Effects of Chronic Administration of Capsaicin on Biomarkers of Kidney Injury in Male Wistar Rats with Experimental Diabetes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Diuretic Effect of Capsaicin in Diabetic and Healthy Rats
2.2. Effect of CAPS on Biomarkers of Kidney Injury
2.3. Study Limitations and Future Directions
3. Materials and Methods
3.1. Animals
3.2. Experimental Protocol
3.2.1. Experimental Induction of Diabetes
3.2.2. CAPS Dose and Administration
3.2.3. Fasting Glucose Measurement
3.2.4. Determination of Kidney Injury Biomarkers
3.3. Method of Euthanasia
3.4. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jawa, A.; Kcomt, J.; Fonseca, V.A. Diabetic Nephropathy and Retinopathy. Med. Clin. North Am. 2004, 88, 1001–1036. [Google Scholar] [CrossRef] [PubMed]
- Weir, M.R. Effects of Renin-Angiotensin System Inhibition on End-organ Protection: Can We Do Better? Clin. Ther. 2007, 29, 1803–1824. [Google Scholar] [CrossRef] [PubMed]
- Karalliedde, J.; Viberti, G. Evidence for Renoprotection by Blockade of the Renin-Angiotensin-Aldosterone System in Hypertension and Diabetes. J. Hum. Hypertens. 2006, 20, 239–253. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, D.H. Protective Effect of TRPV1 Against Renal Fibrosis Via Inhibition of TGF-β/Smad Signaling in DOCA-salt Hypertension. Mol. Med. 2011, 17, 1204–1212. [Google Scholar] [PubMed]
- Li, J.; Wang, D.H. Increased GFR and Renal Excretory Function by Activation of TRPV1 in the Isolated Perfused Kidney. Pharmacol. Res. 2008, 57, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Wang, Y.; Wang, D.H. Diuresis and Natriuresis Caused by Activation of VR1-Positive Sensory Nerves in Renal Pelvis of Rats. Hypertension 2005, 46, 992–997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, S.H.; Kim, H.J.; Oh, G.S.; Shen, A.; Lee, S.; Choe, S.K.; Park, R.; So, H.S. Capsaicin Ameliorates Cisplatin-Induced Renal Injury Through Induction of Heme Oxygenase-1. Mol. Cells 2014, 37, 234–240. [Google Scholar] [CrossRef]
- Trujillo, X.; Ortiz-Mesina, M.; Uribe, T.; Castro, E.; Montoya-Pérez, R.; Urzúa, Z.; Feria-Velasco, A.; Huerta, M. Capsaicin and N-arachidonoyl-Dopamine (NADA) Decrease Tension by Activating Both Cannabinoid and Vanilloid Receptors in Fast Skeletal Muscle Fibers of the Frog. J. Membr. Biol. 2015, 248, 31–38. [Google Scholar] [CrossRef]
- Ambrus, L.; Kelemen, B.; Szabó, T.; Bíró, T.; Tóth, B.I. Human Podocytes Express Functional Thermosensitive TRPV Channels. Br. J. Pharmacol. 2017, 174, 4493–4507. [Google Scholar] [CrossRef]
- Barutta, F.; Corbelli, A.; Mastrocola, R.; Gambino, R.; Di Marzo, V.; Pinach, S.; Rastaldi, M.P.; Cavallo Perin, P.; Gruden, G. Cannabinoid Receptor 1 Blockade Ameliorates Albuminuria in Experimental Diabetic Nephropathy. Diabetes 2010, 59, 1046–1054. [Google Scholar] [CrossRef] [Green Version]
- Barutta, F.; Piscitelli, F.; Pinach, S.; Bruno, G.; Gambino, R.; Rastaldi, M.P.; Salvidio, G.; Di Marzo, V.; Cavallo Perin, P.; Gruden, G. Protective Role of Cannabinoid Receptor Type 2 in A Mouse Model of Diabetic Nephropathy. Diabetes 2011, 60, 2386–2396. [Google Scholar] [CrossRef] [PubMed]
- Avelino, A.; Cruz, C.; Nagy, I.; Cruz, F. Vanilloid Receptor 1 Expression in The Rat Urinary Tract. Neuroscience 2002, 109, 787–798. [Google Scholar] [CrossRef]
- Lee, S.Y.; Choi, M.E. Urinary Biomarkers for Early Diabetic Nephropathy: Beyond Albuminuria. Pediatr. Nephrol. 2015, 30, 1063–1075. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Kassmann, M.; Sendeski, M.; Tsvetkov, D.; Marko, L.; Michalick, L.; Riehle, M.; Liedtke, W.B.; Kuebler, W.M.; Harteneck, C.; et al. Functional Transient Receptor Potential Vanilloid 1 and Transient Receptor Potential Vanilloid 4 Channels Along Different Segments of the Renal Vasculature. Acta Physiol. 2015, 213, 481–491. [Google Scholar] [CrossRef] [PubMed]
- Kopp, U.C.; Smith, L.A. Inhibitory Renorenal Reflexes: A Role for Substance P or Other Capsaicin-Sensitive Neurons. Am. J. Physiol. 1991, 260, 232–239. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Wang, D.H. Segmental Regulation of Sodium and Water Excretion by TRPV1 Activation in the Kidney. J. Cardiovasc. Pharmacol. 2008, 51, 437–442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Wang, D.H. Role of TRPV1 Channels in Renal Haemodynamics and Function in Dahl Salt-Sensitive Hypertensive Rats. Exp. Physiol. 2008, 93, 945–953. [Google Scholar] [CrossRef]
- Chien, C.T.; Chien, H.F.; Cheng, Y.J.; Chen, C.F.; Hsu, S.M. Renal Afferent Signaling Diuretic Response is Impaired in Streptozotocin-Induced Diabetic Rats. Kidney Int. 2000, 57, 203–214. [Google Scholar] [CrossRef]
- Paronis, C.A.; Thakur, G.A.; Bajaj, S.; Nikas, S.P.; Vemuri, V.K.; Makriyannis, A.; Bergman, J. Diuretic Effects of Cannabinoids. J. Pharmacol. Exp. Ther. 2013, 344, 8–14. [Google Scholar] [CrossRef]
- Scheen, A.J. Type 2 Diabetes and Thiazide Diuretics. Curr. Diab. Rep. 2018, 18. [Google Scholar] [CrossRef]
- Hoshino, T.; Ookawara, S.; Miyazawa, H.; Ito, K.; Ueda, Y.; Kaku, Y.; Hirai, K.; Mori, H.; Yoshida, I.; Tabei, K. Renoprotective Effects of Thiazides Combined with Loop Diuretics in Patients with Type 2 Diabetic Kidney Disease. Clin. Exp. Nephrol. 2015, 19, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Babu, P.S.; Srinivasan, K. Renal Lesions in Streptozotocin-Induced Diabetic Rats Maintained on Onion and Capsaicin Containing Diets. J. Nutr. Biochem. 1999, 10, 477–483. [Google Scholar] [CrossRef]
- Harris, R.C. Potential Physiologic Roles for Epidermal Growth Factor in the Kidney. Am. J. Kidney Dis. 1991, 17, 627–630. [Google Scholar] [CrossRef]
- Larkins, N.G.; Teixeira-Pinto, A.; Craig, J.C. A Narrative Review of Proteinuria and Albuminuria as Clinical Biomarkers in Children. J. Paediatr. Child Health 2018. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhu, M.; Xu, H.; Cui, L.; Liu, W.; Wang, X.; Shen, S.; Wang, D.H. Role of the Monocyte Chemoattractant Protein-1/C-C Chemokine Receptor 2 Signaling Pathway in Transient Receptor Potential Vanilloid Type 1 Ablation-Induced Renal Injury in Salt-Sensitive Hypertension. Exp. Biol. Med. 2015, 240, 1223–1234. [Google Scholar] [CrossRef] [PubMed]
- Togashi, Y.; Miyamoto, Y. Urinary Cystatin C as a Biomarker for Diabetic Nephropathy and Its Immunohistochemical Localization in Kidney in Zucker Diabetic Fatty (ZDF) Rats. Exp. Toxicol. Pathol 2013, 65, 615–622. [Google Scholar] [CrossRef] [PubMed]
- Argyropoulos, C.P.; Chen, S.S.; Ng, Y.H.; Roumelioti, M.E.; Shaffi, K.; Singh, P.P.; Tzamaloukas, A.H. Rediscovering Beta-2 Microglobulin As a Biomarker across the Spectrum of Kidney Diseases. Front Med. 2017, 4. [Google Scholar] [CrossRef] [PubMed]
- Fournier, T.; Medjoubi-N, N.; Porquet, D. Alpha-1-Acid Glycoprotein. Biochim. Biophys. Acta 2000, 1482, 157–171. [Google Scholar] [CrossRef]
- Watson, L.; Midgley, A.; Pilkington, C.; Tullus, K.; Marks, S.; Holt, R.; Jones, C.; Beresford, M. Urinary Monocyte Chemoattractant Protein 1 and Alpha 1 Acid Glycoprotein as Biomarkers of Renal Disease Activity in Juvenile-onset Systemic Lupus Erythematosus. Lupus 2012, 21, 496–501. [Google Scholar] [CrossRef]
- Tramonti, G.; Kanwar, Y.S. Review and Discussion of Tubular Biomarkers in the Diagnosis and Management of Diabetic Nephropathy. Endocrine 2013, 43, 494–503. [Google Scholar] [CrossRef]
- Yang, Y.H.; He, X.J.; Chen, S.R.; Wang, L.; Li, E.M.; Xu, L.Y. Changes of Serum and Urine Neutrophil Gelatinase-associated Lipocalin in Type-2 Diabetic Patients with Nephropathy: One Year Observational Follow-up Study. Endocrine 2009, 36, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Safirstein, R.; Zelent, A.Z.; Price, P.M. Reduced Renal Prepro-Epidermal Growth Factor mRNA and Decreased EGF Excretion in ARF. Kidney Int. 1989, 36, 810–815. [Google Scholar] [CrossRef] [PubMed]
- Stein-Oakley, A.N.; Tzanidis, A.; Fuller, P.J.; Jablonski, P.; Thomson, N.M. Expression and Distribution of Epidermal Growth Factor in Acute and Chronic Renal Allograft Rejection. Kidney Int. 1994, 46, 1207–1215. [Google Scholar] [CrossRef] [PubMed]
- Skov Olsen, P.; Nexø, E.; Poulsen, S.S.; Hansen, H.F.; Kirkegaard, P. Renal Origin of Rat Urinary Epidermal Growth Factor. Regul. Pept. 1984, 10, 37–45. [Google Scholar] [CrossRef]
- Clark, R.; Lee, S.H. Anticancer Properties of Capsaicin Against Human Cancer. Anticancer. Res. 2016, 36, 837–843. [Google Scholar] [PubMed]
- Phan, T.X.; Ton, H.T.; Chen, Y.; Basha, M.E.; Ahern, G.P. Sex-dependent Expression of TRPV1 in Bladder Arterioles. Am. J. Physiol. Renal Physiol. 2016, 311, F1063–F1073. [Google Scholar] [CrossRef] [PubMed]
- Maric-Bilkan, C. Sex Differences in Micro- and Macro-vascular Complications of Diabetes Mellitus. Clin. Sci. 2017, 131, 833–846. [Google Scholar] [CrossRef]
- Chao, P.C.; Li, Y.; Chang, C.H.; Shieh, J.P.; Cheng, K.C. Investigation of Insulin Resistance in the Popularly used Four Rat Models of Type-2 Diabetes. Biomed. Pharmacother. 2018, 101, 155–161. [Google Scholar] [CrossRef]
- Márquez-Ibarra, A.; Huerta, M.; Villalpando-Hernández, S.; Ríos-Silva, M.; Díaz-Reval, M.I.; Cruzblanca, H.; Mancilla, E.; Trujillo, X. The Effects of Dietary Iron and Capsaicin on Hemoglobin, Blood Glucose, Insulin Tolerance, Cholesterol, and Triglycerides, in Healthy and Diabetic Wistar Rats. PLoS ONE 2016, 11. [Google Scholar] [CrossRef]
- Lee, C.Y.; Kim, M.; Yoon, S.W.; Lee, C.H. Short-term Control of Capsaicin on Blood and Oxidative Stress of Rats in Vivo. Phytother. Res. 2003, 17, 454–458. [Google Scholar] [CrossRef]
- Zhou, X.F.; Livett, B.G. Effect of Capsaicin-sensitive Sensory Nerves on Plasma Glucose and Catecholamine Levels during 2-deoxyglucose-induced Stress in Conscious Rats. Br. J. Pharmacol. 1990, 100, 523–529. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are not available from the authors. |
Measurements | DM + CAPS | DM | CON + CAPS | CON | pA for DM Effect | pA for CAPS Effect | pA for Interaction DM × CAPS Effect |
---|---|---|---|---|---|---|---|
Fasting Glucose (mg/dL) Initial | 288.1 ± 24.7 | 326.0 ± 35.0 | 88.2 ± 3.4 | 81.5 ± 3.0 | <0.001 | 0.4 | 0.3 |
Final | 280.6 ± 29.4 | 294.5 ± 43.4 | 73.5 ± 3.0 | 74.6 ± 2.5 | <0.001 | 0.7 | 0.8 |
Weight (g) Initial | 280.4 ± 10.5 | 297.2 ± 4.2 | 291.1 ± 5.7 | 298.6 ± 3.6 | 0.4 | 0.1 | 0.05 |
Final | 287.5 ± 10.6 | 306.0 ± 11.5 | 375.6 ± 10.7 | 349.6 ± 4.5 | <0.001 | 0.7 | 0.03 |
Urinary Parameter | Source of Variance | SS | % variance | F | p |
---|---|---|---|---|---|
Uresis | DM effect | 49847.4 | 73.9 | 84.8 | <0.001 |
CAPS effect | 9698.9 | 35.5 | 16.5 | <0.001 | |
DM × CAPS effect interaction | 5720.0 | 24.5 | 9.7 | 0.004 | |
Albumin | DM effect | 150656.9 | 15.9 | 5.7 | 0.024 |
CAPS effect | 27813.3 | 3.4 | 1.0 | 0.315 | |
DM × CAPS interaction effect | 13582.4 | 1.7 | 0.5 | 0.480 | |
Cystatin C | DM effect | 11.3 | 63.1 | 51.2 | <0.001 |
CAPS effect | 0.3 | 4.3 | 1.3 | 0.255 | |
DM × CAPS interaction effect | 0.1 | 2.1 | 0.6 | 0.423 | |
β2 microglobulin | DM effect | 50744.9 | 31.5 | 13.8 | 0.001 |
CAPS effect | 323.1 | 0.3 | 0.1 | 0.769 | |
DM × CAPS interaction effect | 10017.8 | 8.3 | 2.7 | 0.109 | |
AGP | DM effect | 2.2 | 1 | 0.0 | 0.844 |
CAPS effect | 80.6 | 4.5 | 1.3 | 0.246 | |
DM × CAPS interaction effect | 2.2 | 1 | 0.0 | 0.844 | |
NAG-L | DM effect | 0.6 | 11.5 | 3.8 | 0.058 |
CAPS effect | 0.6 | 12.2 | 4.1 | 0.051 | |
DM × CAPS interaction effect | 0.0 | 0 | 0.0 | 0.836 | |
EGF | DM effect | 6.0 | 61.5 | 47.8 | <0.001 |
CAPS effect | 2.3 | 38.7 | 18.9 | <0.001 | |
DM × CAPS interaction effect | 8.0 | 0.02 | 0.7 | 0.406 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ríos-Silva, M.; Santos-Álvarez, R.; Trujillo, X.; Cárdenas-María, R.Y.; López-Zamudio, M.; Bricio-Barrios, J.A.; Leal, C.; Saavedra-Molina, A.; Huerta-Trujillo, M.; Espinoza-Mejía, K.; et al. Effects of Chronic Administration of Capsaicin on Biomarkers of Kidney Injury in Male Wistar Rats with Experimental Diabetes. Molecules 2019, 24, 36. https://doi.org/10.3390/molecules24010036
Ríos-Silva M, Santos-Álvarez R, Trujillo X, Cárdenas-María RY, López-Zamudio M, Bricio-Barrios JA, Leal C, Saavedra-Molina A, Huerta-Trujillo M, Espinoza-Mejía K, et al. Effects of Chronic Administration of Capsaicin on Biomarkers of Kidney Injury in Male Wistar Rats with Experimental Diabetes. Molecules. 2019; 24(1):36. https://doi.org/10.3390/molecules24010036
Chicago/Turabian StyleRíos-Silva, Mónica, Rubén Santos-Álvarez, Xóchitl Trujillo, Rosa Yolitzy Cárdenas-María, Marisa López-Zamudio, Jaime Alberto Bricio-Barrios, Caridad Leal, Alfredo Saavedra-Molina, Miguel Huerta-Trujillo, Karina Espinoza-Mejía, and et al. 2019. "Effects of Chronic Administration of Capsaicin on Biomarkers of Kidney Injury in Male Wistar Rats with Experimental Diabetes" Molecules 24, no. 1: 36. https://doi.org/10.3390/molecules24010036
APA StyleRíos-Silva, M., Santos-Álvarez, R., Trujillo, X., Cárdenas-María, R. Y., López-Zamudio, M., Bricio-Barrios, J. A., Leal, C., Saavedra-Molina, A., Huerta-Trujillo, M., Espinoza-Mejía, K., & Huerta, M. (2019). Effects of Chronic Administration of Capsaicin on Biomarkers of Kidney Injury in Male Wistar Rats with Experimental Diabetes. Molecules, 24(1), 36. https://doi.org/10.3390/molecules24010036