Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = tryptophan-derived uremic toxins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 812 KB  
Review
Indoxyl Sulfate and Autism Spectrum Disorder: A Literature Review
by Zoë R. Hill, Christina K. Flynn and James B. Adams
Int. J. Mol. Sci. 2024, 25(23), 12973; https://doi.org/10.3390/ijms252312973 - 3 Dec 2024
Cited by 4 | Viewed by 6088
Abstract
Indoxyl sulfate—a bacterially derived metabolite—has been identified as a toxin that is elevated in children with autism spectrum disorder (ASD). As a neurotoxin, uremic toxin, nephrotoxin, cardiotoxin, osteotoxin, and myotoxin, indoxyl sulfate has been associated with several other conditions, including chronic kidney disease, [...] Read more.
Indoxyl sulfate—a bacterially derived metabolite—has been identified as a toxin that is elevated in children with autism spectrum disorder (ASD). As a neurotoxin, uremic toxin, nephrotoxin, cardiotoxin, osteotoxin, and myotoxin, indoxyl sulfate has been associated with several other conditions, including chronic kidney disease, acute kidney injury, Parkinson’s disease, cognitive disorders, and mood disorders such as anxiety and depression. Indoxyl sulfate is derived from bacterial modification of host tryptophan, and elevated levels of indoxyl sulfate are associated with decreased levels of important neurotransmitters including serotonin, dopamine, and norepinephrine. This article will review what is currently known about indoxyl sulfate in relation to ASD and its comorbidities. A systematic review identified six studies of levels of indoxyl sulfate in children with ASD. All six studies found that indoxyl sulfate was significantly elevated in the urine of children with ASD compared to typically developing children. Through this review, indoxyl sulfate was identified as a toxic microbially derived metabolite that is significantly increased in a subset of children with ASD and may contribute to both core and co-morbid ASD symptoms. Full article
(This article belongs to the Section Molecular Toxicology)
Show Figures

Figure 1

22 pages, 1510 KB  
Perspective
Role of Uremic Toxins in Vascular Inflammation Associated with Chronic Kidney Disease
by Rania Chermiti, Stéphane Burtey and Laetitia Dou
J. Clin. Med. 2024, 13(23), 7149; https://doi.org/10.3390/jcm13237149 - 26 Nov 2024
Cited by 16 | Viewed by 3300
Abstract
Cardiovascular disease (CVD) is a major complication of chronic kidney disease (CKD), despite improvements in patient care. Vascular inflammation is a crucial process in the pathogenesis of CVD and a critical factor in the cardiovascular complications in CKD patients. CKD promotes a pro-inflammatory [...] Read more.
Cardiovascular disease (CVD) is a major complication of chronic kidney disease (CKD), despite improvements in patient care. Vascular inflammation is a crucial process in the pathogenesis of CVD and a critical factor in the cardiovascular complications in CKD patients. CKD promotes a pro-inflammatory environment that impacts the vascular wall, leading to endothelial dysfunction, increased oxidative stress, and vascular remodeling. The uremic toxins that accumulate as kidney function declines are key contributors to vascular inflammatory processes. Our review will examine how CKD leads to vascular inflammation, paving the way to CVD. We will provide an overview of the mechanisms of vascular inflammation induced by uremic toxins, with a particular focus on those derived from tryptophan metabolism. These toxins, along with their receptor, the aryl hydrocarbon receptor (AHR), have emerged as key players linking inflammation and thrombosis. A deeper understanding of the mechanisms underlying inflammation in CKD, particularly those driven by uremic toxins, could reveal valuable therapeutic targets to alleviate the burden of CVD in CKD patients. Full article
(This article belongs to the Section Nephrology & Urology)
Show Figures

Figure 1

10 pages, 879 KB  
Brief Report
Effects of Fenofibrate and Gemfibrozil on Kynurenic Acid Production in Rat Kidneys In Vitro: Old Drugs, New Properties
by Izabela Zakrocka, Tomasz Kocki, Ewa Urbańska and Wojciech Załuska
Life 2023, 13(11), 2154; https://doi.org/10.3390/life13112154 - 2 Nov 2023
Cited by 3 | Viewed by 2447
Abstract
Kidney dysfunction significantly increases the cardiovascular risk, even in cases of minor functional declines. Hypertriglyceridemia is the most common lipid abnormality reported in patients with kidney disorders. PPAR-α (peroxisome proliferator-activated receptor-α) agonists called fibrates are the main agents used to lower triglyceride levels. [...] Read more.
Kidney dysfunction significantly increases the cardiovascular risk, even in cases of minor functional declines. Hypertriglyceridemia is the most common lipid abnormality reported in patients with kidney disorders. PPAR-α (peroxisome proliferator-activated receptor-α) agonists called fibrates are the main agents used to lower triglyceride levels. Kynurenic acid (KYNA) is a tryptophan (Trp) derivative directly formed from L-kynurenine (L-KYN) by kynurenine aminotransferases (KATs). KYNA is classified as a uremic toxin, the level of which is correlated with kidney function impairments and lipid abnormalities. The aim of this study was to analyze the effect of the most commonly used triglyceride-lowering drugs, fenofibrate and gemfibrozil, on KYNA production and KAT activity in rat kidneys in vitro. The influence of fenofibrate and gemfibrozil on KYNA formation and KAT activity was tested in rat kidney homogenates in vitro. Fenofibrate and gemfibrozil at 100 µM–1 mM significantly inhibited KYNA synthesis in rat kidney homogenates. Both fibrates directly affected the KAT I and KAT II isoenzyme activities in a dose-dependent manner at similar concentrations. The presented results reveal the novel mechanism of action of fibrates in the kidneys and suggest their potential role in kidney function protection beyond the well-known anti-hyperlipidemic effect. Full article
(This article belongs to the Section Pharmaceutical Science)
Show Figures

Graphical abstract

15 pages, 832 KB  
Review
Production of Indole and Indole-Related Compounds by the Intestinal Microbiota and Consequences for the Host: The Good, the Bad, and the Ugly
by Naouel Tennoune, Mireille Andriamihaja and François Blachier
Microorganisms 2022, 10(5), 930; https://doi.org/10.3390/microorganisms10050930 - 28 Apr 2022
Cited by 101 | Viewed by 14199
Abstract
The intestinal microbiota metabolic activity towards the available substrates generates myriad bacterial metabolites that may accumulate in the luminal fluid. Among them, indole and indole-related compounds are produced by specific bacterial species from tryptophan. Although indole-related compounds are, first, involved in intestinal microbial [...] Read more.
The intestinal microbiota metabolic activity towards the available substrates generates myriad bacterial metabolites that may accumulate in the luminal fluid. Among them, indole and indole-related compounds are produced by specific bacterial species from tryptophan. Although indole-related compounds are, first, involved in intestinal microbial community communication, these molecules are also active on the intestinal mucosa, exerting generally beneficial effects in different experimental situations. After absorption, indole is partly metabolized in the liver into the co-metabolite indoxyl sulfate. Although some anti-inflammatory actions of indole on liver cells have been shown, indoxyl sulfate is a well-known uremic toxin that aggravates chronic kidney disease, through deleterious effects on kidney cells. Indoxyl sulfate is also known to provoke endothelial dysfunction. Regarding the central nervous system, emerging research indicates that indole at excessive concentrations displays a negative impact on emotional behavior. The indole-derived co-metabolite isatin appears, in pre-clinical studies, to accumulate in the brain, modulating brain function either positively or negatively, depending on the doses used. Oxindole, a bacterial metabolite that enters the brain, has shown deleterious effects on the central nervous system in experimental studies. Lastly, recent studies performed with indoxyl sulfate report either beneficial or deleterious effects depending once again on the dose used, with missing information on the physiological concentrations that are reaching the central nervous system. Any intervention aiming at modulating indole and indole-related compound concentrations in the biological fluids should crucially take into account the dual effects of these compounds according to the host tissues considered. Full article
Show Figures

Figure 1

25 pages, 7724 KB  
Review
What If Not All Metabolites from the Uremic Toxin Generating Pathways Are Toxic? A Hypothesis
by Raymond Vanholder, Sanjay K. Nigam, Stéphane Burtey and Griet Glorieux
Toxins 2022, 14(3), 221; https://doi.org/10.3390/toxins14030221 - 17 Mar 2022
Cited by 37 | Viewed by 7303
Abstract
The topic of uremic toxicity has received broad attention from the nephrological community over the past few decades. An aspect that is much less often considered is the possibility that the metabolic pathways that generate uremic toxins also may produce molecules that benefit [...] Read more.
The topic of uremic toxicity has received broad attention from the nephrological community over the past few decades. An aspect that is much less often considered is the possibility that the metabolic pathways that generate uremic toxins also may produce molecules that benefit body functions. Here, we discuss this dualism based on the example of tryptophan-derived metabolites, which comprise elements that are mainly toxic, such as indoxyl sulfate, kynurenine and kynurenic acid, but also beneficial compounds, such as indole, melatonin and indole-3-propionic acid, and ambivalent (beneficial for some aspects and harmful for others) compounds such as serotonin. This dualism can also be perceived at the level of the main receptor of the tryptophan-derived metabolites, the aryl hydrocarbon receptor (AHR), which has also been linked to both harm and benefit. We hypothesize that these beneficial effects are the reason why uremic toxin generation remained preserved throughout evolution. This duality is also not unique for the tryptophan-derived metabolites, and in this broader context we discuss the remote sensing and signaling theory (RSST). The RSST proposes that transporters (e.g., organic anion transporter 1—OAT1; ATP-binding cassette transporter G—ABCG2) and drug metabolizing enzymes form a large network of proteins interacting to promote small molecule remote communication at the inter-organ (e.g., gut–liver–heart–brain–kidney) and inter-organismal (e.g., gut microbe–host) levels. These small molecules include gut microbe-derived uremic toxins as well as beneficial molecules such as those discussed here. We emphasize that this positive side of uremic metabolite production needs more attention, and that this dualism especially needs to be considered when assessing and conceiving of therapeutic interventions. These homeostatic considerations are central to the RSST and suggest that interventions be aimed at preserving or restoring the balance between positive and negative components rather than eliminating them all without distinction. Full article
Show Figures

Figure 1

14 pages, 1650 KB  
Article
Tryptophan Metabolites Regulate Neuropentraxin 1 Expression in Endothelial Cells
by Romain Vial, Stéphane Poitevin, Nathalie McKay, Stéphane Burtey and Claire Cerini
Int. J. Mol. Sci. 2022, 23(4), 2369; https://doi.org/10.3390/ijms23042369 - 21 Feb 2022
Cited by 8 | Viewed by 3143
Abstract
In patients with chronic kidney disease (CKD) and in animal models of CKD, the transcription factor Aryl Hydrocabon Receptor (AhR) is overactivated. In addition to the canonical AhR targets constituting the AhR signature, numerous other genes are regulated by this factor. We identified [...] Read more.
In patients with chronic kidney disease (CKD) and in animal models of CKD, the transcription factor Aryl Hydrocabon Receptor (AhR) is overactivated. In addition to the canonical AhR targets constituting the AhR signature, numerous other genes are regulated by this factor. We identified neuronal pentraxin 1 (NPTX1) as a new AhR target. Belonging to the inflammatory protein family, NPTX1 seems of prime interest regarding the inflammatory state observed in CKD. Endothelial cells were exposed to tryptophan-derived toxins, indoxyl sulfate (IS) and indole-3-acetic acid (IAA). The adenine mouse model of CKD was used to analyze NPTX1 expression in the burden of uremia. NPTX1 expression was quantified by RT-PCR and western blot. AhR involvement was analyzed using silencing RNA. We found that IS and IAA upregulated NPTX1 expression in an AhR-dependent way. Furthermore, this effect was not restricted to uremic indolic toxins since the dioxin 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and the tryptophan photoproduct 6-formylindolo[3,2-b]carbazole (FICZ) do the same. In CKD mice, NPTX1 expression was increased in the aorta. Therefore, NPTX1 is a new target of AhR and further work is necessary to elucidate its exact role during CKD. Full article
(This article belongs to the Special Issue Decoding the Complex Crossroad of Tryptophan Metabolic Pathways)
Show Figures

Figure 1

12 pages, 2466 KB  
Article
Wide-Targeted Metabolome Analysis Identifies Potential Biomarkers for Prognosis Prediction of Epithelial Ovarian Cancer
by Eiji Hishinuma, Muneaki Shimada, Naomi Matsukawa, Daisuke Saigusa, Bin Li, Kei Kudo, Keita Tsuji, Shogo Shigeta, Hideki Tokunaga, Kazuki Kumada, Keigo Komine, Hidekazu Shirota, Yuichi Aoki, Ikuko N. Motoike, Jun Yasuda, Kengo Kinoshita, Masayuki Yamamoto, Seizo Koshiba and Nobuo Yaegashi
Toxins 2021, 13(7), 461; https://doi.org/10.3390/toxins13070461 - 30 Jun 2021
Cited by 24 | Viewed by 7098
Abstract
Epithelial ovarian cancer (EOC) is a fatal gynecologic cancer, and its poor prognosis is mainly due to delayed diagnosis. Therefore, biomarker identification and prognosis prediction are crucial in EOC. Altered cell metabolism is a characteristic feature of cancers, and metabolomics reflects an individual’s [...] Read more.
Epithelial ovarian cancer (EOC) is a fatal gynecologic cancer, and its poor prognosis is mainly due to delayed diagnosis. Therefore, biomarker identification and prognosis prediction are crucial in EOC. Altered cell metabolism is a characteristic feature of cancers, and metabolomics reflects an individual’s current phenotype. In particular, plasma metabolome analyses can be useful for biomarker identification. In this study, we analyzed 624 metabolites, including uremic toxins (UTx) in plasma derived from 80 patients with EOC using ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Compared with the healthy control, we detected 77 significantly increased metabolites and 114 significantly decreased metabolites in EOC patients. Especially, decreased concentrations of lysophosphatidylcholines and phosphatidylcholines and increased concentrations of triglycerides were observed, indicating a metabolic profile characteristic of EOC patients. After calculating the parameters of each metabolic index, we found that higher ratios of kynurenine to tryptophan correlates with worse prognosis in EOC patients. Kynurenine, one of the UTx, can affect the prognosis of EOC. Our results demonstrated that plasma metabolome analysis is useful not only for the diagnosis of EOC, but also for predicting prognosis with the variation of UTx and evaluating response to chemotherapy. Full article
(This article belongs to the Special Issue The Functional Analysis of Uremic Toxins by Metabolomics)
Show Figures

Figure 1

20 pages, 1510 KB  
Review
Thrombolome and Its Emerging Role in Chronic Kidney Diseases
by Justyna Fryc and Beata Naumnik
Toxins 2021, 13(3), 223; https://doi.org/10.3390/toxins13030223 - 18 Mar 2021
Cited by 29 | Viewed by 6507
Abstract
Patients with chronic kidney disease (CKD) are at an increased risk of thromboembolic complications, including myocardial infarction, stroke, deep vein thrombosis, and pulmonary embolism. These complications lead to increased mortality. Evidence points to the key role of CKD-associated dysbiosis and its effect via [...] Read more.
Patients with chronic kidney disease (CKD) are at an increased risk of thromboembolic complications, including myocardial infarction, stroke, deep vein thrombosis, and pulmonary embolism. These complications lead to increased mortality. Evidence points to the key role of CKD-associated dysbiosis and its effect via the generation of gut microbial metabolites in inducing the prothrombotic phenotype. This phenomenon is known as thrombolome, a panel of intestinal bacteria-derived uremic toxins that enhance thrombosis via increased tissue factor expression, platelet hyperactivity, microparticles release, and endothelial dysfunction. This review discusses the role of uremic toxins derived from gut-microbiota metabolism of dietary tryptophan (indoxyl sulfate (IS), indole-3-acetic acid (IAA), kynurenine (KYN)), phenylalanine/tyrosine (p-cresol sulfate (PCS), p-cresol glucuronide (PCG), phenylacetylglutamine (PAGln)) and choline/phosphatidylcholine (trimethylamine N-oxide (TMAO)) in spontaneously induced thrombosis. The increase in the generation of gut microbial uremic toxins, the activation of aryl hydrocarbon (AhRs) and platelet adrenergic (ARs) receptors, and the nuclear factor kappa B (NF-κB) signaling pathway can serve as potential targets during the prevention of thromboembolic events. They can also help create a new therapeutic approach in the CKD population. Full article
(This article belongs to the Special Issue Study on the Uremic Toxin Targeting Mechanism)
Show Figures

Figure 1

21 pages, 1893 KB  
Review
Developmental Programming and Reprogramming of Hypertension and Kidney Disease: Impact of Tryptophan Metabolism
by Chien-Ning Hsu and You-Lin Tain
Int. J. Mol. Sci. 2020, 21(22), 8705; https://doi.org/10.3390/ijms21228705 - 18 Nov 2020
Cited by 70 | Viewed by 10172
Abstract
The concept that hypertension and chronic kidney disease (CKD) originate in early life has emerged recently. During pregnancy, tryptophan is crucial for maternal protein synthesis and fetal development. On one hand, impaired tryptophan metabolic pathway in pregnancy impacts fetal programming, resulting in the [...] Read more.
The concept that hypertension and chronic kidney disease (CKD) originate in early life has emerged recently. During pregnancy, tryptophan is crucial for maternal protein synthesis and fetal development. On one hand, impaired tryptophan metabolic pathway in pregnancy impacts fetal programming, resulting in the developmental programming of hypertension and kidney disease in adult offspring. On the other hand, tryptophan-related interventions might serve as reprogramming strategies to prevent a disease from occurring. In the present review, we aim to summarize (1) the three major tryptophan metabolic pathways, (2) the impact of tryptophan metabolism in pregnancy, (3) the interplay occurring between tryptophan metabolites and gut microbiota on the production of uremic toxins, (4) the role of tryptophan-derived metabolites-induced hypertension and CKD of developmental origin, (5) the therapeutic options in pregnancy that could aid in reprogramming adverse effects to protect offspring against hypertension and CKD, and (6) possible mechanisms linking tryptophan metabolism to developmental programming of hypertension and kidney disease. Full article
(This article belongs to the Special Issue Tryptophan in Nutrition and Health)
Show Figures

Figure 1

23 pages, 5383 KB  
Article
Resveratrol Rescue Indoxyl Sulfate-Induced Deterioration of Osteoblastogenesis via the Aryl Hydrocarbon Receptor /MAPK Pathway
by Wen-Chih Liu, Jia-Fwu Shyu, Yuh-Feng Lin, Hui-Wen Chiu, Paik Seong Lim, Chien-Lin Lu, Cai-Mei Zheng, Yi-Chou Hou, Po-Han Chen and Kuo-Cheng Lu
Int. J. Mol. Sci. 2020, 21(20), 7483; https://doi.org/10.3390/ijms21207483 - 11 Oct 2020
Cited by 36 | Viewed by 4641
Abstract
Indoxyl sulfate (IS), a uremic toxin derived from dietary tryptophan metabolism by the gut microbiota, is an endogenous aryl hydrocarbon receptor (AhR) agonist and a key player in bone remodeling. Resveratrol (RSV), an AhR antagonist, plays a protective role in shielding against AhR [...] Read more.
Indoxyl sulfate (IS), a uremic toxin derived from dietary tryptophan metabolism by the gut microbiota, is an endogenous aryl hydrocarbon receptor (AhR) agonist and a key player in bone remodeling. Resveratrol (RSV), an AhR antagonist, plays a protective role in shielding against AhR ligands. Our study explored the impact of IS on osteoblast differentiation and examined the possible mechanism of IS in controlling the expression of osteoblastogenesis markers through an in-depth investigation of AhR signaling. In vivo, we found histological architectural disruption of the femoral bones in 5/6 nephrectomies of young adult IS exposed mice, including reduced Runx2 antigen expression. RSV improved the diaphysis architecture, Runx2 expression, and trabecular quality. In vitro data suggest that IS at 500 and 1000 μM disturbed osteoblastogenesis through suppression of the ERK and p38 mitogen-activated protein kinase (MAPK) pathways, which were found to be downstream of AhR. RSV proved to ameliorate the anti-osteoblastogenic effects of IS through the inhibition of AhR and downstream signaling. Taken together, we demonstrated that the IS/AhR/MAPK signaling pathway plays a crucial role in the inhibition of osteoblastogenesis, and RSV has a potential therapeutic role in reversing the IS-induced decline in osteoblast development and suppressing abnormal bone turnover in chronic kidney disease patients. Full article
(This article belongs to the Special Issue Bioactive and Uremic Toxins in Chronic Kidney Disease)
Show Figures

Graphical abstract

18 pages, 1137 KB  
Review
Molecular Mechanisms Underlying the Cardiovascular Toxicity of Specific Uremic Solutes
by Jonathan D. Ravid and Vipul C. Chitalia
Cells 2020, 9(9), 2024; https://doi.org/10.3390/cells9092024 - 2 Sep 2020
Cited by 18 | Viewed by 4066
Abstract
Mounting evidence strongly suggests a causal link between chronic kidney disease (CKD) and cardiovascular disease (CVD). Compared with non-CKD patients, patients with CKD suffer disproportionately from CVD and derive suboptimal benefits from interventions targeting conventional CVD risk factors. Uremic toxins (UTs), whose plasma [...] Read more.
Mounting evidence strongly suggests a causal link between chronic kidney disease (CKD) and cardiovascular disease (CVD). Compared with non-CKD patients, patients with CKD suffer disproportionately from CVD and derive suboptimal benefits from interventions targeting conventional CVD risk factors. Uremic toxins (UTs), whose plasma levels rapidly rise as CKD progresses, represent a unique risk factor in CKD, which has protean manifestations on CVD. Among the known UTs, tryptophan metabolites and trimethylamine N-oxide are well-established cardiovascular toxins. Their molecular mechanisms of effect warrant special consideration to draw translational value. This review surveys current knowledge on the effects of specific UTs on different pathways and cell functions that influence the integrity of cardiovascular health, with implication for CVD progression. The effect of UTs on cardiovascular health is an example of a paradigm in which a cascade of molecular and metabolic events induced by pathology in one organ in turn induces dysfunction in another organ. Deciphering the molecular mechanisms underlying such cross-organ pathologies will help uncover therapeutic targets to improve the management of CVD in patients with CKD. Full article
(This article belongs to the Section Cell Signaling)
Show Figures

Figure 1

16 pages, 3949 KB  
Article
Modulation of the Paracrine Kynurenic System in Bone as a New Regulator of Osteoblastogenesis and Bone Mineral Status in an Animal Model of Chronic Kidney Disease Treated with LP533401
by Adrian Mor, Krystyna Pawlak, Bartlomiej Kalaska, Tomasz Domaniewski, Beata Sieklucka, Marta Zieminska, Bogdan Cylwik and Dariusz Pawlak
Int. J. Mol. Sci. 2020, 21(17), 5979; https://doi.org/10.3390/ijms21175979 - 19 Aug 2020
Cited by 7 | Viewed by 3212
Abstract
An increase in the peripheral synthesis of serotonin and kynurenine, observed during the chronic kidney disease (CKD) course, is negatively associated with bone health. Serotonin and kynurenine are connected by the common precursor, tryptophan. LP533401 is an inhibitor of peripheral serotonin synthesis. This [...] Read more.
An increase in the peripheral synthesis of serotonin and kynurenine, observed during the chronic kidney disease (CKD) course, is negatively associated with bone health. Serotonin and kynurenine are connected by the common precursor, tryptophan. LP533401 is an inhibitor of peripheral serotonin synthesis. This study aimed to establish if the inhibition of serotonin synthesis by LP533401 may affect the kynurenine pathway activity in bone tissue and its potential consequence with regard to osteogenesis and bone mineral status. Nephrectomized rats were treated with LP533401 at a dose of 30 and 100 mg/kg daily for eight weeks. Tryptophan and kynurenine concentrations were determined, and tryptophan 2,3-dioxygenase (TDO) expression was assessed. We discovered the presence of a TDO-dependent, paracrine kynurenic system in the bone of rats with CKD. Its modulation during LP533401 treatment was associated with impaired bone mineral status. Changes in TDO expression affecting the kynurenine pathway activity were related to the imbalance between peripheral serotonin and 25-hydroxyvitamin D. There were also close associations between the expression of genes participating in osteoblastogenesis and activation of the kynurenine pathway in the bones of LP53301-treated rats. Our results represent the next step in studying the role of tryptophan metabolites in renal osteodystrophy. Full article
Show Figures

Figure 1

14 pages, 1569 KB  
Review
Indoxyl Sulfate, a Uremic Endotheliotoxin
by Guillaume Lano, Stéphane Burtey and Marion Sallée
Toxins 2020, 12(4), 229; https://doi.org/10.3390/toxins12040229 - 5 Apr 2020
Cited by 108 | Viewed by 9101
Abstract
Chronic kidney disease (CKD) is associated with a high prevalence of cardiovascular diseases. During CKD, the uremic toxin indoxyl sulfate (IS)—derived from tryptophan metabolism—accumulates. IS is involved in the pathophysiology of cardiovascular complications. IS can be described as an endotheliotoxin: IS induces endothelial [...] Read more.
Chronic kidney disease (CKD) is associated with a high prevalence of cardiovascular diseases. During CKD, the uremic toxin indoxyl sulfate (IS)—derived from tryptophan metabolism—accumulates. IS is involved in the pathophysiology of cardiovascular complications. IS can be described as an endotheliotoxin: IS induces endothelial dysfunction implicated in cardiovascular morbidity and mortality during CKD. In this review, we describe clinical and experimental evidence for IS endothelial toxicity and focus on the various molecular pathways implicated. In patients with CKD, plasma concentrations of IS correlate with cardiovascular events and mortality, with vascular calcification and atherosclerotic markers. Moreover, IS induces a prothrombotic state and impaired neovascularization. IS reduction by AST-120 reverse these abnormalities. In vitro, IS induces endothelial aryl hydrocarbon receptor (AhR) activation and proinflammatory transcription factors as NF-κB or AP-1. IS has a prooxidant effect with reduction of nitric oxide (NO) bioavailability. Finally, IS alters endothelial cell and endothelial progenitor cell migration, regeneration and control vascular smooth muscle cells proliferation. Reducing IS endothelial toxicity appears to be necessary to improve cardiovascular health in CKD patients. Full article
(This article belongs to the Special Issue Uremic Toxin-Mediated Mechanisms in Cardiovascular and Renal Disease)
Show Figures

Figure 1

16 pages, 7016 KB  
Article
Female AhR Knockout Mice Develop a Minor Renal Insufficiency in an Adenine-Diet Model of Chronic Kidney Disease
by Camélia Makhloufi, Fanny Nicolas, Nathalie McKay, Samantha Fernandez, Guillaume Hache, Philippe Garrigue, Philippe Brunet, Benjamin Guillet, Stéphane Burtey and Stéphane Poitevin
Int. J. Mol. Sci. 2020, 21(7), 2483; https://doi.org/10.3390/ijms21072483 - 3 Apr 2020
Cited by 14 | Viewed by 5157
Abstract
Cardiovascular complications observed in chronic kidney disease (CKD) are associated with aryl hydrocarbon receptor (AhR) activation by tryptophan-derived uremic toxins—mainly indoxyl sulfate (IS). AhR is a ligand-activated transcription factor originally characterized as a receptor of xenobiotics involved in detoxification. The aim of this [...] Read more.
Cardiovascular complications observed in chronic kidney disease (CKD) are associated with aryl hydrocarbon receptor (AhR) activation by tryptophan-derived uremic toxins—mainly indoxyl sulfate (IS). AhR is a ligand-activated transcription factor originally characterized as a receptor of xenobiotics involved in detoxification. The aim of this study was to determine the role of AhR in a CKD mouse model based on an adenine diet. Wild-type (WT) and AhR−/− mice were fed by alternating an adenine-enriched diet and a regular diet for 6 weeks. Our results showed an increased mortality rate of AhR−/− males. AhR−/− females survived and developed a less severe renal insufficiency that WT mice, reflected by urea, creatinine, and IS measurement in serum. The protective effect was related to a decrease of pro-inflammatory and pro-fibrotic gene expression, an attenuation of tubular injury, and a decrease of 2,8-dihydroxyadenine crystal deposition in the kidneys of AhR−/− mice. These mice expressed low levels of xanthine dehydrogenase, which oxidizes adenine into 2,8-dihydroxyadenine, and low levels of the IS metabolism enzymes. In conclusion, the CKD model of adenine diet is not suitable for AhR knockout mice when studying the role of this transcription factor in cardiovascular complications, as observed in human CKD. Full article
Show Figures

Figure 1

10 pages, 1150 KB  
Article
Difference in Profiles of the Gut-Derived Tryptophan Metabolite Indole Acetic Acid between Transplanted and Non-Transplanted Patients with Chronic Kidney Disease
by Sophie Liabeuf, Solène M. Laville, Griet Glorieux, Lynda Cheddani, François Brazier, Dimitri Titeca Beauport, Raymond Vanholder, Gabriel Choukroun and Ziad A. Massy
Int. J. Mol. Sci. 2020, 21(6), 2031; https://doi.org/10.3390/ijms21062031 - 16 Mar 2020
Cited by 23 | Viewed by 3490
Abstract
Background: Uremic toxins have emerged as potential mediators of morbidity and mortality in patients with chronic kidney disease (CKD). Indole-3-acetic acid (IAA, a tryptophan-derived uremic toxin) might be a useful biomarker in patients with CKD. The objectives of the present study were to [...] Read more.
Background: Uremic toxins have emerged as potential mediators of morbidity and mortality in patients with chronic kidney disease (CKD). Indole-3-acetic acid (IAA, a tryptophan-derived uremic toxin) might be a useful biomarker in patients with CKD. The objectives of the present study were to (i) describe IAA concentrations in a cohort of non-transplanted patients with CKD and a cohort of transplanted patients with CKD, and (ii) investigate the possible relationship between IAA levels and adverse outcomes in the two cohorts. Methods: Levels of free and total IAA were assayed in the two prospective CKD cohorts (140 non-transplanted patients and 311 transplanted patients). Cox multivariate analyses were used to evaluate the association between IAA levels and outcomes (mortality, cardiovascular events, and graft loss). Results: In the non-transplanted CKD cohort, free and total IAA increased progressively with the CKD stage. In the transplanted CKD cohort, free and total IAA levels were elevated at the time of transplantation but had fallen substantially at one-month post-transplantation. Indole acetic acid concentrations were lower in transplanted patients than non-dialysis non-transplanted patients matched for estimated glomerular filtration rate (eGFR), age, and sex. After adjustment for multiple confounders, the free IAA level predicted overall mortality and cardiovascular events in the non-transplanted CKD cohort (hazard ratio [95% confidence interval]: 2.5 [1.2–5.1] and 2.5 [1.3–4.8], respectively). In the transplanted CKD cohort, however, no associations were found between free or total IAA on one hand, and mortality, CV event, or graft survival on the other. Conclusion: We demonstrated that levels of IAA increase with the CKD stage, and fall substantially, even normalizing, after kidney transplantation. Free IAA appears to be a valuable outcome-associated biomarker in non-transplanted patients, but—at least in our study setting—not in transplanted patients. Full article
Show Figures

Figure 1

Back to TopTop