 0.096 μM to 8.768 μM (MTT at 48 h). The antimitotic effect of the target compounds was demonstrated by cell cycle analysis through flow cytometry, and the cellular mechanism of cytotoxicity was determined by immunofluorescence. While the benzyl homolog 10 (LASSBio-2070) was shown to be a microtubule stabilizer, the lead-compound 2 (LASSBio-1586) and the methylated homolog 3 (LASSBio-1735) had microtubule destabilizing behavior. Molecular docking studies were performed on tubulin protein to investigate their binding mode on colchicine and taxane domain. Surprisingly, the benzyl homolog 10 was able to modulate EGFR phosphorylate activity in a phenotypic model. These data suggest LASSBio-2070 (10) as a putative dual inhibitor of tubulin and EGFR. Its binding mode with EGFR was determined by molecular docking and may be useful in lead-optimization initiatives. Full article
(This article belongs to the Special Issue 10th Brazilian Symposium on Medicinal Chemistry (BrazMedChem_2022))
Show Figures

Figure 1

17 pages, 4209 KiB  
Article
FBP2—A New Player in Regulation of Motility of Mitochondria and Stability of Microtubules in Cardiomyocytes
by Łukasz Pietras, Ewa Stefanik, Dariusz Rakus and Agnieszka Gizak
Cells 2022, 11(10), 1710; https://doi.org/10.3390/cells11101710 - 21 May 2022
Cited by 6 | Viewed by 3944
Abstract
Recently, we have shown that the physiological roles of a multifunctional protein fructose 1,6-bisphosphatase 2 (FBP2, also called muscle FBP) depend on the oligomeric state of the protein. Here, we present several lines of evidence that in HL-1 cardiomyocytes, a forced, chemically induced [...] Read more.
Recently, we have shown that the physiological roles of a multifunctional protein fructose 1,6-bisphosphatase 2 (FBP2, also called muscle FBP) depend on the oligomeric state of the protein. Here, we present several lines of evidence that in HL-1 cardiomyocytes, a forced, chemically induced reduction in the FBP2 dimer-tetramer ratio that imitates AMP and NAD+ action and restricts FBP2-mitochondria interaction, results in an increase in Tau phosphorylation, augmentation of FBP2-Tau and FBP2-MAP1B interactions, disturbance of tubulin network, marked reduction in the speed of mitochondrial trafficking and increase in mitophagy. These results not only highlight the significance of oligomerization for the regulation of FBP2 physiological role in the cell, but they also demonstrate a novel, important cellular function of this multitasking protein—a function that might be crucial for processes that take place during physiological and pathological cardiac remodeling, and during the onset of diseases which are rooted in the destabilization of MT and/or mitochondrial network dynamics. Full article
(This article belongs to the Special Issue Multitasking Proteins and Their Involvement in Pathogenesis)
Show Figures

Figure 1

20 pages, 3584 KiB  
Article
Diclofenac: A Nonsteroidal Anti-Inflammatory Drug Inducing Cancer Cell Death by Inhibiting Microtubule Polymerization and Autophagy Flux
by Soohee Choi, Suree Kim, Jiyoung Park, Seung Eun Lee, Chaewon Kim and Dongmin Kang
Antioxidants 2022, 11(5), 1009; https://doi.org/10.3390/antiox11051009 - 20 May 2022
Cited by 18 | Viewed by 7868
Abstract
Diclofenac, a nonsteroidal anti-inflammatory drug (NSAID) used to treat inflammatory diseases induces cellular toxicity by increasing the production of reactive oxygen species (ROS) and impairing autophagic flux. In this study, we investigated whether diclofenac induces cancer cell death and the mechanism by which [...] Read more.
Diclofenac, a nonsteroidal anti-inflammatory drug (NSAID) used to treat inflammatory diseases induces cellular toxicity by increasing the production of reactive oxygen species (ROS) and impairing autophagic flux. In this study, we investigated whether diclofenac induces cancer cell death and the mechanism by which diclofenac causes cell death. We observed that diclofenac induces mitotic arrest with a half-maximal effective concentration of 170 μM and cell death with a half-maximal lethal dose of 200 µM during 18-h incubation in HeLa cells. Cellular microtubule imaging and in vitro tubulin polymerization assays demonstrated that treatment with diclofenac elicits microtubule destabilization. Autophagy relies on microtubule-mediated transport and the fusion of autophagic vesicles. We observed that diclofenac inhibits both phagophore movement, an early step of autophagy, and the fusion of autophagosomes and lysosomes, a late step of autophagy. Diclofenac also induces the fragmentation of mitochondria and the Golgi during cell death. We found that diclofenac induces cell death further in combination with 5-fuorouracil, a DNA replication inhibitor than in single treatment in cancer cells. Pancreatic cancer cells, which have high basal autophagy, are particularly sensitive to cell death by diclofenac. Our study suggests that microtubule destabilization by diclofenac induces cancer cell death via compromised spindle assembly checkpoints and increased ROS through impaired autophagy flux. Diclofenac may be a candidate therapeutic drug in certain type of cancers by inhibiting microtubule-mediated cellular events in combination with clinically utilized nucleoside metabolic inhibitors, including 5-fluorouracil, to block cancer cell proliferation. Full article
(This article belongs to the Special Issue Redox Balance and Autophagy)
Show Figures

Figure 1

22 pages, 2218 KiB  
Article
Effect of Clinically Used Microtubule Targeting Drugs on Viral Infection and Transport Function
by María Ángela Oliva, Carlota Tosat-Bitrián, Lucía Barrado-Gil, Francesca Bonato, Inmaculada Galindo, Urtzi Garaigorta, Beatriz Álvarez-Bernad, Rebeca París-Ogáyar, Daniel Lucena-Agell, Juan Francisco Giménez-Abián, Isabel García-Dorival, Jesús Urquiza, Pablo Gastaminza, José Fernando Díaz, Valle Palomo and Covadonga Alonso
Int. J. Mol. Sci. 2022, 23(7), 3448; https://doi.org/10.3390/ijms23073448 - 22 Mar 2022
Cited by 14 | Viewed by 5260
Abstract
Microtubule targeting agents (MTAs) have been exploited mainly as anti-cancer drugs because of their impact on cellular division and angiogenesis. Additionally, microtubules (MTs) are key structures for intracellular transport, which is frequently hijacked during viral infection. We have analyzed the antiviral activity of [...] Read more.
Microtubule targeting agents (MTAs) have been exploited mainly as anti-cancer drugs because of their impact on cellular division and angiogenesis. Additionally, microtubules (MTs) are key structures for intracellular transport, which is frequently hijacked during viral infection. We have analyzed the antiviral activity of clinically used MTAs in the infection of DNA and RNA viruses, including SARS-CoV-2, to find that MT destabilizer agents show a higher impact than stabilizers in the viral infections tested, and FDA-approved anti-helminthic benzimidazoles were among the most active compounds. In order to understand the reasons for the observed antiviral activity, we studied the impact of these compounds in motor proteins-mediated intracellular transport. To do so, we used labeled peptide tools, finding that clinically available MTAs impaired the movement linked to MT motors in living cells. However, their effect on viral infection lacked a clear correlation to their effect in motor-mediated transport, denoting the complex use of the cytoskeleton by viruses. Finally, we further delved into the molecular mechanism of action of Mebendazole by combining biochemical and structural studies to obtain crystallographic high-resolution information of the Mebendazole-tubulin complex, which provided insights into the mechanisms of differential toxicity between helminths and mammalians. Full article
Show Figures

Figure 1

21 pages, 2539 KiB  
Review
CK1 Is a Druggable Regulator of Microtubule Dynamics and Microtubule-Associated Processes
by Aileen Roth, Adrian Gihring, Joachim Bischof, Leiling Pan, Franz Oswald and Uwe Knippschild
Cancers 2022, 14(5), 1345; https://doi.org/10.3390/cancers14051345 - 5 Mar 2022
Cited by 13 | Viewed by 5034
Abstract
Protein kinases of the Casein Kinase 1 family play a vital role in the regulation of numerous cellular processes. Apart from functions associated with regulation of proliferation, differentiation, or apoptosis, localization of several Casein Kinase 1 isoforms to the centrosome and microtubule asters [...] Read more.
Protein kinases of the Casein Kinase 1 family play a vital role in the regulation of numerous cellular processes. Apart from functions associated with regulation of proliferation, differentiation, or apoptosis, localization of several Casein Kinase 1 isoforms to the centrosome and microtubule asters also implicates regulatory functions in microtubule dynamic processes. Being localized to the spindle apparatus during mitosis Casein Kinase 1 directly modulates microtubule dynamics by phosphorylation of tubulin isoforms. Additionally, site-specific phosphorylation of microtubule-associated proteins can be related to the maintenance of genomic stability but also microtubule stabilization/destabilization, e.g., by hyper-phosphorylation of microtubule-associated protein 1A and RITA1. Consequently, approaches interfering with Casein Kinase 1-mediated microtubule-specific functions might be exploited as therapeutic strategies for the treatment of cancer. Currently pursued strategies include the development of Casein Kinase 1 isoform-specific small molecule inhibitors and therapeutically useful peptides specifically inhibiting kinase-substrate interactions. Full article
(This article belongs to the Special Issue Microtubule Dynamics and Cancer)
Show Figures

Figure 1

29 pages, 6838 KiB  
Article
Repurposing of the ALK Inhibitor Crizotinib for Acute Leukemia and Multiple Myeloma Cells
by Joelle C. Boulos, Mohamed E. M. Saeed, Manik Chatterjee, Yagmur Bülbül, Francesco Crudo, Doris Marko, Markus Munder, Sabine M. Klauck and Thomas Efferth
Pharmaceuticals 2021, 14(11), 1126; https://doi.org/10.3390/ph14111126 - 5 Nov 2021
Cited by 19 | Viewed by 4799
Abstract
Crizotinib was a first generation of ALK tyrosine kinase inhibitor approved for the treatment of ALK-positive non-small-cell lung carcinoma (NSCLC) patients. COMPARE and cluster analyses of transcriptomic data of the NCI cell line panel indicated that genes with different cellular functions regulated [...] Read more.
Crizotinib was a first generation of ALK tyrosine kinase inhibitor approved for the treatment of ALK-positive non-small-cell lung carcinoma (NSCLC) patients. COMPARE and cluster analyses of transcriptomic data of the NCI cell line panel indicated that genes with different cellular functions regulated the sensitivity or resistance of cancer cells to crizotinib. Transcription factor binding motif analyses in gene promoters divulged two transcription factors possibly regulating the expression of these genes, i.e., RXRA and GATA1, which are important for leukemia and erythroid development, respectively. COMPARE analyses also implied that cell lines of various cancer types displayed varying degrees of sensitivity to crizotinib. Unexpectedly, leukemia but not lung cancer cells were the most sensitive cells among the different types of NCI cancer cell lines. Re-examining this result in another panel of cell lines indeed revealed that crizotinib exhibited potent cytotoxicity towards acute myeloid leukemia and multiple myeloma cells. P-glycoprotein-overexpressing CEM/ADR5000 leukemia cells were cross-resistant to crizotinib. NCI-H929 multiple myeloma cells were the most sensitive cells. Hence, we evaluated the mode of action of crizotinib on these cells. Although crizotinib is a TKI, it showed highest correlation rates with DNA topoisomerase II inhibitors and tubulin inhibitors. The altered gene expression profiles after crizotinib treatment predicted several networks, where TOP2A and genes related to cell cycle were downregulated. Cell cycle analyses showed that cells incubated with crizotinib for 24 h accumulated in the G2M phase. Crizotinib also increased the number of p-H3(Ser10)-positive NCI-H929 cells illustrating crizotinib’s ability to prevent mitotic exit. However, cells accumulated in the sub-G0G1 fraction with longer incubation periods, indicating apoptosis induction. Additionally, crizotinib disassembled the tubulin network of U2OS cells expressing an α-tubulin-GFP fusion protein, preventing migration of cancer cells. This result was verified by in vitro tubulin polymerization assays. In silico molecular docking also revealed a strong binding affinity of crizotinib to the colchicine and Vinca alkaloid binding sites. Taken together, these results demonstrate that crizotinib destabilized microtubules. Additionally, the decatenation assay showed that crizotinib partwise inhibited the catalytic activity of DNA topoisomerase II. In conclusion, crizotinib exerted kinase-independent cytotoxic effects through the dual inhibition of tubulin polymerization and topoisomerase II and might be used to treat not only NSCLC but also multiple myeloma. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Graphical abstract

14 pages, 2623 KiB  
Article
Characterization of Microtubule Destabilizing Drugs: A Quantitative Cell-Based Assay That Bridges the Gap between Tubulin Based- and Cytotoxicity Assays
by Marie-Catherine Laisne, Sophie Michallet and Laurence Lafanechère
Cancers 2021, 13(20), 5226; https://doi.org/10.3390/cancers13205226 - 18 Oct 2021
Cited by 18 | Viewed by 4746
Abstract
(1) Background: Microtubule depolymerizing agents (MDAs) are commonly used for cancer treatment. However, the therapeutic use of such microtubule inhibitors is limited by their toxicity and the emergence of resistance. Thus, there is still a sustained effort to develop new MDAs. During the [...] Read more.
(1) Background: Microtubule depolymerizing agents (MDAs) are commonly used for cancer treatment. However, the therapeutic use of such microtubule inhibitors is limited by their toxicity and the emergence of resistance. Thus, there is still a sustained effort to develop new MDAs. During the characterization of such agents, mainly through in vitro analyses using purified tubulin and cytotoxicity assays, quantitative comparisons are mandatory. The relationship between the effect of the drugs on purified tubulin and on cell viability are not always direct. (2) Methods: We have recently developed a cell-based assay that quantifies the cellular microtubule content. In this study, we have conducted a systematic comparative analysis of the effect of four well-characterized MDAs on the kinetics of in vitro tubulin assembly, on the cellular microtubule content (using our recently developed assay) and on cell viability. (3) Conclusions: These assays gave complementary results. Additionally, we found that the drugs’ effect on in vitro tubulin polymerization is not completely predictive of their relative cytotoxicity. Their effect on the cellular microtubule content, however, is closely related to their effect on cell viability. In conclusion, the assay we have recently developed can bridge the gap between in vitro tubulin assays and cell viability assays. Full article
(This article belongs to the Special Issue Microtubule Dynamics and Cancer)
Show Figures

Figure 1

Back to TopTop