Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = transverse stimulated Raman scattering

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 6151 KB  
Article
Watt-Level Tunable Mid-Infrared Laser Emission at 2.8 μm Generated by Stimulated Raman Scattering of Methane Molecules in Hollow-Core Fibers
by Peicong Liu, Wenxi Pei, Luohao Lei, Tianyu Li, Guorui Lv, Qi Chen, Guangrong Sun, Shuyi Wang, Zhiyue Zhou and Zefeng Wang
Photonics 2025, 12(11), 1137; https://doi.org/10.3390/photonics12111137 - 18 Nov 2025
Viewed by 553
Abstract
Fiber lasers operating at 2.8 μm have important applications in fields such as polymer material processing and medical surgery. Fiber gas lasers (FGLs) based on stimulated Raman scattering (SRS) in hollow-core fibers (HCFs) provide a superior approach to generating tunable, high-power laser at [...] Read more.
Fiber lasers operating at 2.8 μm have important applications in fields such as polymer material processing and medical surgery. Fiber gas lasers (FGLs) based on stimulated Raman scattering (SRS) in hollow-core fibers (HCFs) provide a superior approach to generating tunable, high-power laser at 2.8 μm. Here, we demonstrated a watt-level mid-infrared FGL with a tuning range from 2812 nm to 2862 nm by the SRS of methane molecules in a 26.7 m long HCF. By pumping with a tunable pulsed fiber amplifier at 1.5 μm, an average output power of approximately 1 W was obtained, with a low Raman threshold peak power of 1.7 kW. Additionally, we observed transverse mode instability (TMI) in the HCFs, which has rarely been reported previously, and propose that the TMI was caused by the thermal effect generated when methane molecules absorbed the pump laser. This work achieved both the wavelength flexibility and watt-level power of FGLs based on methane-filled HCFs in the 2.8 μm waveband. It also found that the TMI was a key factor limiting further improvement in output power. This work provides important experimental basis and optimization directions for the future realization of higher-power tunable fiber lasers in the 2.8 μm waveband. Full article
Show Figures

Figure 1

8 pages, 749 KB  
Communication
Numerical Investigation on the Effect of Smoothing by Spectral Dispersion on Transverse Stimulated Raman Scattering Gain in KDP Crystals
by Xinmin Fan, Chunhong Wang, Yan Wang, Jianxin Zhang, Yong Shang, Shun Li, Fuyong Qin, Zaifa Du and Chunyan Wang
Photonics 2025, 12(9), 843; https://doi.org/10.3390/photonics12090843 - 24 Aug 2025
Cited by 1 | Viewed by 908
Abstract
In inertial confinement fusion (ICF) laser drivers, large-aperture high-intensity third-harmonic (3ω, central wavelength 351 nm) laser pulses passing through KDP crystals (potassium dihydrogen phosphate) can produce strong transverse stimulated Raman scattering (TSRS). TSRS not only depletes the energy of the 3ω laser beam [...] Read more.
In inertial confinement fusion (ICF) laser drivers, large-aperture high-intensity third-harmonic (3ω, central wavelength 351 nm) laser pulses passing through KDP crystals (potassium dihydrogen phosphate) can produce strong transverse stimulated Raman scattering (TSRS). TSRS not only depletes the energy of the 3ω laser beam but also damages the KDP crystal, thus significantly limiting the enhancement of ICF laser driver capabilities. Therefore, effectively suppressing TSRS in KDP crystals is a critical issue in the design and construction of ICF laser driver systems. This paper first proposes that SSD has the ability to suppress TSRS through theoretical analysis of the characteristics of SSD beams. Secondly, through numerical simulations, it presents the influence of variations in three key parameters—modulation amplitude, modulation frequency, and grating dispersion coefficient—on the TSRS gain. The results show that the Stokes gain decreases with increasing modulation amplitude and modulation frequency; specifically, the suppression capability of SSD for TSRS gradually strengthens as modulation bandwidth increases. In addition, previous reports have demonstrated that SSD can significantly suppress stimulated rotational Raman scattering (SRRS) in air, which highlights the potential value of applying SSD in large laser facilities such as ICF driver systems. Full article
Show Figures

Figure 1

7 pages, 1613 KB  
Communication
1010 nm Directly LD-Pumped 6kW Monolithic Fiber Laser Employing Long-Tapered Yb3+-Doped Fiber
by Mingye Yang, Peng Wang, Xiaoyong Xu, Hanshuo Wu, Zhiyong Pan, Yun Ye, Zhiping Yan, Xiaoming Xi, Hanwei Zhang and Xiaolin Wang
Photonics 2024, 11(11), 1033; https://doi.org/10.3390/photonics11111033 - 2 Nov 2024
Cited by 1 | Viewed by 2124
Abstract
Utilizing long-wavelength laser diodes (LDs) for pumping to achieve high-power fiber laser output is an effective method for attaining high quantum efficiency and excellent thermal management. In this work, we report on a Master Oscillator Power Amplifier (MOPA)-structured long-tapered Yb3+-doped fiber [...] Read more.
Utilizing long-wavelength laser diodes (LDs) for pumping to achieve high-power fiber laser output is an effective method for attaining high quantum efficiency and excellent thermal management. In this work, we report on a Master Oscillator Power Amplifier (MOPA)-structured long-tapered Yb3+-doped fiber laser directly pumped by long-wavelength laser diodes. By shifting the center wavelength of the pump source to 1010 nm, the heat generation within the fiber laser is effectively controlled, thereby increasing the transverse mode instability (TMI) threshold. Additionally, the use of a long-tapered fiber enlarges the mode area and suppresses stimulated Raman scattering (SRS) effects that typically arise from increased fiber length. As a result, an output of 6030 W is achieved with an optical-to-optical (O–O) efficiency of 83.7%, a SRS suppression ratio exceeding 50 dB, and no occurrence of dynamic TMI. This approach provides a valuable reference for optimizing long-wavelength pumping to suppress nonlinear effects and also holds potential for wide-temperature operational applications. Full article
(This article belongs to the Special Issue High-Power Fiber Lasers)
Show Figures

Figure 1

11 pages, 3614 KB  
Article
Theoretical Study on Transverse Mode Instability in Raman Fiber Amplifiers Considering Mode Excitation
by Shanmin Huang, Xiulu Hao, Haobo Li, Chenchen Fan, Xiao Chen, Tianfu Yao, Liangjin Huang and Pu Zhou
Micromachines 2024, 15(10), 1237; https://doi.org/10.3390/mi15101237 - 7 Oct 2024
Viewed by 1718
Abstract
Raman fiber lasers (RFLs), which are based on the stimulated Raman scattering effect, generate laser beams and offer distinct advantages such as flexibility in wavelength, low quantum defects, and absence from photo-darkening. However, as the power of the RFLs increases, heat generation emerges [...] Read more.
Raman fiber lasers (RFLs), which are based on the stimulated Raman scattering effect, generate laser beams and offer distinct advantages such as flexibility in wavelength, low quantum defects, and absence from photo-darkening. However, as the power of the RFLs increases, heat generation emerges as a critical constraint on further power scaling. This escalating thermal load might result in transverse mode instability (TMI), thereby posing a significant challenge to the development of RFLs. In this work, a static model of the TMI effect in a high-power Raman fiber amplifier based on stimulated thermal Rayleigh scattering is established considering higher-order mode excitation. The variations of TMI threshold power with different seed power levels, fundamental mode purities, higher-order mode losses, and fiber lengths are investigated, while a TMI threshold formula with fundamental mode pumping is derived. This work will enrich the theoretical model of TMI and extend its application scope in TMI mitigation strategies, providing guidance for understanding and suppressing TMI in the RFLs. Full article
(This article belongs to the Special Issue High Power Fiber Laser Technology)
Show Figures

Figure 1

2 pages, 128 KB  
Abstract
Ultrasensitive Detection of Biomarkers Based on Anisotropic Gold Nanorods and Dark-Field Imaging
by Chaoshan Zhao and Shunbo Li
Proceedings 2024, 104(1), 2; https://doi.org/10.3390/proceedings2024104002 - 28 May 2024
Viewed by 988
Abstract
The detection of tumor markers in body fluids is crucial for the screening, diagnosis, and prognosis analysis of cancer. Hence, the sensitivity of tumor biomarker screening is highly demanded in detection. Currently, several detection techniques are available, such as a fluorescence analysis, surface-enhanced [...] Read more.
The detection of tumor markers in body fluids is crucial for the screening, diagnosis, and prognosis analysis of cancer. Hence, the sensitivity of tumor biomarker screening is highly demanded in detection. Currently, several detection techniques are available, such as a fluorescence analysis, surface-enhanced Raman scattering, electrochemical luminescence, and an electrochemical analysis. However, these methods have certain limitations, such as low sensitivity, poor stability, complex processes, and long reaction time. In recent years, the imaging technique combined with precious metal and dark-field microscopy has gained popularity in the field of highly sensitive biochemical detection due to its high spatiotemporal resolution and independence of signal reporter molecules. Gold nanorods (AuNRs) are anisotropic nanomaterials that show two types of plasmon resonance—longitudinal plasmon resonance and transverse plasmon resonance—in which the longitudinal LSPR plays a dominant role in the detection, while the transverse LSPR mode is always neglected. Herein, polarized light, which is perpendicular to the AuNRs, is designed to stimulate the transverse plasma resonance of the AuNRs to detect biomarkers in a microfluidic chip. In this work, Vascular Endothelial Growth Factor (VEGF165) is used as the testing biomarker to demonstrate the feasibility of this method. With the presence of VEGF165 in the sample solution, AuNRs will capture the gold nanoparticles due to the antibody–antigen–antibody switched structure, inducing the change in the polarized plasma resonance property. This method achieves a detection limit of 10 pg/mL for VEGF165, which is lower than most of the reported methods. The results show that the method based on the combination of a microfluidic chip and dark-field microscopic image has excellent sensitivity and has significant potential in an early cancer diagnosis and prognosis analysis. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Biosensors)
28 pages, 17616 KB  
Article
Novel Bidirectional Output Ytterbium-Doped High Power Fiber Lasers: From Continuous to Quasi-Continuous
by Lingfa Zeng, Xinyi Ding, Jiaqi Liu, Xiaolin Wang, Yun Ye, Hanshuo Wu, Peng Wang, Xiaoming Xi, Hanwei Zhang, Chen Shi, Fengjie Xi and Xiaojun Xu
Micromachines 2024, 15(1), 153; https://doi.org/10.3390/mi15010153 - 20 Jan 2024
Cited by 3 | Viewed by 3214
Abstract
Traditional ytterbium-doped high-power fiber lasers generally use a unidirectional output structure. To reduce the cost and improve the efficiency of the fiber laser, we propose a bidirectional output fiber laser (BOFL). The BOFL has many advantages over that of the traditional unidirectional output [...] Read more.
Traditional ytterbium-doped high-power fiber lasers generally use a unidirectional output structure. To reduce the cost and improve the efficiency of the fiber laser, we propose a bidirectional output fiber laser (BOFL). The BOFL has many advantages over that of the traditional unidirectional output fiber laser (UOFL) and has a wide application in the industrial field. In theory, the model of the BOFL is established, and a comparison of the nonlinear effect in the traditional UOFL and the BOFL is studied. Experimentally, high-power continuous wave (CW) and quasi-continuous wave (QCW) BOFLs are demonstrated. In the continuous laser, we first combine the BOFL with the oscillating amplifying integrated structure, and a near-single-mode bidirectional 2 × 4 kW output with a total power of above 8 kW is demonstrated. Then, with the simple BOFL, a CW bidirectional 2 × 5 kW output with a total power of above 10 kW is demonstrated. By means of pump source modulation, a QCW BOFL is developed, and the output of a near-single mode QCW laser with a peak output of 2 × 4.5 kW with a total peak power of more than 9 kW is realized. Both CW and QCW output BOFL are the highest powers reported at present. Full article
(This article belongs to the Special Issue Fiber Lasers and Applications)
Show Figures

Figure 1

11 pages, 3490 KB  
Article
A 5 kW Nearly-Single-Mode Monolithic Fiber Laser Emitting at ~1050 nm Employing Asymmetric Bi-Tapered Ytterbium-Doped Fiber
by Xiangming Meng, Fengchang Li, Baolai Yang, Peng Wang, Zhiping Yan, Yun Ye, Xiaoming Xi, Hanwei Zhang, Zhiyong Pan, Xiaolin Wang and Fengjie Xi
Photonics 2023, 10(10), 1158; https://doi.org/10.3390/photonics10101158 - 16 Oct 2023
Cited by 5 | Viewed by 3493
Abstract
Limited by stimulated Raman scattering (SRS), amplified spontaneous emission (ASE) and transverse mode instability (TMI), it is challenging to achieve high-power laser output in ytterbium-doped fiber (YDF) lasers with operating wavelengths less than 1060 nm. In high-power fiber lasers, bi-tapered YDF can provide [...] Read more.
Limited by stimulated Raman scattering (SRS), amplified spontaneous emission (ASE) and transverse mode instability (TMI), it is challenging to achieve high-power laser output in ytterbium-doped fiber (YDF) lasers with operating wavelengths less than 1060 nm. In high-power fiber lasers, bi-tapered YDF can provide a balance between the suppression of SRS and TMI. In this work, we designed and fabricated a new double-cladding asymmetric bi-tapered YDF to suppress ASE and SRS in the 1050 nm monolithic fiber laser. The asymmetric bi-tapered YDF has an input end with a core/cladding diameter of ~20/400 μm, a middle section with a core/cladding diameter of ~30/600 μm and an output end with a core/cladding diameter of ~25/500 μm. The working temperature of the non-wavelength-stabilized 976 nm laser diodes was optimized to improve the TMI threshold. An output power of over 5 kW with an efficiency of 83.1% and a beam quality factor M2 of about 1.47 were achieved. To the best of our knowledge, this represents the highest power nearly-single mode in 1050 nm fiber lasers. This work demonstrates the potential of asymmetric bi-tapered YDF for achieving a high-power laser with high beam quality in 1050 nm fiber lasers. Full article
(This article belongs to the Special Issue Specialty Optical Fibers and Their High-Power Applications)
Show Figures

Figure 1

26 pages, 14840 KB  
Article
Optimization and Demonstration of Direct LD Pumped High-Power Fiber Lasers to Balance SRS and TMI Effects
by Lingfa Zeng, Xiaolin Wang, Li Wang, Yun Ye, Peng Wang, Baolai Yang, Xiaoming Xi, Zhiyong Pan, Hanwei Zhang, Chen Shi, Kai Han and Xiaojun Xu
Photonics 2023, 10(5), 539; https://doi.org/10.3390/photonics10050539 - 6 May 2023
Cited by 2 | Viewed by 3949
Abstract
Up to now, transverse mode instability (TMI) and stimulated Raman scattering (SRS) have become the main factors limiting the power scaling of conventional ytterbium-doped fiber laser. Many technologies are proposed to suppress the SRS or TMI individually, but most of them are contradictions [...] Read more.
Up to now, transverse mode instability (TMI) and stimulated Raman scattering (SRS) have become the main factors limiting the power scaling of conventional ytterbium-doped fiber laser. Many technologies are proposed to suppress the SRS or TMI individually, but most of them are contradictions in practical application. In this article, we focus on the technologies that can balance the suppression of both SRS and TMI, including fiber coiling optimization, pump wavelength optimization, pump configuration optimization, and novel vary core diameter active fiber. Firstly, we validate the effectiveness of these technologies in both theoretical and relatively low-power experiments, and introduce the abnormal TMI threshold increasing in a few-mode fiber amplifier with fiber coiling. Then, we scale up the power through various types of fiber lasers, including wide linewidth and narrow linewidth fiber lasers, as well as quasi-continuous wave (QCW) fiber lasers. As a result, we achieve 5~8 kW fiber laser oscillators, 10~20 kW wide linewidth fiber laser amplifiers, 4 kW narrow linewidth fiber amplifiers, and 10 kW peak power QCW fiber oscillators. The demonstration of these new technical schemes is of great significance for the development of high-power fiber lasers. Full article
Show Figures

Figure 1

9 pages, 2180 KB  
Communication
First Demonstration and Comparison of 5 kW Monolithic Fiber Laser Oscillator Pumped by 915 nm and 981 nm LDs
by Yujun Wen, Peng Wang, Baolai Yang, Hanwei Zhang, Xiaoming Xi, Xiaolin Wang and Xiaojun Xu
Photonics 2022, 9(10), 716; https://doi.org/10.3390/photonics9100716 - 30 Sep 2022
Cited by 6 | Viewed by 2951
Abstract
Fiber laser performances including transverse mode instability (TMI), stimulated Raman scattering (SRS) and optical-to-optical efficiency are in connection with the pump wavelength. Here we studied the output characteristics of a 5-kW ytterbium-doped fiber laser oscillator pumped with two different pump sources, i.e., 915 [...] Read more.
Fiber laser performances including transverse mode instability (TMI), stimulated Raman scattering (SRS) and optical-to-optical efficiency are in connection with the pump wavelength. Here we studied the output characteristics of a 5-kW ytterbium-doped fiber laser oscillator pumped with two different pump sources, i.e., 915 nm and 981 nm laser diodes (LDs). The output characteristics of fiber laser oscillators pumped by 915 nm and 981 nm have been compared strictly and directly with the same structure in a high-power situation. Experimental results show that both pump wavelengths can scale the power up to more than 5 kW by suppressing the TMI effect. While in the case of pumping by the 981 nm LDs, the laser oscillator has an optical-to-optical efficiency of 87%, which is 13% higher than that of the 915 nm pumped scheme. In addition, due to the higher backward pumping ratio and lower total pump power, the laser oscillator has a better SRS suppression ratio when pumped at 981 nm. Thus, it reveals a great potential to balance the limitations of TMI and SRS for scaling up to an even higher output while pumping at 981 nm. All the devices of the oscillator are commercial, and it will be helpful for the commercialization of high-power fiber laser oscillators. Full article
(This article belongs to the Special Issue High Power Laser: Theory and Applications)
Show Figures

Figure 1

10 pages, 6381 KB  
Article
2.58 kW Narrow Linewidth Fiber Laser Based on a Compact Structure with a Chirped and Tilted Fiber Bragg Grating for Raman Suppression
by Xin Tian, Chenhui Gao, Chongwei Wang, Xiaofan Zhao, Meng Wang, Xiaoming Xi and Zefeng Wang
Photonics 2021, 8(12), 532; https://doi.org/10.3390/photonics8120532 - 25 Nov 2021
Cited by 6 | Viewed by 5104
Abstract
We report a high power, narrow linewidth fiber laser based on oscillator one-stage power amplification configuration. A fiber oscillator with a center wavelength of 1080 nm is used as the seed, which is based on a high reflection fiber Bragg grating (FBG) and [...] Read more.
We report a high power, narrow linewidth fiber laser based on oscillator one-stage power amplification configuration. A fiber oscillator with a center wavelength of 1080 nm is used as the seed, which is based on a high reflection fiber Bragg grating (FBG) and an output coupling FBG of narrow reflection bandwidth. The amplifier stage adopted counter pumping. By optimizing the seed and amplifier properties, an output laser power of 2276 W was obtained with a slope efficiency of 80.3%, a 3 dB linewidth of 0.54 nm and a signal to Raman ratio of 32 dB, however, the transverse mode instability (TMI) began to occur. For further increasing the laser power, a high-power chirped and tilted FBG (CTFBG) was inserted between the backward combiner and the output passive fiber, experimental results showed that both the threshold of Stimulated Raman scattering (SRS) and TMI increased. The maximum laser power was improved to 2576 W with a signal to Raman ratio of 42 dB, a slope efficiency of 77.1%, and a 3 dB linewidth of 0.87 nm. No TMI was observed and the beam quality factor M2 maintained about 1.6. This work could provide a useful reference for obtaining narrow-linewidth high-power fiber lasers with high signal to Raman ratio. Full article
(This article belongs to the Special Issue High-Power Lasers and Amplifiers)
Show Figures

Figure 1

Back to TopTop