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Abstract: Image similarity measurement is a fundamental problem in the field of computer vision.
It is widely used in image classification, object detection, image retrieval, and other fields, mostly
through Siamese or triplet networks. These networks consist of two or three identical branches
of convolutional neural network (CNN) and share their weights to obtain the high-level image
feature representations so that similar images are mapped close to each other in the feature space,
and dissimilar image pairs are mapped far from each other. Especially, the triplet network is known
as the state-of-the-art method on image similarity measurement. However, the basic CNN can only
handle fixed-size images. If we obtain a fixed size image via cutting or scaling, the information of the
image will be lost and the recognition accuracy will be reduced. To solve the problem, this paper
has proposed the triplet spatial pyramid pooling network (TSPP-Net) through combing the triplet
convolution neural network with the spatial pyramid pooling. Additionally, we propose an improved
triplet loss function, so that the network model can realize twice distance learning by only inputting
three samples at one time. Through the theoretical analysis and experiments, it is proved that the
TSPP-Net model and the improved triple loss function can improve the generalization ability and the
accuracy of image similarity measurement algorithm.

Keywords: image similarity measurement; triplet network; spatial pyramid pooling; improved triplet
loss function

1. Introduction

Through the characteristics of color, shape, texture, spatial structure, and semantic information,
image similarity measurement aims to estimate whether a given pair of images are similar or not. It is
one of the central problems in computer vision and pattern recognition, and is widely used in image
search, image matching, image de-duplication, and other fields. A great performance of the image
similarity measurement crucially depends on the feature representation and similarity measurement,
which have been extensively studied by the multimedia researchers for decades. The most typical
way of representing image features is the scale invariant feature transform (SIFT) [1]. These features
are then encoded into image representations via various schemes, such as bag-of-words (BoW) [2–4].
Although a variety of techniques have been proposed, it remains one of the most challenging problems
in current research, which is mainly due to the well-known “semantic gap” issue that exists between
low-level image pixels captured by machines and high-level semantic concepts perceived by human.
In order to solve this problem, we hope that the machine can deal with image similarity like human
beings. Therefore, we need to find a better way to represent images and get their deep features.
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For the past few years, deep learning models have been used extensively to solve the machine
learning tasks. Especially, deep convolutional neural network (CNN) have a great performance in many
computer vision tasks, including image classification [5,6], object detection [7,8], image retrieval [9,10],
semantic segmentation [11,12], etc. With the deep architectures, semantic abstractions that are close
to human cognition can be learned. A number of recent works show that CNN features trained on
large and diverse datasets such as ImageNet [13] can be used to solve tasks for which they have not
been trained. In addition, some complex convolutional neural network models have been proposed,
such as Alexnet, VGGNet, GoogLetNet, ResNet, and so on. All of them had a great performance in the
ImageNet Large Scale Visual Recognition Challenge (ILSVRC).

Recently, Siamese [14–16] and triplet networks [17,18] are methods to learn feature similarity by
optimizing feature distance of image pairs. These networks use two or three identical branches CNN
and share their weights to obtain the high-level image feature representation so that similar images are
mapped close to each other in the feature space, and dissimilar image pairs are mapped far from each
other. Therefore, these learning methods can obtain grate image features. Especially, the triplet network
is known as the state-of-the-art method on image similarity measurement. Nowadays, it has been used
in some application fields such like image retrieval and matching [19,20], face authentication [21–23],
object recognition [24,25], and so on.

As we all know, deep convolutional neural network requires a fixed-size (e.g., 224_224) image as
its input. In our real life, the size of the image often is not fixed, but varied. If we obtain a fixed size
image via cutting or scaling, the information contained in the image will be lost and the recognition
accuracy will be reduced. In order to remove the restriction that convolutional neural networks
can only input a fixed-size image, Kaiming et al. proposed a spatial pyramid pooling (SPP) layer
to remove the fixed-size constraint of the network [26]. Specifically, they add a SPP layer after the
last convolutional layer. The SPP layer pools the features and generates fixed length outputs, which
are then fed into the fully connected layers (or other classifiers). Therefore, the convolution neural
network with a SPP layer can process any size images and obtain a fixed length output. In recent years,
this method has been widely used in image classification [27,28] and object recognition [29–31].

In this paper, our main contributions are as follows:

1. We have proposed the triplet spatial pyramid pooling network (TSPP-Net) through combing
the triplet convolution neural network with the spatial pyramid pooling, which can process any size
images without cutting or scaling. It greatly improves the generalization ability of network and the
accuracy of image similarity measurement.

2. We also have proposed an improved triple loss function, which can truly realize that the
interclass distance is greater than the intraclass distance. It enables the triple network model to input
three samples at a time and achieve two distance learning, which greatly improves the learning ability
of the network. Additionally, the improved triple loss function can improve the sample utilization rate
and accelerate the convergence speed of loss function, as well as reducing the iteration times of model
training when the training dataset is limited.

The rest of the paper is organized as follows: Section 2 discusses the related works. Section 3
describes the improved triplet networks with spatial pyramid pooling in detail. Section 4 verifies the
correctness and efficiency of the algorithm through experiments. Section 5 gives conclusions.

2. Related Work

This section will briefly introduce the Siamese network and triplet network, as well as the spatial
pyramid pooling, so as to provide theoretical basis and technical support for the following research
work. In Section 2.1, we will introduce the Siamese network and triplet network in detail, including
their structures and their loss functions. In Section 2.2, we will describe the structure of the spatial
pyramid pooling and how it can handle any size images.
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2.1. Siamese Network and Triplet Network

The Siamese network [15,16] is a method of learning feature similarity by optimizing feature
distance of image pairs, as shown in Figure 1. The Siamese network consists of two identical branches
of CNN, which share their weights and parameters. Each branch of deep CNN does not have the
last layer or classifier layer. The function F(.) represents the embedding features from each pair of
images extracted by the Siamese network. This network model employs a pair of images X1 and
X2 as the input and establishes a contrastive loss function (L), as show in Equation (1). The loss
function tries to minimize squared Euclidean distance between the features of positive image pairs
D(X1, X2) = ‖F(X1) − F(X2)‖

2
2 and maximize it for negative pairs. The final goal is to minimize the

loss function and find better network parameters through the training dataset:

L(X1, X2; m) =
1
2
·Y·D(X1, X2) +

1
2
·(1−Y)·

{
max(0, m−D(X1, X2))

}
(1)

where Y is a binary label of the input images X1 and X2. Y = 0 indicates that the image pairs are
dissimilar or negative and Y = 1 shows that the image pairs are similar or positive. The parameter m is
defined as the margin threshold between positive and negative.
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To learn a ranking function for image retrieval, Wang proposed the triple network model in
2014 [17]. Through the triplet constraints, triple network consists of three identical branches of CNN
and share their weights, as shown in Figure 2. Additionally, google researchers developed a FaceNet
on the basis of the triple network for face recognition and clustering [22]. The triplet network needs
to input three images at the same time, namely anchor image(xa), positive image (xp), and negative
image(xn). The image pairs xa and xp are the same categories or similar images. Additionally, the image
pairs xa and xn are the different categories or dissimilar images. Through the distance relationship of
three images, the network model designs a triplet contrastive loss function (L), as show in Equation (2):

L(xa, xP, xn;α) =
1
N

N∑
i

max
{
D(xa

i , xp
i ) −D(xa

i , xn
i ) + α, 0

}
(2)

where the parameter α represents the margin threshold between D(xa, xp) and D(xa, xn), N denotes the
number of triplet samples.
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Figure 2. The structure of the triple network.

According to the triple network for face recognition developed by google, the learning target of
the model is that similar image pairs are close to each other and dissimilar image pairs are far from each
other, as shown in Figure 3. That is to say, the triplet network wants to minimize the distance between
an anchor and a positive, both of which are similar images, and maximize the distance between the
anchor and a negative of dissimilar images. From the distance relationship between images, the goal
becomes that the distance between the anchor image and the positive image is less than that between
the anchor sample and the negative sample. Therefore, there is a distance relationship as shown in
Equation (3), for all the triplets in the training dataset:

D(xa
i , xp

i ) + α < D(xa
i , xn

i ) (3)

where α is a margin that is enforced between positive and negative pairs. The function D(.) denotes
the square of Euclidean distance.
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2.2. Spatial Pyramid Pooling

Deep convolutional neural network requires a fixed-size (e.g., 224 × 224) input image. In our
real life, image size is not fixed, but varied. If we compulsively change the image size via cropping
or warping, the information contained in the image will be lost. As a result, the accuracy of image
classification and object recognition will be reduced. In convolutional neural network, convolutional
layers do not require a fixed image size and can generate feature maps for any size of input. However,
the fully-connected layers need to have fixed size length input due to their definition. That is to say,
the fixed-size constraint of the network comes only from the fully-connected layers.

To solve this problem, a spatial pyramid pooling (SPP) layer was added on top of the last
convolutional layer [26], as shown in Figure 4. The spatial pyramid pooling layer extracts the image
features from the feature map through the 4 × 4, 2 × 2, and 1 × 1 square grid. Then, the SPP layer
produces 21 = 16 + 4 + 1 different spatial bins and obtain a fixed size output by pooling each block.
After the spatial pyramid pooling, any feature map can generate 5376-dimensional feature vector,
where 5376 = 21 × 256. The SPP layer pools the features and generates fixed length outputs, which
are then fed into the fully-connected layers. Therefore, the convolution neural network with spatial
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pyramid pooling layer can deal with any size image and output a fixed size vector, without cropping
or warping the image, which greatly improves the accuracy.
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3. The Improved Triplet Network with Spatial Pyramid Pooling

This section introduces, in detail, the improved triplet network and the image similarity
measurement algorithm. Section 3.1 briefly describes the structure of the improved triplet network, as
well as how to design the improved triplet loss function. Section 3.2 records the process of training
the TSPP-Net model through the back propagation and mini-batch gradient descent. Section 3.2 also
shows how to calculate the similarity between two images.

3.1. The Improved Triplet Network

Whether the Siamese network or the triplet network is composed of two or three branches of
convolution neural network, and they can only process fixed-size images. To overcome this constraint,
we propose the triplet spatial pyramid pooling network (TSPP-Net) via combining the triple network
with the spatial pyramid pooling. The TSPP-Net also consist of three identical branches of CNN and
share their weights. Additionally, for each CNN, a spatial pyramid pooling layer is added on top
of the last convolutional layer to remove the constraints of inputting fixed-size images, as shown in
Figure 5. Like the triple network [18,22], this model also needs to input three images, respectively
anchor image(xa), positive image (xp) and negative image(xn), where the image xa and the image xp are
a similar image pairs whereas the image xa and the image xn are a dissimilar image pairs.

However, we find that the positive image xp and negative image xn are also a pair of dissimilar
images. Thus, we have improved the original learning target and propose a new learning goal,
as shown in Figure 6. The new goal can achieve twice-distance learning, including minimizing
the distance between an anchor and a positive, maximizing the distance between an anchor and
a negative, and maximizing the distance between a positive and a negative. After optimizing the
learning objective, not only the distance between the anchor image and the positive image is larger
than the distance the anchor image and the negative image, but also the distance between the anchor
image and the positive image is larger than the distance between the positive image and the negative
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sample, as showed in Equation (4). As a result, we can really realize that the inter-class distance is
larger than the intra-class distance:

D(xa
i , xp

i ) + α < D(xa
i , xn

i ), D(xa
i , xp

i ) + β < D(xp
i , xn

i ) (4)

where α is the distance margin between D(xa, xp) and D(xa, xn). The parameter β is the distance margin
between D(xa, xp) and D(xp, xn). 6 of 17 
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Based on the original triple loss function and the new distance learning goals, we easily develop
the improved triplet loss function, as showed in Equation (5). Compared with the original triple
loss function, the improved triple loss function can realize twice distance learning only through a
triple sample:

L(xa, xP, xn,α, β) = 1
N

N∑
i

max
{
D(xa

i , xp
i ) −D(xa

i , xn
i ) + α, 0

}
+ 1

N

N∑
i

max
{
D(xp

i , xa
i ) −D(xp

i , xn
i ) + β, 0

} (5)

where N denotes the number of triplet samples.
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3.2. Image Similarity Measurement Algorithm

Based on a large number of image datasets, we train the TSPP-Net model and optimize the
parameters by the back propagation and mini-batch gradient descent.

During the training process, the loss function becomes the Equation (6) and is defined as L∗m:

L(xa, xP, xn,α, β) = 1
m

m∑
i

max
{
D(xa

i , xp
i ) −D(xa

i , xn
i ) + α, 0

}
+ 1

m

m∑
i

max
{
D(xp

i , xa
i ) −D(xp

i , xn
i ) + β, 0

} (6)

where m represents the size of Mini-batch triplet images that selected randomly.
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When D(xa, xp) – D(xa, xn) + α > 0 and D(xp
, xa) – D(xp, xn) + β > 0, we separately calculate the

gradients for feature representation function F(xa
i ), F(xp

i ), and F(xn
i ), then obtain the following formulas:

∂L∗m
∂F(xa

i )
=

1
m

m∑
i

[
2F(xa

i ) − 4F(xp
i ) − 2F(xn

i )
]

(7)

∂L∗m
∂F(xp

i )
=

1
m

m∑
i

[
−4F(xa

i ) + 2F(xp
i ) + 2F(xn

i )
]

(8)

∂L∗m
∂F(xn

i )
=

1
m

m∑
i

[
2F(xa

i ) + 2F(xp
i ) − 4F(xn

i )
]

(9)

According to the chain rule of calculating the gradient for the compound function, we calculate
the gradient of the loss function for the weights W, as shown in Equation (10):

∂L∗m
∂W

=
∂L∗m
∂F(xa

i )

∂F(xa
i )

∂W
+

∂L∗m
∂F(xp

i )

∂F(xp
i )

∂W
+

∂L∗m
∂F(xn

i )

∂F(xn
i )

∂W
(10)

where:
∂L∗m
∂F(xa

i )

∂F(xa
i )

∂W
=

1
m

m∑
i

{[
2F(xa

i ) − 4F(xp
i ) − 2F(xn

i )
]∂F(xa

i )

∂W

}
(11)

∂L∗m
∂F(xp

i )

∂F(xp
i )

∂W
=

1
m

m∑
i

[−4F(xa
i ) + 2F(xp

i ) + 2F(xn
i )

]∂F(xp
i )

∂W

 (12)

∂L∗m
∂F(xn

i )

∂F(xn
i )

∂W
=

1
m

m∑
i

{[
2F(xa

i ) + 2F(xp
i ) − 4F(xn

i )
]∂F(xn

i )

∂W

}
(13)

Meanwhile, the gradient of the loss function for the biases b is shown in Equation (14):

∂L∗m
∂b

=
∂L∗m
∂F(xa

i )

∂F(xa
i )

∂b
+

∂L∗m
∂F(xp

i )

∂F(xp
i )

∂b
+

∂L∗m
∂F(xn

i )

∂F(xn
i )

∂b
(14)

where:
∂L∗m
∂F(xa

i )

∂F(xa
i )

∂b
=

1
m

m∑
i

{[
2F(xa

i ) − 4F(xp
i ) − 2F(xn

i )
]∂F(xa

i )

∂b

}
(15)

∂L∗m
∂F(xp

i )

∂F(xp
i )

∂b
=

1
m

m∑
i

[−4F(xa
i ) + 2F(xp

i ) + 2F(xn
i )

]∂F(xp
i )

∂b

 (16)

∂L∗m
∂F(xn

i )

∂F(xn
i )

∂b
=

1
m

m∑
i

{[
2F(xa

i ) + 2F(xp
i ) − 4F(xn

i )
]∂F(xn

i )

∂b

}
(17)

Therefore, the network updates its weights W and biases b as follows:

Wl+1 = Wl − η·
αL∗m
∂W

∣∣∣W=Wl (18)

bl+1 = bl − η·
αL∗m
∂b

∣∣∣∣∣
b=bl

(19)

where η is the learning rate, l represents the layer.
To summarize, the process of training the TSPP-Net model is shown in Algorithm 1. After we

already have trained the network model, we could choose a branch of CNN as the based network and
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load the parameters. Then, we can obtain an image embedding or a feature vector from an image
through the branch of CNN without the last layer.

Give two images Ia and Ib, then obtain their corresponding feature vectors A= [a1, a2, . . . , an] and
B= [b1, b2, . . . , bn], where n is the dimension of vector. Thus, the similarity between two images S1 and
S2 can be defined as Sim(A, B), as showed in Equation (20):

Sim(Ia, Ib) ≈ Sim(A, B) = cos〈A , B〉 =

→

A ·
→

B
‖A‖ · ‖B‖

(20)

The inputs of the Algorithm 1 include the training image dataset I = {I}, the total epoch number
E, the iteration number T, the mini-bath size m, as well as the learning rate η. The outputs are the
network parameters, including the weights W = {W} and the biases b = {b}. Line 3 represents that the
algorithm randomly generate the triplet samples: X = {(xa

1, xp
1, xn

1), (x
a
2, xp

2, xn
2), . . . , (xa

n, xp
n, xn

n)} through
the image dataset I. Line 3 shows that the algorithm divide the triplet samples X into the min-batch
samples M = {M1, M2, . . . } and each of Mi contains m triplet samples, where Mi ={(xa

j+1, xp
j+1, xn

j+1),

(xa
j+2, xp

j+2, xn
j+2), . . . , (xa

j+m, xp
j+m, xn

j+m)}. Line 9–12 describe that the algorithm calculates the gradient
∂L∗m/∂w and ∂L∗m/∂b by back propagation for all the min-batch samples Mt. Line 9 represents the
algorithm updates the network parameters.

Algorithm 1: Training the TSPP-Net Model

Input:
Training image dataset: I = {I}
Epoch number: T
Mini-Bath size: m
Learning rate: η

Output:
Network parameters: W = {W}, b = {b}

1: while e < E do
2: e = e + 1;

3:
Randomly generate the triplet samples: X =

{
(xa

1, xp
1, xn

1) , (xa
2, xp

2, xn
2), . . . , (xa

n, xp
n, xn

n)
}

through the
image dataset I;

4:
Divide the triplet samples X into the min-batch samples M= {M1, M2, . . . } and each of Mi contains m

triplet samples, where Mi = {(xa
j+1, xp

j+1, xn
j+1),(x

a
j+2, xp

j+2, xn
j+2), . . . ,(xa

j+m, xp
j+m, xn

j+m)};

5: T = size(M);
6: while t < T do
7: t = t + 1;
8: Obtain the min-batch samples Mt from M;
9: for all the min-batch samples Mt:
10: According to the Equation (10), calculate the gradient ∂L∗m/∂w by back propagation algorithm;
11: According to the Equation (14), calculate the gradient ∂L∗m/∂b by back propagation algorithm;
12: end for
13: According to the Equation (18) and the Equation (19), update the parameters;
14: end while
15: end while

4. The Experiment and Analysis

This section verifies the correctness and efficiency of the algorithm model through experiments.
Section 4.1 briefly describes the experimental settings, including the experimental dataset and building
the network model via the AlexNet and the spatial pyramid pooling. Section 4.2 introduces in detail
the experimental results of the improved triplet network model, compared with the twin network and
the triple network.
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4.1. Experimental Settings

In order to avoid the effect of convolution network itself, we just use AlexNet as the base network,
not VggNet, GoogLeNet and ResNet. AlexNet has three fully-connected layers (fc6, fc7, and fc8) and
the last layer (fc8) was designed considering the number of classes on the image classification task.
In this paper, we removed fc8 layer and used fc7 layer as the feature representations. Meanwhile,
we added a spatial pyramid pooling (SPP) layer on top of the fully connected layer and obtain a fixed
size embedding.

In this paper, we use the MNIST and Caltech101 to prove the correctness and validity of the
network model. The details of image dataset are as follows:

MNIST: The MNIST dataset consists of handwritten digit images 0–9 and it is divided in
60,000 examples for the training set and 10,000 examples for testing. The official training set of 60,000 is
divided into an actual training set of 50,000 examples and 10,000 validation examples. All digit images
have been size-normalized and centered in a fixed size image of 28 × 28 pixels. In the original dataset
each pixel of the image is represented by a value between 0 and 255, where 0 is black, 255 is white and
anything in between is a different shade of grey.

Caltech101: The Caltech 101 dataset consists of a total of 9146 images, including 101 different
object categories. Each category contains about 40–800 images. The size of each image is roughly
300 × 200 pixels.

According the Triple Network model [17,18], as well as the FaceNet model [22], we randomly
generate a series of min-batch triplet pairs through the image dataset, each of which contains three
images, respectively anchor image(xa), positive image (xp) and negative image(xn). The image xa

and the image xp have the same label, whereas the image xa and the image xn have different labels.
We initialize the training parameters of the network model: the mini-batch size of 128, the total epoch
number of 50, the learning rate of 0.0001. Additionally, to compare with the triple network model and
align with the triple loss function, we have set a margin value α = β and modified the improved triplet
loss function, as shown in the Equation (21):

L(xa, xP, xn,α, β) = 1
2m

m∑
i

max
{
D(xa

i , xp
i ) −D(xa

i , xn
i ) + α, 0

}
+ 1

2m

m∑
i

max
{
D(xp

i , xa
i ) −D(xp

i , xn
i ) + α, 0

} (21)

4.2. Experimental Results

In this paper, we mainly verify that the algorithm is correct and effective through the Improved
Triple Loss Function and the TSPP-Net model. The results and analysis of the experiment are as follows:

4.2.1. Verifying the Improved Triple Loss Function

We use the MNIST dataset to verify the Siamese network, the triplet network, and the improved
triplet network, respectively.

(1) Firstly, we select a series of margin values α, such as 0.1, 0.2, 0.3, 0.5, 0.7, 0.8, 1.0, and so on.
Then, we train these three network models separately and obtain the corresponding feature vectors.
Finally, we classify these vectors classify via the KNN algorithm and analyze the accuracy of the
three models along with the change of the margin values α. The results are shown in Figure 7. When
the margin value α = 0.1, the classification accuracy of the Siamese, triplet, and improved triplet is
97.94%, 99.12% and 99.51%. This also effectively illustrates the improved triplet loss function, which
can extract deeper image features. Its image embedding vector contains more abundant information,
which has better advantages in the field of image similarity measurement. Obviously, the improved
and optimized triple loss function network model has higher classification accuracy than the Siamese
network and the original triple network.
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Figure 7. The classification accuracy of the three networks varies with a series of margin values.

(2) When the margin value α = 0.1, we also have analyzed the convergence rate of the loss
function and the classification accuracy of the three network models during the first 10 epoch training.
The results are as shown in Figures 8 and 9. From the Figure 8, during the training process of the three
network models through the MNIST dataset, when the epoch number reaches 10, the loss function of
the triplet network and the improved triplet network has almost converged to 0. However, the loss
function of Siamese network still fluctuates and does not converge. Therefore, the convergence rate
of the loss function is: improved triplet network > triplet network > Siamese network. In Figure 9,
the classification accuracy of the improved triplet network is the fastest and stable. The increasing rate
of classification accuracy is: improved triplet network > triplet network > Siamese network. Based on
the above analysis, it can be found that the improved loss function decreases fastest and converges
fastest. When the loss function drops to the same value, the training network model has the least
number of epochs and the highest sample utilization rate. In the case of relatively few training samples,
improved triplet network can make full use of training samples and obtain some better network
model parameters.
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(3) When we have finished training the three network models, we load the parameters of the
network model separately, then extract each image in the MNIST validation examples, and get the
corresponding feature vectors. According to the Euclidean distance between the vectors, we project these
feature vectors onto a two-dimensional space coordinate system, as shown in Figure 10. By analyzing
the clustering results of the test dataset, we found that their performance is sorted: improved triplet
network > triplet network > Siamese network. Therefore, compared with the Siamese Network and
the original triplet network model, the improved triplet network has better learning ability. Similarly,
it also shows that the improved triplet loss function can really realize that the inter-class distance is
larger than the intra-class distance.
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4.2.2. Verifying the TSPP-Net Model

According to the SPP-Net [26], we set the size of three grid blocks to be 4 × 4, 2 × 2, and 1 × 1,
respectively. Then, if any size feature map is processed by the spatial pyramid pooling layer,
5376 features can be obtained, where 5376 = (16 + 4 + 1) × 256. At the same time, the SPP-Net
provides two training methods: single size and multi-size. Since the Caltech 101 data is relatively
complicated, we set a series of training parameters: the boundary value α of 0.5, the mini-batch size
of 128, the total epoch number of 20,000, the learning rate of 0.0001. We selected 20 categories from
the Caltech 101 dataset, and randomly selected 50 images from each category as the training data,
and the rest of the images as the test data. We train Alexnet + SPP-Net (ASPP-Net), Siamese + SPP-Net
(SSPP-Net), Triplet + SPP-Net (TSPP-Net) and Improved Triplet + SPP-Net (Improved TSPP-Net)
through single-size and multi-size training. After training the network model, we use the model to
extract image features from Caltech 101 dataset for image retrieval. We analyzed the precision rate,
recall rate, and mean average precision (mAP).
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(1) Single-Size Training

In the single-size training model, the image feature vectors extracted from the model are used
for image retrieval, and the precision rate and the recall rate are shown in Figures 11 and 12. In the
image retrieval results, as the parameter k increases gradually, the accuracy will decrease gradually,
and the recall rate will increase gradually. When the values of k are the same, the accuracy rate
is sorted: ASPP-Net < SSPP-Net < TSPP-Net < Improved TSPP-Net and the recall rate is sorted:
ASPP-Net < SSPP-Net < TSPP-Net < Improved TSPP-Net. These show that the improved TSPP-Net
model can extract better image features for image retrieval.
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(2) Multi-Size Training

According to the multi-size training method of the SPP-Net, the network model can be alternately
and repeatedly trained through 224 × 224 and 180 × 180 images, where the 224 × 224 images are
obtained by cutting the original image, while 180 × 180 size images are obtained by scaling the original
image. Similarly, we extract image features through these trained network models for image retrieval
and the results are shown in Figures 13 and 14.
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Obviously, as the parameter k increases gradually, the accuracy will decrease gradually, and the
recall rate will increase gradually. When the values of k are the same, the accuracy rate is: ASPP-Net <

SSPP-Net < TSPP-Net < Improved TSPP-Net and the recall rate is: ASPP-Net < SSPP-Net < TSPP-Net
< Improved TSPP-Net. Comparing the single-size training methods, the precision and recall rate of the
multi-size training methods are slightly lower than the single-size training methods, but the difference
is very small within an acceptable range. It shows that the multi-size training methods have less
influence on the performance of the network model.
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Figure 13. The precision rate of the multi-size training.
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(3) Mean Average Precision

We obtain the image feature through these trained network models for image retrieval. the image
retrieval results of mean average precision (mAP) are shown in Table 1. Under the two training modes
of single-size and multi-size, the mean average precision is sorted: ASPP-Net < SSPP-Net < TSPP-Net
< Improved TSPP-Net.
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Table 1. Mean average precision.

No. Network Model
mAP (%)

Single-Size Multi-Size

1 ASPP-Net 58.56 57.42

2 SSPP-Net 72.18 70.69

3 TSPP-Net 78.33 76.65

4 Improved TSPP-Net 81.24 79.35

5. Conclusions

In this paper, we have combined the triplet convolution neural network with the spatial pyramid
pooling and proposed a TSPP-Net model, which effectively overcomes the limitation that the deep
network model can only process fixed-size images. Additionally, we have proposed an improved
triple loss function, which can truly realize that the interclass distance is greater than the intraclass
distance and enable the triple network model to input three samples at a time to achieve two distance
learning. According to theoretical analysis and experimental results, the TSPP-Net model and the
improved triple loss function can improve the generalization ability of network and the accuracy of
image similarity measurement algorithm, and have better advantages in the field of image similarity
measurement. Furthermore, we use the TSPP-Net model for image similarity measurement algorithms
and design image similarity detection systems. In the image similarity detection process for the
National Natural Science Foundation project application, the system can quickly and accurately detect
images with similar contents. The system is extremely stable and achieves our desired results.

However, there has always been a semantic gap in the field of image similarity measurement.
Although the deep convolutional neural network can express the image information efficiently by
simulating the thinking mode of the human brain, it narrows the gap between the machine and the
human body in the semantic understanding, and better handles the semantic gap, but it is not really
the semantics similarity. In the future, we can attempt to train the network model through multi-label
learning or combining the semantic information contained in the image, so that we can really narrow
the semantic gap.
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