Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = transient receptor potential vanilloid type 4 channel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2324 KiB  
Article
TRPV4 Mediates Alveolar Epithelial Barrier Integrity and Induces ADAM10-Driven E-Cadherin Shedding
by Lena Schaller, Thomas Gudermann and Alexander Dietrich
Cells 2024, 13(20), 1717; https://doi.org/10.3390/cells13201717 - 17 Oct 2024
Cited by 3 | Viewed by 1691
Abstract
Transient receptor potential vanilloid 4 (TRPV4) channels have been associated with numerous pulmonary pathologies, including hypertension, asthma, and acute lung injury. However, their role in the alveolar epithelium remains unclear. We performed impedance-based resistance measurements in primary differentiated alveolar epithelial type I (AT1) [...] Read more.
Transient receptor potential vanilloid 4 (TRPV4) channels have been associated with numerous pulmonary pathologies, including hypertension, asthma, and acute lung injury. However, their role in the alveolar epithelium remains unclear. We performed impedance-based resistance measurements in primary differentiated alveolar epithelial type I (AT1) cells from wild-type (WT) and TRPV4-deficient (TRPV4−/−) C57/BL6J mice to detect changes in AT1 barrier integrity upon TRPV4 activation. Both pharmacological (GSK1016790A) and a low pH-driven activation of TRPV4 were quantified, and the downstream effects on adherens junctions were assessed through the Western blotting of epithelial cadherin (E-cadherin) protein levels. Importantly, a drop in pH caused a rapid decrease in AT1 barrier resistance and increased the formation of a ~35 kDa E-cadherin C-terminal fragment, with both effects significantly reduced in TRPV4−/− AT1 cells. Similarly, the pharmacological activation of TRPV4 in AT1 cells triggered an immediate transient loss of barrier resistance and the formation of the same E-cadherin fragment, which was again diminished by TRPV4 deficiency. Moreover, TRPV4-mediated E-cadherin cleavage was significantly reduced by GI254023X, an antagonist of a disintegrin and metalloprotease 10 (ADAM10). Our results confirm the role of TRPV4 in regulating alveolar epithelial barrier permeability and provide insight into a novel signaling pathway by which TRPV4-induced Ca2+ influx stimulates metalloprotease-driven ectodomain shedding. Full article
(This article belongs to the Section Cell Signaling)
Show Figures

Figure 1

14 pages, 1263 KiB  
Review
Impact of TRP Channels on Extracellular Matrix Remodeling: Focus on TRPV4 and Collagen
by Qin Wang, Chenfan Ji, Patricio Smith and Christopher A. McCulloch
Int. J. Mol. Sci. 2024, 25(7), 3566; https://doi.org/10.3390/ijms25073566 - 22 Mar 2024
Cited by 4 | Viewed by 2422
Abstract
Disturbed remodeling of the extracellular matrix (ECM) is frequently observed in several high-prevalence pathologies that include fibrotic diseases of organs such as the heart, lung, periodontium, liver, and the stiffening of the ECM surrounding invasive cancers. In many of these lesions, matrix remodeling [...] Read more.
Disturbed remodeling of the extracellular matrix (ECM) is frequently observed in several high-prevalence pathologies that include fibrotic diseases of organs such as the heart, lung, periodontium, liver, and the stiffening of the ECM surrounding invasive cancers. In many of these lesions, matrix remodeling mediated by fibroblasts is dysregulated, in part by alterations to the regulatory and effector systems that synthesize and degrade collagen, and by alterations to the functions of the integrin-based adhesions that normally mediate mechanical remodeling of collagen fibrils. Cell-matrix adhesions containing collagen-binding integrins are enriched with regulatory and effector systems that initiate localized remodeling of pericellular collagen fibrils to maintain ECM homeostasis. A large cadre of regulatory molecules is enriched in cell-matrix adhesions that affect ECM remodeling through synthesis, degradation, and contraction of collagen fibrils. One of these regulatory molecules is Transient Receptor Potential Vanilloid-type 4 (TRPV4), a mechanically sensitive, Ca2+-permeable plasma membrane channel that regulates collagen remodeling. The gating of Ca2+ across the plasma membrane by TRPV4 and the consequent generation of intracellular Ca2+ signals affect several processes that determine the structural and mechanical properties of collagen-rich ECM. These processes include the synthesis of new collagen fibrils, tractional remodeling by contractile forces, and collagenolysis. While the specific mechanisms by which TRPV4 contributes to matrix remodeling are not well-defined, it is known that TRPV4 is activated by mechanical forces transmitted through collagen adhesion receptors. Here, we consider how TRPV4 expression and function contribute to physiological and pathological collagen remodeling and are associated with collagen adhesions. Over the long-term, an improved understanding of how TRPV4 regulates collagen remodeling could pave the way for new approaches to manage fibrotic lesions. Full article
(This article belongs to the Special Issue TRP Channels in Physiology and Pathophysiology 2.0)
Show Figures

Figure 1

23 pages, 3619 KiB  
Article
TRPV4 Activation during Guinea Pig Airway Smooth Muscle Contraction Promotes Ca2+ and Na+ Influx
by Luis M. Montaño, Abril Carbajal-García, María F. Casas-Hernández, David Arredondo-Zamarripa and Jorge Reyes-García
Pharmaceuticals 2024, 17(3), 293; https://doi.org/10.3390/ph17030293 - 24 Feb 2024
Cited by 3 | Viewed by 2048
Abstract
Airway smooth muscle (ASM) contraction is determined by the increase in intracellular Ca2+ concentration ([Ca2+]i) caused by its release from the sarcoplasmic reticulum (SR) or by extracellular Ca2+ influx. Major channels involved in Ca2+ influx in [...] Read more.
Airway smooth muscle (ASM) contraction is determined by the increase in intracellular Ca2+ concentration ([Ca2+]i) caused by its release from the sarcoplasmic reticulum (SR) or by extracellular Ca2+ influx. Major channels involved in Ca2+ influx in ASM cells are L-type voltage-dependent Ca2+ channels (L-VDCCs) and nonselective cation channels (NSCCs). Transient receptor potential vanilloid 4 (TRPV4) is an NSCC recently studied in ASM. Mechanical stimuli, such as contraction, can activate TRPV4. We investigated the possible activation of TRPV4 by histamine (His)- or carbachol (CCh)-induced contraction in guinea pig ASM. In single myocytes, the TRPV4 agonist (GSK101) evoked an increase in [Ca2+]i, characterized by a slow onset and a plateau phase. The TRPV4 antagonist (GSK219) decreased channel activity by 94%, whereas the Ca2+-free medium abolished the Ca2+ response induced by GSK101. Moreover, GSK101 caused Na+ influx in tracheal myocytes. GSK219 reduced the Ca2+ peak and the Ca2+ plateau triggered by His or CCh. TRPV4 blockade shifted the concentration–response curve relating to His and CCh to the right in tracheal rings and reduced the maximal contraction. Finally, the activation of TRPV4 in single myocytes increased the Ca2+ refilling of the SR. We conclude that contraction of ASM cells after stimulation with His or CCh promotes TRPV4 activation, the subsequent influx of Ca2+ and Na+, and the opening of L-VDCCs. The entry of Ca2+ into ASM cells via TRPV4 and L-VDCCs contributes to optimal smooth muscle contraction. Full article
Show Figures

Figure 1

24 pages, 2140 KiB  
Review
Achilles’ Heel—The Significance of Maintaining Microenvironmental Homeostasis in the Nucleus Pulposus for Intervertebral Discs
by Zhangbin Luo, Ziyan Wei, Guangzhi Zhang, Haiwei Chen, Lei Li and Xuewen Kang
Int. J. Mol. Sci. 2023, 24(23), 16592; https://doi.org/10.3390/ijms242316592 - 22 Nov 2023
Cited by 10 | Viewed by 2536
Abstract
The dysregulation of intracellular and extracellular environments as well as the aberrant expression of ion channels on the cell membrane are intricately linked to a diverse array of degenerative disorders, including intervertebral disc degeneration. This condition is a significant contributor to low back [...] Read more.
The dysregulation of intracellular and extracellular environments as well as the aberrant expression of ion channels on the cell membrane are intricately linked to a diverse array of degenerative disorders, including intervertebral disc degeneration. This condition is a significant contributor to low back pain, which poses a substantial burden on both personal quality of life and societal economics. Changes in the number and function of ion channels can disrupt the water and ion balance both inside and outside cells, thereby impacting the physiological functions of tissues and organs. Therefore, maintaining ion homeostasis and stable expression of ion channels within the cellular microenvironment may prove beneficial in the treatment of disc degeneration. Aquaporin (AQP), calcium ion channels, and acid-sensitive ion channels (ASIC) play crucial roles in regulating water, calcium ions, and hydrogen ions levels. These channels have significant effects on physiological and pathological processes such as cellular aging, inflammatory response, stromal decomposition, endoplasmic reticulum stress, and accumulation of cell metabolites. Additionally, Piezo 1, transient receptor potential vanilloid type 4 (TRPV4), tension response enhancer binding protein (TonEBP), potassium ions, zinc ions, and tungsten all play a role in the process of intervertebral disc degeneration. This review endeavors to elucidate alterations in the microenvironment of the nucleus pulposus during intervertebral disc degeneration (IVDD), with a view to offer novel insights and approaches for exploring therapeutic interventions against disc degeneration. Full article
Show Figures

Figure 1

13 pages, 3529 KiB  
Article
Combination Treatment of TRPV4 Agonist with Cisplatin Promotes Vessel Normalization in an Animal Model of Oral Squamous Cell Carcinoma
by Farhana Yahya, Marina Mohd Bakri, Mohammad Zakir Hossain, Syarifah Nur Syed Abdul Rahman, Aied Mohammed Alabsi and Anand Ramanathan
Medicina 2022, 58(9), 1229; https://doi.org/10.3390/medicina58091229 - 6 Sep 2022
Cited by 7 | Viewed by 2814
Abstract
Background and Objectives: Oral squamous cell carcinoma (OSCC) is the sixth most common malignancy in the world. Transient receptor potential vanilloid 4 (TRPV4) channel has been shown to be involved in angiogenesis in multiple types of tumors. However, not much is known [...] Read more.
Background and Objectives: Oral squamous cell carcinoma (OSCC) is the sixth most common malignancy in the world. Transient receptor potential vanilloid 4 (TRPV4) channel has been shown to be involved in angiogenesis in multiple types of tumors. However, not much is known about TRPV4′s involvement in OSCC. Thus, in this study, we investigate the effect of administering a TRPV4 agonist on angiogenesis in OSCC. Materials and Methods: Thirty-six Sprague Dawley (SD) rats were used in this study. 4-nitroquinoline 1-oxide (4NQO) was used to induce OSCC. Cisplatin (an anticancer drug), and GSK1016790A (an agonist for TRPV4) was used in this study. Immunohistochemistry was employed to examine the TRPV4 expression. An RT2 Profiler PCR Array was performed for gene expression analysis of TRPV4, vascular growth factors that correspond directly with angiogenesis, such as angiopoietin (Ang-1 and Ang-2), and tyrosine kinase (Tie-1 and Tie-2) receptors. Tumor vessel maturity was assessed by microvessel density and microvessel-pericyte-coverage index. Results: RT2 profiler PCR array showed significant elevated levels of Ang-1 (2.1-fold change; p < 0.05) and Tie-2 (4.5-fold change; p < 0.05) in OSCC following the administration of a combination of GSK1016790A and cisplatin. Additionally, the combination treatment significantly reduced the microvessel density (p < 0.01) and significantly increased the percentage of microvessels covered with pericytes (p < 0.01) in OSCC. Furthermore, tumor size was significantly reduced (p < 0.05) in rats that received cisplatin alone. The combination treatment also greatly reduced the tumor size; however, the data were not statistically significant. Conclusions: The findings suggest that combining a TRPV4 agonist with cisplatin for treatment of OSCC promote vessels normalization via modulation of Ang-1/Tie-2 pathway. Full article
(This article belongs to the Section Dentistry and Oral Health)
Show Figures

Figure 1

19 pages, 10609 KiB  
Article
Hypothermia Induced by Oxcarbazepine after Transient Forebrain Ischemia Exerts Therapeutic Neuroprotection through Transient Receptor Potential Vanilloid Type 1 and 4 in Gerbils
by Hyung-Il Kim, Jae-Chul Lee, Dae Won Kim, Myoung Cheol Shin, Jun Hwi Cho, Ji Hyeon Ahn, Soon-Sung Lim, Il Jun Kang, Joon Ha Park, Moo-Ho Won and Tae-Kyeong Lee
Int. J. Mol. Sci. 2022, 23(1), 237; https://doi.org/10.3390/ijms23010237 - 27 Dec 2021
Cited by 8 | Viewed by 3063
Abstract
In the present study, we investigated the neuroprotective effect of post-ischemic treatment with oxcarbazepine (OXC; an anticonvulsant compound) against ischemic injury induced by transient forebrain ischemia and its mechanisms in gerbils. Transient ischemia was induced in the forebrain by occlusion of both common [...] Read more.
In the present study, we investigated the neuroprotective effect of post-ischemic treatment with oxcarbazepine (OXC; an anticonvulsant compound) against ischemic injury induced by transient forebrain ischemia and its mechanisms in gerbils. Transient ischemia was induced in the forebrain by occlusion of both common carotid arteries for 5 min under normothermic conditions (37 ± 0.2 °C). The ischemic gerbils were treated with vehicle, hypothermia (whole-body cooling; 33.0 ± 0.2 °C), or 200 mg/kg OXC. Post-ischemic treatments with vehicle and hypothermia failed to attenuate and improve, respectively, ischemia-induced hyperactivity and cognitive impairment (decline in spatial and short-term memory). However, post-ischemic treatment with OXC significantly attenuated the hyperactivity and the cognitive impairment, showing that OXC treatment significantly reduced body temperature (to about 33 °C). When the hippocampus was histopathologically examined, pyramidal cells (principal neurons) were dead (lost) in the subfield Cornu Ammonis 1 (CA1) of the gerbils treated with vehicle and hypothermia on Day 4 after ischemia, but these cells were saved in the gerbils treated with OXC. In the gerbils treated with OXC after ischemia, the expression of transient receptor potential vanilloid type 1 (TRPV1; one of the transient receptor potential cation channels) was significantly increased in the CA1 region compared with that in the gerbils treated with vehicle and hypothermia. In brief, our results showed that OXC-induced hypothermia after transient forebrain ischemia effectively protected against ischemia–reperfusion injury through an increase in TRPV1 expression in the gerbil hippocampal CA1 region, indicating that TRPV1 is involved in OXC-induced hypothermia. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Pathophysiology of Cerebral Ischemia)
Show Figures

Figure 1

21 pages, 2058 KiB  
Article
Oral Capsaicinoid Administration Alters the Plasma Endocannabinoidome and Fecal Microbiota of Reproductive-Aged Women Living with Overweight and Obesity
by Claudia Manca, Sébastien Lacroix, Francine Pérusse, Nicolas Flamand, Yvon Chagnon, Vicky Drapeau, Angelo Tremblay, Vincenzo Di Marzo and Cristoforo Silvestri
Biomedicines 2021, 9(9), 1246; https://doi.org/10.3390/biomedicines9091246 - 17 Sep 2021
Cited by 14 | Viewed by 5004
Abstract
Capsaicinoids, the pungent principles of chili peppers and prototypical activators of the transient receptor potential of the vanilloid type-1 (TRPV1) channel, which is a member of the expanded endocannabinoid system known as the endocannabinoidome (eCBome), counteract food intake and obesity. In this exploratory [...] Read more.
Capsaicinoids, the pungent principles of chili peppers and prototypical activators of the transient receptor potential of the vanilloid type-1 (TRPV1) channel, which is a member of the expanded endocannabinoid system known as the endocannabinoidome (eCBome), counteract food intake and obesity. In this exploratory study, we examined the blood and stools from a subset of the participants in a cohort of reproductive-aged women with overweight/obesity who underwent a 12-week caloric restriction of 500 kcal/day with the administration of capsaicinoids (two capsules containing 100 mg of a capsicum annuum extract (CAE) each for a daily dose of 4 mg of capsaicinoids) or a placebo. Samples were collected immediately before and after the intervention, and plasma eCBome mediator levels (from 23 participants in total, 13 placebo and 10 CAE) and fecal microbiota taxa (from 15 participants in total, 9 placebo and 6 CAE) were profiled using LC–MS/MS and 16S metagenomic sequencing, respectively. CAE prevented the reduced caloric-intake-induced decrease in beneficial eCBome mediators, i.e., the TRPV1, GPR119 and/or PPARα agonists, N-oleoyl-ethanolamine, N-linoleoyl-ethanolamine and 2-oleoyl-glycerol, as well as the anti-inflammatory N-acyl-ethanolamines N-docosapentaenyl-ethanolamine and N-docosahexaenoyl-ethanolamine. CAE produced few but important alterations in the fecal microbiota, such as an increased relative abundance of the genus Flavonifractor, which is known to be inversely associated with obesity. Correlations between eCBome mediators and other potentially beneficial taxa were also observed, thus reinforcing the hypothesis of the existence of a link between the eCBome and the gut microbiome in obesity. Full article
Show Figures

Figure 1

12 pages, 2519 KiB  
Article
Ablation of TRPV1 Abolishes Salicylate-Induced Sympathetic Activity Suppression and Exacerbates Salicylate-Induced Renal Dysfunction in Diet-Induced Obesity
by Beihua Zhong, Shuangtao Ma and Donna H. Wang
Cells 2021, 10(5), 1234; https://doi.org/10.3390/cells10051234 - 18 May 2021
Cited by 7 | Viewed by 3133
Abstract
Sodium salicylate (SA), a cyclooxygenase inhibitor, has been shown to increase insulin sensitivity and to suppress inflammation in obese patients and animal models. Transient receptor potential vanilloid 1 (TRPV1) is a nonselective cation channel expressed in afferent nerve fibers. Cyclooxygenase-derived prostaglandins are involved [...] Read more.
Sodium salicylate (SA), a cyclooxygenase inhibitor, has been shown to increase insulin sensitivity and to suppress inflammation in obese patients and animal models. Transient receptor potential vanilloid 1 (TRPV1) is a nonselective cation channel expressed in afferent nerve fibers. Cyclooxygenase-derived prostaglandins are involved in the activation and sensitization of TRPV1. This study tested whether the metabolic and renal effects of SA were mediated by the TRPV1 channel. Wild-type (WT) and TRPV1−/− mice were fed a Western diet (WD) for 4 months and received SA infusion (120mg/kg/day) or vehicle for the last 4 weeks of WD feeding. SA treatment significantly increased blood pressure in WD-fed TRPV1−/− mice (p < 0.05) but not in WD-fed WT mice. Similarly, SA impaired renal blood flow in TRPV1−/− mice (p < 0.05) but not in WT mice. SA improved insulin and glucose tolerance in both WT and TRPV1−/− mice on WD (all p < 0.05). In addition, SA reduced renal p65 and urinary prostaglandin E2, prostaglandin F1α, and interleukin-6 in both WT and TRPV1−/− mice (all p < 0.05). SA decreased urine noradrenaline levels, increased afferent renal nerve activity, and improved baroreflex sensitivity in WT mice (all p < 0.05) but not in TRPV1−/− mice. Importantly, SA increased serum creatinine and urine kidney injury molecule-1 levels and decreased the glomerular filtration rate in obese WT mice (all p < 0.05), and these detrimental effects were significantly exacerbated in obese TRPV1−/− mice (all p < 0.05). Lastly, SA treatment increased urine albumin levels in TRPV1−/− mice (p < 0.05) but not in WT mice. Taken together, SA-elicited metabolic benefits and anti-inflammatory effects are independent of TRPV1, while SA-induced sympathetic suppression is dependent on TRPV1 channels. SA-induced renal dysfunction is dependent on intact TRPV1 channels. These findings suggest that SA needs to be cautiously used in patients with obesity or diabetes, as SA-induced renal dysfunction may be exacerbated due to impaired TRPV1 in obese and diabetic patients. Full article
Show Figures

Figure 1

16 pages, 4337 KiB  
Article
Increase in IGF-1 Expression in the Injured Infraorbital Nerve and Possible Implications for Orofacial Neuropathic Pain
by Shiori Sugawara, Masamichi Shinoda, Yoshinori Hayashi, Hiroto Saito, Sayaka Asano, Asako Kubo, Ikuko Shibuta, Akihiko Furukawa, Akira Toyofuku and Koichi Iwata
Int. J. Mol. Sci. 2019, 20(24), 6360; https://doi.org/10.3390/ijms20246360 - 17 Dec 2019
Cited by 23 | Viewed by 4817
Abstract
Insulin-like growth factor-1 (IGF-1) is upregulated in the injured peripheral nerve bundle and controls nociceptive neuronal excitability associated with peripheral nerve injury. Here, we examined the involvement of IGF-1 signaling in orofacial neuropathic pain following infraorbital nerve injury (IONI) in rats. IONI promoted [...] Read more.
Insulin-like growth factor-1 (IGF-1) is upregulated in the injured peripheral nerve bundle and controls nociceptive neuronal excitability associated with peripheral nerve injury. Here, we examined the involvement of IGF-1 signaling in orofacial neuropathic pain following infraorbital nerve injury (IONI) in rats. IONI promoted macrophage accumulation in the injured ION, as well as in the ipsilateral trigeminal ganglion (TG), and induced mechanical allodynia of the whisker pad skin together with the enhancement of neuronal activities in the subnucleus caudalis of the spinal trigeminal nucleus and in the upper cervical spinal cord. The levels of IGF-1 released by infiltrating macrophages into the injured ION and the TG were significantly increased. The IONI-induced the number of transient receptor potential vanilloid (TRPV) subfamily type 4 (TRPV4) upregulation in TRPV subfamily type 2 (TRPV2)-positive small-sized, and medium-sized TG neurons were inhibited by peripheral TRPV2 antagonism. Furthermore, the IONI-induced mechanical allodynia was suppressed by TRPV4 antagonism in the whisker pad skin. These results suggest that IGF-1 released by macrophages accumulating in the injured ION binds to TRPV2, which increases TRPV4 expression in TG neurons innervating the whisker pad skin, ultimately resulting in mechanical allodynia of the whisker pad skin. Full article
(This article belongs to the Special Issue Orofacial Pain: Molecular Mechanisms, Diagnosis and Treatment)
Show Figures

Figure 1

18 pages, 1961 KiB  
Article
Arachidonic Acid Evokes an Increase in Intracellular Ca2+ Concentration and Nitric Oxide Production in Endothelial Cells from Human Brain Microcirculation
by Roberto Berra-Romani, Pawan Faris, Sharon Negri, Laura Botta, Tullio Genova and Francesco Moccia
Cells 2019, 8(7), 689; https://doi.org/10.3390/cells8070689 - 9 Jul 2019
Cited by 32 | Viewed by 5101
Abstract
It has long been known that the conditionally essential polyunsaturated arachidonic acid (AA) regulates cerebral blood flow (CBF) through its metabolites prostaglandin E2 and epoxyeicosatrienoic acid, which act on vascular smooth muscle cells and pericytes to vasorelax cerebral microvessels. However, AA may also [...] Read more.
It has long been known that the conditionally essential polyunsaturated arachidonic acid (AA) regulates cerebral blood flow (CBF) through its metabolites prostaglandin E2 and epoxyeicosatrienoic acid, which act on vascular smooth muscle cells and pericytes to vasorelax cerebral microvessels. However, AA may also elicit endothelial nitric oxide (NO) release through an increase in intracellular Ca2+ concentration ([Ca2+]i). Herein, we adopted Ca2+ and NO imaging, combined with immunoblotting, to assess whether AA induces intracellular Ca2+ signals and NO release in the human brain microvascular endothelial cell line hCMEC/D3. AA caused a dose-dependent increase in [Ca2+]i that was mimicked by the not-metabolizable analogue, eicosatetraynoic acid. The Ca2+ response to AA was patterned by endoplasmic reticulum Ca2+ release through type 3 inositol-1,4,5-trisphosphate receptors, lysosomal Ca2+ mobilization through two-pore channels 1 and 2 (TPC1-2), and extracellular Ca2+ influx through transient receptor potential vanilloid 4 (TRPV4). In addition, AA-evoked Ca2+ signals resulted in robust NO release, but this signal was considerably delayed as compared to the accompanying Ca2+ wave and was essentially mediated by TPC1-2 and TRPV4. Overall, these data provide the first evidence that AA elicits Ca2+-dependent NO release from a human cerebrovascular endothelial cell line, but they seemingly rule out the possibility that this NO signal could acutely modulate neurovascular coupling. Full article
(This article belongs to the Special Issue Phospholipids: Dynamic Lipid Signaling in Health and Diseases)
Show Figures

Figure 1

12 pages, 2534 KiB  
Article
Effects of Chronic Administration of Capsaicin on Biomarkers of Kidney Injury in Male Wistar Rats with Experimental Diabetes
by Mónica Ríos-Silva, Rubén Santos-Álvarez, Xóchitl Trujillo, Rosa Yolitzy Cárdenas-María, Marisa López-Zamudio, Jaime Alberto Bricio-Barrios, Caridad Leal, Alfredo Saavedra-Molina, Miguel Huerta-Trujillo, Karina Espinoza-Mejía and Miguel Huerta
Molecules 2019, 24(1), 36; https://doi.org/10.3390/molecules24010036 - 21 Dec 2018
Cited by 15 | Viewed by 4090
Abstract
Capsaicin is an agonist of the transient receptor potential vanilloid type 1 (TRPV1) channel, which has been related to the pathophysiology of kidney disease secondary to diabetes. This study aimed to evaluate the chronic effect of capsaicin administration on biomarkers of kidney injury [...] Read more.
Capsaicin is an agonist of the transient receptor potential vanilloid type 1 (TRPV1) channel, which has been related to the pathophysiology of kidney disease secondary to diabetes. This study aimed to evaluate the chronic effect of capsaicin administration on biomarkers of kidney injury in an experimental rat model of diabetes. Male Wistar rats were assigned to four groups: (1) healthy controls without diabetes (CON), (2) healthy controls plus capsaicin at 1 mg/kg/day (CON + CAPS), (3) experimental diabetes without capsaicin (DM), and (4) experimental diabetes plus capsaicin at 1 mg/kg/day (DM + CAPS). For each group, 24-h urine samples were collected to determine diuresis, albumin, cystatin C, β2 microglobulin, epidermal growth factor (EGF), alpha (1)-acid glycoprotein, and neutrophil gelatinase-associated lipocalin (NAG-L). Blood samples were drawn to measure fasting glucose. After 8 weeks, the CON + CAPS and DM + CAPS groups showed increased diuresis compared to the CON and DM groups, but the difference was significant only in the DM + CAPS group. The two-way ANOVA only showed a statistically significant effect of CAPS on the urinary EGF levels, as well as a tendency to have a significant effect in the urinary NAG-L levels. The EGF levels decreased in both CAPS-treated groups, but the change was only significant in the CON + CAPS group vs. CON group; and the NAG-L levels were lower in both CAPS-treated groups. These results show that capsaicin had a diuretic effect in healthy and diabetic rats; additionally, it increased the urinary EGF levels and tended to decrease the urinary NAG-L levels. Full article
(This article belongs to the Special Issue Capsaicin—2nd Edition)
Show Figures

Graphical abstract

21 pages, 2931 KiB  
Article
Antagonism of Transient Receptor Potential Ankyrin Type-1 Channels as a Potential Target for the Treatment of Trigeminal Neuropathic Pain: Study in an Animal Model
by Chiara Demartini, Rosaria Greco, Anna Maria Zanaboni, Oscar Francesconi, Cristina Nativi, Cristina Tassorelli and Kristof Deseure
Int. J. Mol. Sci. 2018, 19(11), 3320; https://doi.org/10.3390/ijms19113320 - 25 Oct 2018
Cited by 34 | Viewed by 4538
Abstract
Transient receptor potential ankyrin type-1 (TRPA1) channels are known to actively participate in different pain conditions, including trigeminal neuropathic pain, whose clinical treatment is still unsatisfactory. The aim of this study was to evaluate the involvement of TRPA1 channels by means of the [...] Read more.
Transient receptor potential ankyrin type-1 (TRPA1) channels are known to actively participate in different pain conditions, including trigeminal neuropathic pain, whose clinical treatment is still unsatisfactory. The aim of this study was to evaluate the involvement of TRPA1 channels by means of the antagonist ADM_12 in trigeminal neuropathic pain, in order to identify possible therapeutic targets. A single treatment of ADM_12 in rats 4 weeks after the chronic constriction injury of the infraorbital nerve (IoN-CCI) significantly reduced the mechanical allodynia induced in the IoN-CCI rats. Additionally, ADM_12 was able to abolish the increased levels of TRPA1, calcitonin gene-related peptide (CGRP), substance P (SP), and cytokines gene expression in trigeminal ganglia, cervical spinal cord, and medulla induced in the IoN-CCI rats. By contrast, no significant differences between groups were seen as regards CGRP and SP protein expression in the pars caudalis of the spinal nucleus of the trigeminal nerve. ADM_12 also reduced TRP vanilloid type-1 (TRPV1) gene expression in the same areas after IoN-CCI. Our findings show the involvement of both TRPA1 and TRPV1 channels in trigeminal neuropathic pain, and in particular, in trigeminal mechanical allodynia. Furthermore, they provide grounds for the use of ADM_12 in the treatment of trigeminal neuropathic pain. Full article
(This article belongs to the Special Issue Ion Channels of Nociception)
Show Figures

Graphical abstract

20 pages, 1463 KiB  
Review
Endothelium-Dependent Hyperpolarization (EDH) in Hypertension: The Role of Endothelial Ion Channels
by Kenichi Goto, Toshio Ohtsubo and Takanari Kitazono
Int. J. Mol. Sci. 2018, 19(1), 315; https://doi.org/10.3390/ijms19010315 - 21 Jan 2018
Cited by 72 | Viewed by 16088
Abstract
Upon stimulation with agonists and shear stress, the vascular endothelium of different vessels selectively releases several vasodilator factors such as nitric oxide and prostacyclin. In addition, vascular endothelial cells of many vessels regulate the contractility of the vascular smooth muscle cells through the [...] Read more.
Upon stimulation with agonists and shear stress, the vascular endothelium of different vessels selectively releases several vasodilator factors such as nitric oxide and prostacyclin. In addition, vascular endothelial cells of many vessels regulate the contractility of the vascular smooth muscle cells through the generation of endothelium-dependent hyperpolarization (EDH). There is a general consensus that the opening of small- and intermediate-conductance Ca2+-activated K+ channels (SKCa and IKCa) is the initial mechanistic step for the generation of EDH. In animal models and humans, EDH and EDH-mediated relaxations are impaired during hypertension, and anti-hypertensive treatments restore such impairments. However, the underlying mechanisms of reduced EDH and its improvement by lowering blood pressure are poorly understood. Emerging evidence suggests that alterations of endothelial ion channels such as SKCa channels, inward rectifier K+ channels, Ca2+-activated Cl channels, and transient receptor potential vanilloid type 4 channels contribute to the impaired EDH during hypertension. In this review, we attempt to summarize the accumulating evidence regarding the pathophysiological role of endothelial ion channels, focusing on their relationship with EDH during hypertension. Full article
(This article belongs to the Special Issue Ion Transporters and Channels in Physiology and Pathophysiology)
Show Figures

Figure 1

Back to TopTop