Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = triplet Siamese similarity network

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3406 KiB  
Article
ResNet-SE-CBAM Siamese Networks for Few-Shot and Imbalanced PCB Defect Classification
by Chao-Hsiang Hsiao, Huan-Che Su, Yin-Tien Wang, Min-Jie Hsu and Chen-Chien Hsu
Sensors 2025, 25(13), 4233; https://doi.org/10.3390/s25134233 - 7 Jul 2025
Viewed by 579
Abstract
Defect detection in mass production lines often involves small and imbalanced datasets, necessitating the use of few-shot learning methods. Traditional deep learning-based approaches typically rely on large datasets, limiting their applicability in real-world scenarios. This study explores few-shot learning models for detecting product [...] Read more.
Defect detection in mass production lines often involves small and imbalanced datasets, necessitating the use of few-shot learning methods. Traditional deep learning-based approaches typically rely on large datasets, limiting their applicability in real-world scenarios. This study explores few-shot learning models for detecting product defects using limited data, enhancing model generalization and stability. Unlike previous deep learning models that require extensive datasets, our approach effectively performs defect detection with minimal data. We propose a Siamese network that integrates Residual blocks, Squeeze and Excitation blocks, and Convolution Block Attention Modules (ResNet-SE-CBAM Siamese network) for feature extraction, optimized through triplet loss for embedding learning. The ResNet-SE-CBAM Siamese network incorporates two primary features: attention mechanisms and metric learning. The recently developed attention mechanisms enhance the convolutional neural network operations and significantly improve feature extraction performance. Meanwhile, metric learning allows for the addition or removal of feature classes without the need to retrain the model, improving its applicability in industrial production lines with limited defect samples. To further improve training efficiency with imbalanced datasets, we introduce a sample selection method based on the Structural Similarity Index Measure (SSIM). Additionally, a high defect rate training strategy is utilized to reduce the False Negative Rate (FNR) and ensure no missed defect detections. At the classification stage, a K-Nearest Neighbor (KNN) classifier is employed to mitigate overfitting risks and enhance stability in few-shot conditions. The experimental results demonstrate that with a good-to-defect ratio of 20:40, the proposed system achieves a classification accuracy of 94% and an FNR of 2%. Furthermore, when the number of defective samples increases to 80, the system achieves zero false negatives (FNR = 0%). The proposed metric learning approach outperforms traditional deep learning models, such as parametric-based YOLO series models in defect detection, achieving higher accuracy and lower miss rates, highlighting its potential for high-reliability industrial deployment. Full article
Show Figures

Figure 1

21 pages, 5699 KiB  
Article
Evaluation of Different Few-Shot Learning Methods in the Plant Disease Classification Domain
by Alexander Uzhinskiy
Biology 2025, 14(1), 99; https://doi.org/10.3390/biology14010099 - 19 Jan 2025
Cited by 2 | Viewed by 1361
Abstract
Early detection of plant diseases is crucial for agro-holdings, farmers, and smallholders. Various neural network architectures and training methods have been employed to identify optimal solutions for plant disease classification. However, research applying one-shot or few-shot learning approaches, based on similarity determination, to [...] Read more.
Early detection of plant diseases is crucial for agro-holdings, farmers, and smallholders. Various neural network architectures and training methods have been employed to identify optimal solutions for plant disease classification. However, research applying one-shot or few-shot learning approaches, based on similarity determination, to the plantdisease classification domain remains limited. This study evaluates different loss functions used in similarity learning, including Contrastive, Triplet, Quadruplet, SphereFace, CosFace, and ArcFace, alongside various backbone networks, such as MobileNet, EfficientNet, ConvNeXt, and ResNeXt. Custom datasets of real-life images, comprising over 4000 samples across 68 classes of plant diseases, pests, and their effects, were utilized. The experiments evaluate standard transfer learning approaches alongside similarity learning methods based on two classes of loss function. Results demonstrate the superiority of cosine-based methods over Siamese networks in embedding extraction for disease classification. Effective approaches for model organization and training are determined. Additionally, the impact of data normalization is tested, and the generalization ability of the models is assessed using a special dataset consisting of 400 images of difficult-to-identify plant disease cases. Full article
(This article belongs to the Section Theoretical Biology and Biomathematics)
Show Figures

Figure 1

15 pages, 3491 KiB  
Article
Enhancing Signature Verification Using Triplet Siamese Similarity Networks in Digital Documents
by Sara Tehsin, Ali Hassan, Farhan Riaz, Inzamam Mashood Nasir, Norma Latif Fitriyani and Muhammad Syafrudin
Mathematics 2024, 12(17), 2757; https://doi.org/10.3390/math12172757 - 5 Sep 2024
Cited by 8 | Viewed by 2741
Abstract
In contexts requiring user authentication, such as financial, legal, and administrative systems, signature verification emerges as a pivotal biometric method. Specifically, handwritten signature verification stands out prominently for document authentication. Despite the effectiveness of triplet loss similarity networks in extracting and comparing signatures [...] Read more.
In contexts requiring user authentication, such as financial, legal, and administrative systems, signature verification emerges as a pivotal biometric method. Specifically, handwritten signature verification stands out prominently for document authentication. Despite the effectiveness of triplet loss similarity networks in extracting and comparing signatures with forged samples, conventional deep learning models often inadequately capture individual writing styles, resulting in suboptimal performance. Addressing this limitation, our study employs a triplet loss Siamese similarity network for offline signature verification, irrespective of the author. Through experimentation on five publicly available signature datasets—4NSigComp2012, SigComp2011, 4NSigComp2010, and BHsig260—various distance measure techniques alongside the triplet Siamese Similarity Network (tSSN) were evaluated. Our findings underscore the superiority of the tSSN approach, particularly when coupled with the Manhattan distance measure, in achieving enhanced verification accuracy, thereby demonstrating its efficacy in scenarios characterized by close signature similarity. Full article
(This article belongs to the Section D2: Operations Research and Fuzzy Decision Making)
Show Figures

Figure 1

26 pages, 1784 KiB  
Review
Deep Metric Learning: A Survey
by Mahmut KAYA and Hasan Şakir BİLGE
Symmetry 2019, 11(9), 1066; https://doi.org/10.3390/sym11091066 - 21 Aug 2019
Cited by 570 | Viewed by 58387
Abstract
Metric learning aims to measure the similarity among samples while using an optimal distance metric for learning tasks. Metric learning methods, which generally use a linear projection, are limited in solving real-world problems demonstrating non-linear characteristics. Kernel approaches are utilized in metric learning [...] Read more.
Metric learning aims to measure the similarity among samples while using an optimal distance metric for learning tasks. Metric learning methods, which generally use a linear projection, are limited in solving real-world problems demonstrating non-linear characteristics. Kernel approaches are utilized in metric learning to address this problem. In recent years, deep metric learning, which provides a better solution for nonlinear data through activation functions, has attracted researchers’ attention in many different areas. This article aims to reveal the importance of deep metric learning and the problems dealt with in this field in the light of recent studies. As far as the research conducted in this field are concerned, most existing studies that are inspired by Siamese and Triplet networks are commonly used to correlate among samples while using shared weights in deep metric learning. The success of these networks is based on their capacity to understand the similarity relationship among samples. Moreover, sampling strategy, appropriate distance metric, and the structure of the network are the challenging factors for researchers to improve the performance of the network model. This article is considered to be important, as it is the first comprehensive study in which these factors are systematically analyzed and evaluated as a whole and supported by comparing the quantitative results of the methods. Full article
Show Figures

Figure 1

17 pages, 4780 KiB  
Article
Deep Image Similarity Measurement Based on the Improved Triplet Network with Spatial Pyramid Pooling
by Xinpan Yuan, Qunfeng Liu, Jun Long, Lei Hu and Yulou Wang
Information 2019, 10(4), 129; https://doi.org/10.3390/info10040129 - 8 Apr 2019
Cited by 15 | Viewed by 6667
Abstract
Image similarity measurement is a fundamental problem in the field of computer vision. It is widely used in image classification, object detection, image retrieval, and other fields, mostly through Siamese or triplet networks. These networks consist of two or three identical branches of [...] Read more.
Image similarity measurement is a fundamental problem in the field of computer vision. It is widely used in image classification, object detection, image retrieval, and other fields, mostly through Siamese or triplet networks. These networks consist of two or three identical branches of convolutional neural network (CNN) and share their weights to obtain the high-level image feature representations so that similar images are mapped close to each other in the feature space, and dissimilar image pairs are mapped far from each other. Especially, the triplet network is known as the state-of-the-art method on image similarity measurement. However, the basic CNN can only handle fixed-size images. If we obtain a fixed size image via cutting or scaling, the information of the image will be lost and the recognition accuracy will be reduced. To solve the problem, this paper has proposed the triplet spatial pyramid pooling network (TSPP-Net) through combing the triplet convolution neural network with the spatial pyramid pooling. Additionally, we propose an improved triplet loss function, so that the network model can realize twice distance learning by only inputting three samples at one time. Through the theoretical analysis and experiments, it is proved that the TSPP-Net model and the improved triple loss function can improve the generalization ability and the accuracy of image similarity measurement algorithm. Full article
Show Figures

Figure 1

Back to TopTop