Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (67)

Search Parameters:
Keywords = transient thermal dissipation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 11218 KiB  
Article
Transient Temperature Evaluation and Thermal Management Optimization Strategy for Aero-Engine Across the Entire Flight Envelope
by Weilong Gou, Shiyu Yang, Kehan Liu, Yuanfang Lin, Xingang Liang and Bo Shi
Aerospace 2025, 12(6), 562; https://doi.org/10.3390/aerospace12060562 - 19 Jun 2025
Viewed by 619
Abstract
With the enhancement of thermodynamic cycle parameters and heat dissipation constraints in aero-engines, effective thermal management has become a critical challenge to ensure safe and stable engine operation. This study developed a transient temperature evaluation model applicable to the entire flight envelope, considering [...] Read more.
With the enhancement of thermodynamic cycle parameters and heat dissipation constraints in aero-engines, effective thermal management has become a critical challenge to ensure safe and stable engine operation. This study developed a transient temperature evaluation model applicable to the entire flight envelope, considering fluid–solid coupling heat transfer on both the main flow path and fuel systems. Firstly, the impact of heat transfer on the acceleration and deceleration performance of a low-bypass-ratio turbofan engine was analyzed. The results indicate that, compared to the conventional adiabatic model, the improved model predicts metal components absorb 4.5% of the total combustor energy during cold-state acceleration, leading to a maximum reduction of 1.42 kN in net thrust and an increase in specific fuel consumption by 1.18 g/(kN·s). Subsequently, a systematic evaluation of engine thermal management performance throughout the complete flight mission was conducted, revealing the limitations of the existing thermal management design and proposing targeted optimization strategies, including employing Cooled Cooling Air technology to improve high-pressure turbine blade cooling efficiency, dynamically adjusting low-pressure turbine bleed air to minimize unnecessary losses, optimizing fuel heat sink utilization for enhanced cooling performance, and replacing mechanical pumps with motor pumps for precise fuel supply control. Full article
(This article belongs to the Special Issue Aircraft Thermal Management Technologies)
Show Figures

Figure 1

21 pages, 13453 KiB  
Article
Buoyant Flow and Thermal Analysis in a Nanofluid-Filled Cylindrical Porous Annulus with a Circular Baffle: A Computational and Machine Learning-Based Approach
by Pushpa Gowda, Sankar Mani, Ahmad Salah and Sebastian A. Altmeyer
Mathematics 2025, 13(12), 2027; https://doi.org/10.3390/math13122027 - 19 Jun 2025
Viewed by 1213
Abstract
Control of buoyancy-assisted convective flow and the associated thermal behavior of nanofluids in finite-sized conduits has become a great challenge for the design of many types of thermal equipment, particularly for heat exchangers. This investigation discusses the numerical simulation of the buoyancy-driven convection [...] Read more.
Control of buoyancy-assisted convective flow and the associated thermal behavior of nanofluids in finite-sized conduits has become a great challenge for the design of many types of thermal equipment, particularly for heat exchangers. This investigation discusses the numerical simulation of the buoyancy-driven convection (BDC) of a nanofluid (NF) in a differently heated cylindrical annular domain with an interior cylinder attached with a thin baffle. The annular region is filled with non-Darcy porous material saturated-nanofluid and both NF and the porous structure are in local thermal equilibrium (LTE). Higher thermal conditions are imposed along the interior cylinder as well as the baffle, while the exterior cylinder is maintained with lower or cold thermal conditions. The Darcy–Brinkman–Forchheimer model, which accounts for inertial, viscous, and non-linear drag forces was adopted to model the momentum equations. An implicit finite difference methodology by considering time-splitting methods for transient equations and relaxation-based techniques is chosen for the steady-state model equations. The impacts of various pertinent parameters, such as the Rayleigh and Darcy numbers, baffle dimensions, like length and position, on flow, thermal distributions, as well as thermal dissipation rates are systematically estimated through accurate numerical predictions. It was found that the baffle dimensions are very crucial parameters to effectively control the flow and associated thermal dissipation rates in the domain. In addition, machine learning techniques were adopted for the chosen analysis and an appropriate model developed to predict the outcome accurately among the different models considered. Full article
(This article belongs to the Special Issue Numerical Simulation and Methods in Computational Fluid Dynamics)
Show Figures

Figure 1

17 pages, 8225 KiB  
Article
Numerical Study on the Influence of Cooling-Fin Geometry on the Aero-Thermal Behavior of a Rotating Tire
by Kyoungmi Yu and SangWook Lee
Energies 2025, 18(12), 3133; https://doi.org/10.3390/en18123133 - 14 Jun 2025
Viewed by 391
Abstract
An excessive temperature rise in vehicle tires during driving can degrade dynamic performance, safety, and fuel efficiency by increasing rolling resistance and softening materials. To mitigate these issues, it is essential to enhance the cooling performance of tires without inducing significant aerodynamic penalties. [...] Read more.
An excessive temperature rise in vehicle tires during driving can degrade dynamic performance, safety, and fuel efficiency by increasing rolling resistance and softening materials. To mitigate these issues, it is essential to enhance the cooling performance of tires without inducing significant aerodynamic penalties. In this study, we propose the use of sidewall-mounted cooling fins and investigate their aero-thermal effects under both ground-contact and no-ground-contact conditions. Seven fin configurations were tested, with installation angles ranging from −67.5° to 67.5°, with positive angles indicating an orientation opposite to the direction of wheel rotation and negative angles indicating alignment with the direction of rotation. High-fidelity unsteady Reynolds-averaged Navier–Stokes simulations were conducted using the SST k-w turbulence model. The sliding mesh technique was employed to capture the transient flow behavior induced by tire rotation. The results showed that, under no-ground-contact conditions, the 45° configuration achieved a 16.8% increase in convective heat transfer with an increase in drag less than 3%. Under ground-contact conditions, the 22.5° configuration increased heat transfer by over 13% with a minimal aerodynamic penalty (~1.7%). These findings provide valuable guidance for designing passive cooling solutions that improve tire heat dissipation performance without compromising aerodynamic efficiency. Full article
Show Figures

Figure 1

17 pages, 9205 KiB  
Review
Joint Use of Thermal Characterization and Simulation of AlGaN/GaN High-Electron Mobility Transistors in Transient and Steady State Regimes to Estimate the Hotspot Temperature
by Khalil Karrame, Christophe Chang, Jean-Christophe Nallatamby, Maggy Colas and Raphael Sommet
Electronics 2025, 14(5), 935; https://doi.org/10.3390/electronics14050935 - 26 Feb 2025
Cited by 1 | Viewed by 715
Abstract
Channel temperature has a strong impact on the performance of a microwave power transistor. In this paper, various methods, including electrical measurements, optical analysis, and FEM simulations, were employed to perform both transient and steady-state thermal characterization of GH15 2 × 150 µm [...] Read more.
Channel temperature has a strong impact on the performance of a microwave power transistor. In this paper, various methods, including electrical measurements, optical analysis, and FEM simulations, were employed to perform both transient and steady-state thermal characterization of GH15 2 × 150 µm transistors from UMS foundry (United Monolithic Semiconductors, France). The transient study allowed for the extraction of thermal time constants according to which the temperature in the transistor changes. The steady-state study provided the hotspot temperature. As the channel is physically inaccessible, direct thermal measurement at the hotspot is not possible, in order to extract the temperature of this hotspot, different measurement methods are combined by simulation, which is calibrated based on the measurements, resulting in a well-adjusted thermal model. This calibrated model enabled the extraction of temperature at any location within the device’s structure, particularly at the hotspot. The measurement and simulation results have shown that the hotspot temperature can be 30% higher than the temperature of the nearest external surface for high dissipated power levels. Full article
Show Figures

Figure 1

19 pages, 7903 KiB  
Article
Fast Temperature Calculation Method for Spindle Servo Permanent Magnet Motors Under Full Operating Conditions Based on the Thermal Network Method
by Sheng Ma, Yijia Li, Xueyan Hao, Bo Zhang and Wei Feng
Electronics 2025, 14(4), 815; https://doi.org/10.3390/electronics14040815 - 19 Feb 2025
Cited by 1 | Viewed by 634
Abstract
In CNC machines, the temperature field analysis of spindle servo permanent magnet motors (SSPMMs) under rated load, overload, and weak magnetic conditions is critical for ensuring stable operation and machining accuracy. This paper proposes a temperature calculation method for SSPMMs based on the [...] Read more.
In CNC machines, the temperature field analysis of spindle servo permanent magnet motors (SSPMMs) under rated load, overload, and weak magnetic conditions is critical for ensuring stable operation and machining accuracy. This paper proposes a temperature calculation method for SSPMMs based on the thermal network method, which is used to quickly evaluate the temperature performance of SSPMMs under different operating conditions during design. This method can calculate the steady-state or transient temperature rise under different operating conditions. First, the electromagnetic performance and heat sources of the SSPMMs were analyzed. Then, based on the thermal network method, the equivalent thermal resistances and equivalent heat dissipation coefficients of the motor components were calculated. By iterating the heat balance equation or solving the heat conduction equation for different operating conditions, the temperature distribution of SSPMMs under different operating conditions was obtained. The accuracy of the thermal network model was validated through temperature analysis using fluid–structure interaction simulations and prototype testing. The results show that the relative error between the winding temperature calculated by the proposed equivalent thermal network model and the measured temperature under different operating conditions is less than 5%. This paper provides a theoretical basis for the thermal management of SSPMM, which can quickly and accurately evaluate the temperature rise in the motor during design. Full article
Show Figures

Figure 1

21 pages, 8879 KiB  
Article
Theoretical and Experimental Investigation of the Thermal Stability of a Cycloid Speed Reducer
by Milan Vasić, Mirko Blagojević, Milan Banić, Lorenzo Maccioni and Franco Concli
Lubricants 2025, 13(2), 70; https://doi.org/10.3390/lubricants13020070 - 6 Feb 2025
Cited by 1 | Viewed by 1224
Abstract
High-precision drives are essential for ensuring accuracy and repeatability in positioning systems within robotics and industrial automation. Among these, cycloidal reducers are widely utilized due to their ability to deliver a high transmission ratio alongside high power density. However, compact designs often face [...] Read more.
High-precision drives are essential for ensuring accuracy and repeatability in positioning systems within robotics and industrial automation. Among these, cycloidal reducers are widely utilized due to their ability to deliver a high transmission ratio alongside high power density. However, compact designs often face challenges such as elevated operating temperatures caused by limited heat dissipation areas, making it crucial to assess thermal stability within the design process. While engineering practice typically determines the thermal stability of gear drives using ISO/TR 14179-2:2001, no specific methodologies have yet been developed for cycloidal reducers. To address this gap, this paper presents a novel mathematical model fine-tuned to quantify power dissipation and predict lubricant stabilization temperatures under varying operating conditions. The model employs a global energy balance approach, correlating total power losses with the heat dissipated from the reducer to the environment. Moreover, in this study, an experimental campaign was carried out to monitor the thermal behaviour of a cycloidal reducer under various operating conditions in terms of speed and transmitted torque. This was achieved through the analysis of images collected with an infrared thermal camera, both during the transient phase and under steady-state thermal conditions. The results demonstrate good alignment with experimental findings, although further refinements are required to develop specialized tools for cycloidal drives. Additional contributions of the present paper include the understanding of the time required to achieve thermal stability, as well as insights into heat generation and propagation. Beyond advancing scientific knowledge, this work also provides valuable practical guidance for engineering applications. Full article
Show Figures

Figure 1

22 pages, 37689 KiB  
Article
Numerical Simulation of Flame Propagation in a 1 kN GCH4/GO2 Pintle Injector Rocket Engine
by Alexandru Mereu and Dragos Isvoranu
Processes 2025, 13(2), 428; https://doi.org/10.3390/pr13020428 - 6 Feb 2025
Viewed by 1003
Abstract
Over the last few years, the appeal for using methane as green fuel for rocket engines has been on an increasing trend due to the more facile storage capability, reduced handling complexity and cost-effectiveness when compared to hydrogen. The present paper presents an [...] Read more.
Over the last few years, the appeal for using methane as green fuel for rocket engines has been on an increasing trend due to the more facile storage capability, reduced handling complexity and cost-effectiveness when compared to hydrogen. The present paper presents an attempt to simulate the ignition and propagation of the flame for a 1 kN gaseous methane–oxygen rocket engine using a pintle-type injector. By using advanced numerical simulations, the Eddy Dissipation Concept (EDC) combined with the Partially Stirred Reactor (PaSR) model and the Shielded Detached Eddy Simulation (SDES) were utilized in the complex transient ignition process. The results provide important information regarding the flame propagation and stability, pollutant formation and temperature distribution during the engine start-up, highlighting the uneven mixing regions and thermal load on the injector. This information could further be used for the pintle injector’s geometry optimization by addressing critical design challenges without employing the need for iterative prototyping during the early stages of development. Full article
Show Figures

Figure 1

29 pages, 12843 KiB  
Article
Design and Optimization of the Heatsink of a Level 1 Electric Vehicle Charger
by Iheanyi Emmanuel Ebere, Ashraf Ali Khan, Samuel Ogundahunsi, Emeka Ugwuemeaju, Usman Ali Khan and Shehab Ahmed
Energies 2025, 18(1), 180; https://doi.org/10.3390/en18010180 - 3 Jan 2025
Viewed by 1540
Abstract
The onboard circuits of EV chargers comprise heat-producing electronic devices such as MOSFETs and diodes for switching and power conversion operations. A heatsink must dissipate this generated heat to extend the devices’ life and prevent component thermal stress or failure. This study primarily [...] Read more.
The onboard circuits of EV chargers comprise heat-producing electronic devices such as MOSFETs and diodes for switching and power conversion operations. A heatsink must dissipate this generated heat to extend the devices’ life and prevent component thermal stress or failure. This study primarily investigates the optimal heatsink geometry and pin configuration, which offers the most efficient temperature versus cost performance. MATLAB/Simulink (R2024a) was used to model a Level 1 charger using eight MOSFETs and four diodes. Various heatsink geometries were modeled using the ANSYS (2024 R1) Workbench and Fluent software to optimize the sink’s thermal performance. The analyses were performed under transient conditions using natural and forced cooling scenarios. The 2 mm wide plate fin heatsink with 44 fins yielded the best result. Further enhancement of the best-performing naturally cooled model improved the switches and diodes temperatures by 14% and 4%, respectively. The performance of the heatsink was further improved by applying a cooling fan to achieve an up to 25% diode and 40% MOSFET thermal dissipation efficiency. The results of this study show that the most efficient cooling performance and cost are realized when the optimum combination of fin spacing, proximity from the cooling fan, and fin geometry is selected. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

24 pages, 21291 KiB  
Article
Stochastic Pulse-Width Modulation and Modification of Direct Torque Control Based on a Three-Level Neutral-Point Clamped Inverter
by Vasilev Bogdan Yurievich and Nguyen The Hien
Energies 2024, 17(23), 6017; https://doi.org/10.3390/en17236017 - 29 Nov 2024
Cited by 7 | Viewed by 1071
Abstract
The three-level neutral-point clamped inverter represents a significant advancement in direct torque-control systems for asynchronous motors. A significant achievement of this study lies in the comprehensive analysis of a random frequency-modulation algorithm, which demonstrates its efficacy in substantially reducing the amplitude of harmonic [...] Read more.
The three-level neutral-point clamped inverter represents a significant advancement in direct torque-control systems for asynchronous motors. A significant achievement of this study lies in the comprehensive analysis of a random frequency-modulation algorithm, which demonstrates its efficacy in substantially reducing the amplitude of harmonic oscillations and minimizing switching losses. This simplifies filter design and minimizes thermal dissipation in power transistors, thereby enhancing the overall reliability and efficiency of the system. Additionally, the implementation of a six-position torque regulator with a fixed sensitivity zone, applied in direct torque control based on the three-level inverter, improves the stability of the stator flux linkage and reduces the switching frequency of transistors. Numerical simulations conducted in the Matlab/Simulink environment indicate that the proposed algorithm reduces switching losses by 15% during transient states and by 2% during steady-state operation while increasing the system’s efficiency by 2% compared to conventional methods. These findings highlight the potential of the proposed solutions for application in energy-efficient drive systems. Full article
Show Figures

Figure 1

21 pages, 4117 KiB  
Article
Enhancing Engine Cylinder Heat Dissipation Capacity Through Direct Optimization (DO) Techniques
by Abhishek Agarwal, Megersa Olumana Dinka and Masengo Ilunga
Processes 2024, 12(12), 2659; https://doi.org/10.3390/pr12122659 - 25 Nov 2024
Cited by 4 | Viewed by 1524
Abstract
Internal combustion (IC) engines are used widely as the primary power source for automobiles of all types, cars, motorcycles, and trucks. Because of the high combustion temperatures involved in the operation, the excess heat is removed by means of extended fins that increase [...] Read more.
Internal combustion (IC) engines are used widely as the primary power source for automobiles of all types, cars, motorcycles, and trucks. Because of the high combustion temperatures involved in the operation, the excess heat is removed by means of extended fins that increase the surface area for adequate cooling. Significant improvement in the heat dissipation characteristics of the engine cylinder can be achieved by optimizing the design of these fins. The aim of this study is to evaluate the thermal performance of engine cylinder fins using an analytical system of finite element analysis (ANSYS FEA) software, using a direct optimization (DO) approach to identify optimal fin design. Analysis shows that fin length and width play critical roles in improving cooling efficiency, lowering the maximum temperature within the cylinder to 549.46 K and enhancing total heat flux to 7225.31 W/m2, which is a 25.87% increase from the generic design, capable of heating removal of 5740.22 W/m2. The current fin design is effective but could be improved in heat dissipation, mainly at fin tips. To optimize thermal performance while minimizing material costs, a balanced fin dimension is recommended. Alternative materials, transient heating analysis, and experimental verification may be examined in the future to achieve a total understanding of fin geometry and behavior under real operating conditions. These insights lay a foundation to accelerate cooling systems development in the automotive, aerospace, and heavy equipment industries, where efficient heat transfer is key for performance and long-term durability. Full article
Show Figures

Figure 1

31 pages, 42225 KiB  
Article
Comparative Insights into Photosynthetic, Biochemical, and Ultrastructural Mechanisms in Hibiscus and Pelargonium Plants
by Renan Falcioni, Werner Camargos Antunes, Roney Berti de Oliveira, Marcelo Luiz Chicati, José Alexandre M. Demattê and Marcos Rafael Nanni
Plants 2024, 13(19), 2831; https://doi.org/10.3390/plants13192831 - 9 Oct 2024
Cited by 2 | Viewed by 2565
Abstract
Understanding photosynthetic mechanisms in different plant species is crucial for advancing agricultural productivity and ecological restoration. This study presents a detailed physiological and ultrastructural comparison of photosynthetic mechanisms between Hibiscus (Hibiscus rosa-sinensis L.) and Pelargonium (Pelargonium zonale (L.) L’Hér. Ex Aiton) [...] Read more.
Understanding photosynthetic mechanisms in different plant species is crucial for advancing agricultural productivity and ecological restoration. This study presents a detailed physiological and ultrastructural comparison of photosynthetic mechanisms between Hibiscus (Hibiscus rosa-sinensis L.) and Pelargonium (Pelargonium zonale (L.) L’Hér. Ex Aiton) plants. The data collection encompassed daily photosynthetic profiles, responses to light and CO2, leaf optical properties, fluorescence data (OJIP transients), biochemical analyses, and anatomical observations. The findings reveal distinct morphological, optical, and biochemical adaptations between the two species. These adaptations were associated with differences in photochemical (AMAX, E, Ci, iWUE, and α) and carboxylative parameters (VCMAX, ΓCO2, gs, gm, Cc, and AJMAX), along with variations in fluorescence and concentrations of chlorophylls and carotenoids. Such factors modulate the efficiency of photosynthesis. Energy dissipation mechanisms, including thermal and fluorescence pathways (ΦPSII, ETR, NPQ), and JIP test-derived metrics highlighted differences in electron transport, particularly between PSII and PSI. At the ultrastructural level, Hibiscus exhibited optimised cellular and chloroplast architecture, characterised by increased chloroplast density and robust grana structures. In contrast, Pelargonium displayed suboptimal photosynthetic parameters, possibly due to reduced thylakoid counts and a higher proportion of mitochondria. In conclusion, while Hibiscus appears primed for efficient photosynthesis and energy storage, Pelargonium may prioritise alternative cellular functions, engaging in a metabolic trade-off. Full article
(This article belongs to the Special Issue Photosynthesis and Carbon Metabolism in Higher Plants and Algae)
Show Figures

Figure 1

33 pages, 514 KiB  
Article
General Relations between Stress Fluctuations and Viscoelasticity in Amorphous Polymer and Glass-Forming Systems
by Alexander Semenov and Jörg Baschnagel
Polymers 2024, 16(16), 2336; https://doi.org/10.3390/polym16162336 - 18 Aug 2024
Cited by 2 | Viewed by 1369
Abstract
Mechanical stress governs the dynamics of viscoelastic polymer systems and supercooled glass-forming fluids. It was recently established that liquids with long terminal relaxation times are characterized by transiently frozen stress fields, which, moreover, exhibit long-range correlations contributing to the dynamically heterogeneous nature of [...] Read more.
Mechanical stress governs the dynamics of viscoelastic polymer systems and supercooled glass-forming fluids. It was recently established that liquids with long terminal relaxation times are characterized by transiently frozen stress fields, which, moreover, exhibit long-range correlations contributing to the dynamically heterogeneous nature of such systems. Recent studies show that stress correlations and relaxation elastic moduli are intimately related in isotropic viscoelastic systems. However, the origin of these relations (involving spatially resolved material relaxation functions) is non-trivial: some relations are based on the fluctuation-dissipation theorem (FDT), while others involve approximations. Generalizing our recent results on 2D systems, we here rigorously derive three exact FDT relations (already established in our recent investigations and, partially, in classical studies) between spatio-temporal stress correlations and generalized relaxation moduli, and a couple of new exact relations. We also derive several new approximate relations valid in the hydrodynamic regime, taking into account the effects of thermal conductivity and composition fluctuations for arbitrary space dimension. One approximate relation was heuristically obtained in our previous studies and verified using our extended simulation data on two-dimensional (2D) glass-forming systems. As a result, we provide the means to obtain, in any spatial dimension, all stress-correlation functions in terms of relaxation moduli and vice versa. The new approximate relations are tested using simulation data on 2D systems of polydisperse Lennard–Jones particles. Full article
(This article belongs to the Special Issue Polymer Physics: From Theory to Experimental Applications)
Show Figures

Figure 1

40 pages, 11424 KiB  
Review
Modeling, Design, and Optimization of Loop Heat Pipes
by Yihang Zhao, Mingshan Wei and Dan Dan
Energies 2024, 17(16), 3971; https://doi.org/10.3390/en17163971 - 10 Aug 2024
Cited by 1 | Viewed by 3694
Abstract
Thermal management technology based on loop heat pipes (LHPs) has broad application prospects in heat transfer control for aerospace and new energy vehicles. LHPs offer excellent heat transfer performance, reliability, and flexibility, making them suitable for high-heat flux density, high-power heat dissipation, and [...] Read more.
Thermal management technology based on loop heat pipes (LHPs) has broad application prospects in heat transfer control for aerospace and new energy vehicles. LHPs offer excellent heat transfer performance, reliability, and flexibility, making them suitable for high-heat flux density, high-power heat dissipation, and complex thermal management scenarios. However, due to limitations in heat source temperature and heat transfer power range, LHP-based thermal management systems still face challenges, especially in thermohydraulic modeling, component design, and optimization. Steady-state models improve computational efficiency and accuracy, while transient models capture dynamic behavior under various conditions, aiding performance evaluation during start-up and non-steady-state scenarios. Designs for single/multi-evaporators, compensation chambers, and wick materials are also reviewed. Single-evaporator designs offer compact and efficient start-up, while multi-evaporator designs handle complex thermal environments with multiple heat sources. Innovations in wick materials, such as porous metals, composites, and 3D printing, enhance capillary driving force and heat transfer performance. A comprehensive summary of working fluid selection criteria is conducted, and the effects of selecting organic, inorganic, and nanofluid working fluids on the performance of LHPs are evaluated. The selection process should consider thermodynamic properties, safety, and environmental friendliness to ensure optimal performance. Additionally, the mechanism and optimization methods of the start-up behavior, temperature oscillation, and non-condensable gas on the operating characteristics of LHPs were summarized. Optimizing vapor/liquid distribution, heat load, and sink temperature enhances start-up efficiency and minimizes temperature overshoot. Improved capillary structures and working fluids reduce temperature oscillations. Addressing non-condensable gases with materials like titanium and thermoelectric coolers ensures long-term stability and reliability. This review comprehensively discusses the development trends and prospects of LHP technology, aiming to guide the design and optimization of LHP. Full article
Show Figures

Figure 1

24 pages, 10693 KiB  
Article
A Modified Enthalpic Lattice Boltzmann Method for Simulating Conjugate Heat Transfer Problems in Non-Homogeneous Media
by Vinicius Akyo Matsuda, Ivan Talão Martins, Debora Carneiro Moreira, Luben Cabezas-Gómez and Enio Pedone Bandarra Filho
Inventions 2024, 9(3), 57; https://doi.org/10.3390/inventions9030057 - 13 May 2024
Viewed by 2061
Abstract
In this study, we introduced modifications to a prior existing enthalpic lattice Boltzmann method (LBM) tailored for simulating the conjugate heat transfer phenomena in non-homogeneous media with time-dependent thermal properties. Our approach is based upon the incorporation of the remaining terms of a [...] Read more.
In this study, we introduced modifications to a prior existing enthalpic lattice Boltzmann method (LBM) tailored for simulating the conjugate heat transfer phenomena in non-homogeneous media with time-dependent thermal properties. Our approach is based upon the incorporation of the remaining terms of a conservative energy equation, excluding only the terms regarding flow compressibility and viscous dissipation, thereby accounting for the local and transient variations in the thermophysical properties. The solutions of verification tests, comprising assessments of both transient and steady-state solutions, validated the accuracy of the proposed model, further bolstering its reliability for analyzing heat transfer processes. The modified model was then used to perform an analysis on structured cavities under free convection, revealing compelling insights, particularly regarding transient regimes, demonstrating that the structured cavities exhibit a beneficial impact on enhancing the heat transfer processes, hence providing insights for potential design enhancements in heat exchangers. These results demonstrate the potential of our modified enthalpic LBM approach for simulating complex heat transfer phenomena in non-homogeneous media and structured geometries, offering valuable results for heat exchanger engineering and optimization. Full article
(This article belongs to the Special Issue Innovations in Heat Exchangers)
Show Figures

Figure 1

17 pages, 4877 KiB  
Article
Analysis of Transient Thermoacoustic Characteristics and Performance in Carbon Nanotube Sponge Underwater Transducers
by Qianshou Qi, Zhe Li, Huilin Yin, Yanxia Feng, Zhenhuan Zhou and Dalun Rong
Nanomaterials 2024, 14(10), 817; https://doi.org/10.3390/nano14100817 - 7 May 2024
Viewed by 1587
Abstract
Recent advancements in marine technology have highlighted the urgent need for enhanced underwater acoustic applications, from sonar detection to communication and noise cancellation, driving the pursuit of innovative transducer technologies. In this paper, a new underwater thermoacoustic (TA) transducer made from carbon nanotube [...] Read more.
Recent advancements in marine technology have highlighted the urgent need for enhanced underwater acoustic applications, from sonar detection to communication and noise cancellation, driving the pursuit of innovative transducer technologies. In this paper, a new underwater thermoacoustic (TA) transducer made from carbon nanotube (CNT) sponge is designed to achieve wide bandwidth, high energy conversion efficiency, simple structure, good transient response, and stable sound response, utilizing the TA effect through electro-thermal modulation. The transducer has potential application in underwater acoustic communication. An electro-thermal-acoustic coupled simulation for the open model, sandwich model, and encapsulated model is presented to analyze the transient behaviors of CNT sponge TA transducers in liquid environments. The effects of key design parameters on the acoustic performances of both systems are revealed. The results demonstrate that a short pulse excitation with a low duty cycle could greatly improve the heat dissipation of the encapsulated transducer, especially when the thermoacoustic response time becomes comparable to thermal relaxation time. Full article
Show Figures

Figure 1

Back to TopTop