Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (72)

Search Parameters:
Keywords = transfection reagent

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3220 KiB  
Article
High-Throughput Microfluidic Electroporation (HTME): A Scalable, 384-Well Platform for Multiplexed Cell Engineering
by William R. Gaillard, Jess Sustarich, Yuerong Li, David N. Carruthers, Kshitiz Gupta, Yan Liang, Rita Kuo, Stephen Tan, Sam Yoder, Paul D. Adams, Hector Garcia Martin, Nathan J. Hillson and Anup K. Singh
Bioengineering 2025, 12(8), 788; https://doi.org/10.3390/bioengineering12080788 - 22 Jul 2025
Viewed by 524
Abstract
Electroporation-mediated gene delivery is a cornerstone of synthetic biology, offering several advantages over other methods: higher efficiencies, broader applicability, and simpler sample preparation. Yet, electroporation protocols are often challenging to integrate into highly multiplexed workflows, owing to limitations in their scalability and tunability. [...] Read more.
Electroporation-mediated gene delivery is a cornerstone of synthetic biology, offering several advantages over other methods: higher efficiencies, broader applicability, and simpler sample preparation. Yet, electroporation protocols are often challenging to integrate into highly multiplexed workflows, owing to limitations in their scalability and tunability. These challenges ultimately increase the time and cost per transformation. As a result, rapidly screening genetic libraries, exploring combinatorial designs, or optimizing electroporation parameters requires extensive iterations, consuming large quantities of expensive custom-made DNA and cell lines or primary cells. To address these limitations, we have developed a High-Throughput Microfluidic Electroporation (HTME) platform that includes a 384-well electroporation plate (E-Plate) and control electronics capable of rapidly electroporating all wells in under a minute with individual control of each well. Fabricated using scalable and cost-effective printed-circuit-board (PCB) technology, the E-Plate significantly reduces consumable costs and reagent consumption by operating on nano to microliter volumes. Furthermore, individually addressable wells facilitate rapid exploration of large sets of experimental conditions to optimize electroporation for different cell types and plasmid concentrations/types. Use of the standard 384-well footprint makes the platform easily integrable into automated workflows, thereby enabling end-to-end automation. We demonstrate transformation of E. coli with pUC19 to validate the HTME’s core functionality, achieving at least a single colony forming unit in more than 99% of wells and confirming the platform’s ability to rapidly perform hundreds of electroporations with customizable conditions. This work highlights the HTME’s potential to significantly accelerate synthetic biology Design-Build-Test-Learn (DBTL) cycles by mitigating the transformation/transfection bottleneck. Full article
(This article belongs to the Section Cellular and Molecular Bioengineering)
Show Figures

Graphical abstract

22 pages, 6216 KiB  
Article
Efficient Delivery of SARS-CoV-2 Plasmid DNA in HEK-293T Cells Using Chitosan Nanoparticles
by Citlali Cecilia Mendoza-Guevara, Alejandro Martinez-Escobar, María del Pilar Ramos-Godínez, José Esteban Muñoz-Medina and Eva Ramon-Gallegos
Pharmaceuticals 2025, 18(5), 683; https://doi.org/10.3390/ph18050683 - 5 May 2025
Viewed by 806
Abstract
Background/Objectives: Gene therapy has emerged as a promising strategy for treating a wide range of diseases. However, a major challenge remains in developing efficient and safe delivery systems for genetic material. Nanoparticles, particularly chitosan nanoparticles (CNPs), have gained significant attention as a [...] Read more.
Background/Objectives: Gene therapy has emerged as a promising strategy for treating a wide range of diseases. However, a major challenge remains in developing efficient and safe delivery systems for genetic material. Nanoparticles, particularly chitosan nanoparticles (CNPs), have gained significant attention as a potential solution. This study focuses on designing a SARS-CoV-2 plasmid DNA (pDNA) conjugated with CNPs and evaluating its in vitro delivery efficiency. Methods: The Omicron Spike DNA sequence was inserted into the pIRES2-eGFP expression vector, and CNPs were synthesized with optimized physicochemical properties to enhance stability, cellular uptake, and transfection efficiency. The conjugate was characterized using UV-Vis, FT-IR, DLS, and TEM techniques. Transfection efficiency was assessed and compared to the commercially available TurboFect reagent as a control. Results: CNPs-pDNA polyplexes with an average size of 159.0 ± 33.1 nm (TEM), a zeta potential of +19.7 ± 0.3 mV, and 100% ± 0.0 encapsulation efficiency were developed as a non-viral delivery system. CNPs efficiently serve as a delivery vehicle for the constructed pDNA without altering cell morphology, achieving transfection efficiencies of 62–74%, compared to 55–70% for TurboFect. Furthermore, RT-qPCR confirmed the expression of Spike mRNA, and Western blot assays validated the expression of Spike protein. Notably, Spike protein expression from CNPs was found to be two-fold higher than the control at 96 h post-transfection. Conclusions: These findings suggest that CNPs are a promising and versatile platform for delivering genetic material. Importantly, this study highlights the intrinsic properties of chitosan, without the use of additional ligands, as a key factor in achieving efficient gene delivery. Full article
Show Figures

Figure 1

15 pages, 4487 KiB  
Article
Evaluation of Lipid-Based Transfection in Primary Monocytes Within an Ex Vivo Whole-Blood Model
by Robin Moolan-Vadackumchery, Lan Zhang and Frank Stüber
Biomolecules 2025, 15(3), 391; https://doi.org/10.3390/biom15030391 - 8 Mar 2025
Viewed by 997
Abstract
Transfection is a fundamental method in biomedical research to study intracellular molecular mechanisms by manipulating target protein expression. Various methods have been developed to deliver nucleic acids into the cells of interest in vitro, with chemical transfection by cationic lipids being the [...] Read more.
Transfection is a fundamental method in biomedical research to study intracellular molecular mechanisms by manipulating target protein expression. Various methods have been developed to deliver nucleic acids into the cells of interest in vitro, with chemical transfection by cationic lipids being the most widely used for RNA interference (RNAi). However, translating these in vitro results into in vivo remains a significant challenge. In this study, we established an ex vivo transfection model using cationic lipids in human whole blood. Three different lipid-based reagents were evaluated regarding toxicity, transfection efficiency, and immunogenicity across leukocyte populations using spectral flow cytometry. CD14+ monocytes were identified as the primary population to be transfected by cationic lipids in whole blood. To assess immunogenicity, the monocyte-specific activation markers CD80 and human leukocyte antigen DR isotype (HLA-DR) were analyzed upon transfection. Our results demonstrated that Lipofectamine RNAiMAX outperforms the other two reagents, showing low toxicity and high transfection efficiency in combination with a minimal potential for monocyte activation. Functional knockdown experiments using siRNA targeting CIITA and the microRNA mir-3972 targeting HLA-DRA showed dose-dependent suppression in HLA-DR expression. This study provides the framework for preliminary testing of RNAi in a physiologically relevant ex vivo model, enabling assessment of key endpoints such as toxicity, transfection efficiency, and immune activation potential of gene delivery systems. Full article
(This article belongs to the Section Cellular Biochemistry)
Show Figures

Figure 1

12 pages, 4184 KiB  
Article
Establishment of Gill-Derived Primary Cell Cultures from Largemouth Bass (Micropterus salmoides) as an Alternative Platform for Studying Host–Virus Interactions
by Ziwen Wang, Li Nie, Chenjie Fei and Jiong Chen
Fishes 2025, 10(1), 18; https://doi.org/10.3390/fishes10010018 - 2 Jan 2025
Cited by 1 | Viewed by 1149
Abstract
A primary cell culture derived from the gill tissues of largemouth bass (Micropterus salmoides) was successfully established and characterized, providing a physiologically relevant model for virological research. Gill tissues were enzymatically dissociated, and their cells were cultured in M199 supplemented with [...] Read more.
A primary cell culture derived from the gill tissues of largemouth bass (Micropterus salmoides) was successfully established and characterized, providing a physiologically relevant model for virological research. Gill tissues were enzymatically dissociated, and their cells were cultured in M199 supplemented with 20% fetal bovine serum at 25 °C, yielding optimal growth. Viral replication within these primary cells was confirmed by transmission electron microscopy, and further qRT-PCR demonstrated the upregulation of antiviral genes (IFN1, Mx1, ISG15, and Viperin). These primary gill cells of spindle-like morphology exhibited significantly higher susceptibility to Micropterus salmoides rhabdovirus (MSRV) compared to established cell lines, as evidenced by higher viral titers, thus establishing their suitability for studying host–virus interactions. Furthermore, these cells were amenable to genetic manipulation, with the successful transfection of an mCherry reporter gene using commercially available reagents. These findings highlight the utility of the largemouth bass gill-derived primary cell culture as an alternative in vitro system for investigating MSRV pathogenesis and host immune responses, which serves as a stepping stone for improved antiviral strategies in largemouth bass aquaculture. Full article
(This article belongs to the Special Issue Advances in Aquatic Diseases and Immunity in Aquaculture)
Show Figures

Figure 1

16 pages, 10610 KiB  
Article
Enhanced Wound Healing and Autogenesis Through Lentiviral Transfection of Adipose-Derived Stem Cells Combined with Dermal Substitute
by Shiqi Wang, Dinghui Gao, Mingyu Li, Qian Wang, Xuanyu Du and Siming Yuan
Biomedicines 2024, 12(12), 2844; https://doi.org/10.3390/biomedicines12122844 - 13 Dec 2024
Viewed by 4831
Abstract
Background: Burns and chronic ulcers may cause severe skin loss, leading to critical health issues like shock, infection, sepsis, and multiple organ failure. Effective healing of full-thickness wounds may be challenging, with traditional methods facing limitations due to tissue shortage, infection, and lack [...] Read more.
Background: Burns and chronic ulcers may cause severe skin loss, leading to critical health issues like shock, infection, sepsis, and multiple organ failure. Effective healing of full-thickness wounds may be challenging, with traditional methods facing limitations due to tissue shortage, infection, and lack of structural support. Methods: This study explored the combined use of gene transfection and dermal substitutes to improve wound healing. We used the DGTM (genes: DNP63A, GRHL2, TFAP2A, and MYC) factors to transfect adipose-derived stem cells (ADSCs), inducing their differentiation into keratinocytes. These transfected ADSCs were then incorporated into Pelnac® dermal substitutes to enhance vascularization and cellular proliferation for better healing outcomes. Results: Gene transfer using DGTM factors successfully induced keratinocyte differentiation in ADSCs. The application of these differentiated cells with Pelnac® dermal substitute to dermal wounds in mice resulted in the formation of skin tissue with a normal epidermal layer and proper collagen organization. This method alleviates the tediousness of the multiple transfection steps in previous protocols and the safety issues caused by using viral transfection reagents directly on the wound. Additionally, the inclusion of dermal substitutes addressed the lack of collagen and elastic fibers, promoting the formation of tissue resembling healthy skin rather than scar tissue. Conclusion: Integrating DGTM factor-transfected ADSCs with dermal substitutes represents a novel strategy for enhancing the healing of full-thickness wounds. Further research and clinical trials are warranted to optimize and validate this innovative approach for broader clinical applications. Full article
(This article belongs to the Section Biomedical Engineering and Materials)
Show Figures

Figure 1

23 pages, 3447 KiB  
Article
Hypoxia-Induced Mitochondrial ROS and Function in Pulmonary Arterial Endothelial Cells
by Harrison Wang, Teng-Yao Song, Jorge Reyes-García and Yong-Xiao Wang
Cells 2024, 13(21), 1807; https://doi.org/10.3390/cells13211807 - 1 Nov 2024
Cited by 3 | Viewed by 2285
Abstract
Pulmonary artery endothelial cells (PAECs) are a major contributor to hypoxic pulmonary hypertension (PH) due to the possible roles of reactive oxygen species (ROS). However, the molecular mechanisms and functional roles of ROS in PAECs are not well established. In this study, we [...] Read more.
Pulmonary artery endothelial cells (PAECs) are a major contributor to hypoxic pulmonary hypertension (PH) due to the possible roles of reactive oxygen species (ROS). However, the molecular mechanisms and functional roles of ROS in PAECs are not well established. In this study, we first used Amplex UltraRed reagent to assess hydrogen peroxide (H2O2) generation. The result indicated that hypoxic exposure resulted in a significant increase in Amplex UltraRed-derived fluorescence (i.e., H2O2 production) in human PAECs. To complement this result, we employed lucigenin as a probe to detect superoxide (O2) production. Our assays showed that hypoxia largely increased O2 production. Hypoxia also enhanced H2O2 production in the mitochondria from PAECs. Using the genetically encoded H2O2 sensor HyPer, we further revealed the hypoxic ROS production in PAECs, which was fully blocked by the mitochondrial inhibitor rotenone or myxothiazol. Interestingly, hypoxia caused an increase in the migration of PAECs, determined by scratch wound assay. In contrast, nicotine, a major cigarette or e-cigarette component, had no effect. Moreover, hypoxia and nicotine co-exposure further increased migration. Transfection of lentiviral shRNAs specific for the mitochondrial Rieske iron–sulfur protein (RISP), which knocked down its expression and associated ROS generation, inhibited the hypoxic migration of PAECs. Hypoxia largely increased the proliferation of PAECs, determined using Ki67 staining and direct cell number accounting. Similarly, nicotine caused a large increase in proliferation. Moreover, hypoxia/nicotine co-exposure elicited a further increase in cell proliferation. RISP knockdown inhibited the proliferation of PAECs following hypoxia, nicotine exposure, and hypoxia/nicotine co-exposure. Taken together, our data demonstrate that hypoxia increases RISP-mediated mitochondrial ROS production, migration, and proliferation in human PAECs; nicotine has no effect on migration, increases proliferation, and promotes hypoxic proliferation; the effects of nicotine are largely mediated by RISP-dependent mitochondrial ROS signaling. Conceivably, PAECs may contribute to PH via the RISP-mediated mitochondrial ROS. Full article
Show Figures

Figure 1

19 pages, 4770 KiB  
Article
Establishment and Characterization of a Stable Producer Cell Line Generation Platform for the Manufacturing of Clinical-Grade Lentiviral Vectors
by Ane Arrasate, Igone Bravo, Carlos Lopez-Robles, Ane Arbelaiz-Sarasola, Maddi Ugalde, Martha Lucia Meijueiro, Miren Zuazo, Ana Valero, Soledad Banos-Mateos, Juan Carlos Ramirez, Carmen Albo, Andrés Lamsfus-Calle and Marie J. Fertin
Biomedicines 2024, 12(10), 2265; https://doi.org/10.3390/biomedicines12102265 - 4 Oct 2024
Viewed by 3011
Abstract
Background/Objectives: To date, nearly 300 lentiviral-based gene therapy clinical trials have been conducted, with eight therapies receiving regulatory approval for commercialization. These advances, along with the increased number of advanced-phase clinical trials, have prompted contract development and manufacturing organizations (CDMOs) to develop innovative [...] Read more.
Background/Objectives: To date, nearly 300 lentiviral-based gene therapy clinical trials have been conducted, with eight therapies receiving regulatory approval for commercialization. These advances, along with the increased number of advanced-phase clinical trials, have prompted contract development and manufacturing organizations (CDMOs) to develop innovative strategies to address the growing demand for large-scale batches of lentiviral vectors (LVVs). Consequently, manufacturers have focused on optimizing processes under good manufacturing practices (GMPs) to improve cost-efficiency, increase process robustness, and ensure regulatory compliance. Nowadays, the LVV production process mainly relies on the transient transfection of four plasmids encoding for the lentiviral helper genes and the transgene. While this method is efficient at small scales and has also proven to be scalable, the industry is exploring alternative processes due to the high cost of GMP reagents, and the batch-to-batch variability predominantly attributed to the transfection step. Methods: Here, we report the development and implementation of a reliable and clinical-grade envisioned platform based on the generation of stable producer cell lines (SCLs) from an initial well-characterized lentiviral packaging cell line (PCL). Results: This platform enables the production of VSV-G-pseudotyped LVVs through a fully transfection-free manufacturing process. Our data demonstrate that the developed platform will facilitate successful technological transfer to large-scale LVV production for clinical application. Conclusions: With this simple and robust stable cell line generation strategy, we address key concerns associated with the costs and reproducibility of current manufacturing processes. Full article
(This article belongs to the Special Issue Gene Delivery and Gene Editing)
Show Figures

Figure 1

27 pages, 3222 KiB  
Article
Cost-Efficient Expression of Human Cardiac Myosin Heavy Chain in C2C12 Cells with a Non-Viral Transfection Reagent
by Albin E. Berg, Lok Priya Velayuthan, Alf Månsson and Marko Ušaj
Int. J. Mol. Sci. 2024, 25(12), 6747; https://doi.org/10.3390/ijms25126747 - 19 Jun 2024
Viewed by 2059
Abstract
Production of functional myosin heavy chain (MHC) of striated muscle myosin II for studies of isolated proteins requires mature muscle (e.g., C2C12) cells for expression. This is important both for fundamental studies of molecular mechanisms and for investigations of deleterious diseases like cardiomyopathies [...] Read more.
Production of functional myosin heavy chain (MHC) of striated muscle myosin II for studies of isolated proteins requires mature muscle (e.g., C2C12) cells for expression. This is important both for fundamental studies of molecular mechanisms and for investigations of deleterious diseases like cardiomyopathies due to mutations in the MHC gene (MYH7). Generally, an adenovirus vector is used for transfection, but recently we demonstrated transfection by a non-viral polymer reagent, JetPrime. Due to the rather high costs of JetPrime and for the sustainability of the virus-free expression method, access to more than one transfection reagent is important. Here, we therefore evaluate such a candidate substance, GenJet. Using the human cardiac β-myosin heavy chain (β-MHC) as a model system, we found effective transfection of C2C12 cells showing a transfection efficiency nearly as good as with the JetPrime reagent. This was achieved following a protocol developed for JetPrime because a manufacturer-recommended application protocol for GenJet to transfect cells in suspension did not perform well. We demonstrate, using in vitro motility assays and single-molecule ATP turnover assays, that the protein expressed and purified from cells transfected with the GenJet reagent is functional. The purification yields reached were slightly lower than in JetPrime-based purifications, but they were achieved at a significantly lower cost. Our results demonstrate the sustainability of the virus-free method by showing that more than one polymer-based transfection reagent can generate useful amounts of active MHC. Particularly, we suggest that GenJet, due to its current ~4-fold lower cost, is useful for applications requiring larger amounts of a given MHC variant. Full article
(This article belongs to the Special Issue Muscle Proteins, Functions and Interactions)
Show Figures

Figure 1

16 pages, 7017 KiB  
Article
Rapid and Scalable Production of Functional SARS-CoV-2 Virus-like Particles (VLPs) by a Stable HEK293 Cell Pool
by Sitthiphol Puarattana-aroonkorn, Kannan Tharakaraman, Disapan Suriyawipada, Mathuros Ruchirawat, Mayuree Fuangthong, Ram Sasisekharan and Charlermchai Artpradit
Vaccines 2024, 12(6), 561; https://doi.org/10.3390/vaccines12060561 - 21 May 2024
Cited by 3 | Viewed by 3454
Abstract
At times of pandemics, such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the situation demands rapid development and production timelines of safe and effective vaccines for delivering life-saving medications quickly to patients. Typical biologics production relies on using the lengthy [...] Read more.
At times of pandemics, such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the situation demands rapid development and production timelines of safe and effective vaccines for delivering life-saving medications quickly to patients. Typical biologics production relies on using the lengthy and arduous approach of stable single-cell clones. Here, we used an alternative approach, a stable cell pool that takes only weeks to generate compared to a stable single-cell clone that needs several months to complete. We employed the membrane, envelope, and highly immunogenic spike proteins of SARS-CoV-2 to produce virus-like particles (VLPs) using the HEK293-F cell line as a host system with an economical transfection reagent. The cell pool showed the stability of protein expression for more than one month. We demonstrated that the production of SARS-CoV-2 VLPs using this cell pool was scalable up to a stirred-tank 2 L bioreactor in fed-batch mode. The purified VLPs were properly assembled, and their size was consistent with the authentic virus. Our particles were functional as they specifically entered the cell that naturally expresses ACE-2. Notably, this work reports a practical and cost-effective manufacturing platform for scalable SARS-CoV-2 VLPs production and chromatographic purification. Full article
(This article belongs to the Special Issue Host–Virus Interactions and Vaccine Development)
Show Figures

Figure 1

21 pages, 5864 KiB  
Article
Episomal Vectors for Stable Production of Recombinant Proteins and Engineered Antibodies
by Ian Fallahee and Daniel Hawiger
Antibodies 2024, 13(1), 18; https://doi.org/10.3390/antib13010018 - 11 Mar 2024
Cited by 2 | Viewed by 4509
Abstract
There is tremendous interest in the production of recombinant proteins, particularly bispecific antibodies and antibody–drug conjugates for research and therapeutic use. Here, we demonstrate a highly versatile plasmid system that allows the rapid generation of stable Expi293 cell pools by episomal retention of [...] Read more.
There is tremendous interest in the production of recombinant proteins, particularly bispecific antibodies and antibody–drug conjugates for research and therapeutic use. Here, we demonstrate a highly versatile plasmid system that allows the rapid generation of stable Expi293 cell pools by episomal retention of transfected DNA. By linking protein expression to puromycin resistance through an attenuated internal ribosome entry site, we achieve stable cell pools producing proteins of interest. In addition, split intein–split puromycin-mediated selection of two separate protein expression cassettes allows the stable production of bispecific antibody-like molecules or antibodies with distinct C-terminal heavy chain modifications, such as an antigen on one chain and a sortase tag on the other chain. We also use this novel expression system to generate stable Expi293 cell pools that secrete sortase A Δ59 variant Srt4M. Using these reagents, we prepared a site-specific drug-to-antibody ratio of 1 antibody–siRNA conjugate. We anticipate the simple, robust, and rapid stable protein expression systems described here being useful for a wide variety of applications. Full article
(This article belongs to the Section Antibody Discovery and Engineering)
Show Figures

Figure 1

10 pages, 7031 KiB  
Communication
Peptide Self-Assembly Facilitating DNA Transfection and the Application in Inhibiting Cancer Cells
by Jingyu Wang, Min Ye and Baokuan Zhu
Molecules 2024, 29(5), 932; https://doi.org/10.3390/molecules29050932 - 21 Feb 2024
Viewed by 1865
Abstract
Non-viral vectors have been developing in gene delivery due to their safety and low immunogenicity. But their transfection effect is usually very low, thus limiting the application. Hence, we designed eight peptides (compounds 18). We compared their performances; compound 8 [...] Read more.
Non-viral vectors have been developing in gene delivery due to their safety and low immunogenicity. But their transfection effect is usually very low, thus limiting the application. Hence, we designed eight peptides (compounds 18). We compared their performances; compound 8 had the best transfection efficacy and biocompatibility. The transfection effect was similar with that of PEI, a most-widely-employed commercial transfection reagent. Atomic force microscope (AFM) images showed that the compound could self-assemble and the self-assembled peptide might encapsulate DNA. Based on these results, we further analyzed the inhibitory result in cancer cells and found that compound 8 could partially fight against Hela cells. Therefore, the compound is promising to pave the way for the development of more effective and less toxic transfection vectors. Full article
(This article belongs to the Special Issue Structure and Dynamics of Polymers and Self-Assembled Soft Materials)
Show Figures

Figure 1

15 pages, 13179 KiB  
Article
Chitosan-Based Polymeric Nanoparticles as an Efficient Gene Delivery System to Cross Blood Brain Barrier: In Vitro and In Vivo Evaluations
by Ishaq N. Khan, Shiza Navaid, Walifa Waqar, Deema Hussein, Najeeb Ullah, Muhammad Umar Aslam Khan, Zakir Hussain and Aneela Javed
Pharmaceuticals 2024, 17(2), 169; https://doi.org/10.3390/ph17020169 - 29 Jan 2024
Cited by 25 | Viewed by 4076
Abstract
Significant progress has been made in the field of gene therapy, but effective treatments for brain tumors remain challenging due to their complex nature. Current treatment options have limitations, especially due to their inability to cross the blood-brain barrier (BBB) and precisely target [...] Read more.
Significant progress has been made in the field of gene therapy, but effective treatments for brain tumors remain challenging due to their complex nature. Current treatment options have limitations, especially due to their inability to cross the blood-brain barrier (BBB) and precisely target cancer cells. Therefore options that are safer, more effective, and capable of specifically targeting cancer cells are urgently required as alternatives. This current study aimed to develop highly biocompatible natural biopolymeric chitosan nanoparticles (CNPs) as potential gene delivery vehicles that can cross the BBB and serve as gene or drug delivery vehicles for brain disease therapeutics. The efficiency of the CNPs was evaluated via in vitro transfection of Green Fluorescent Protein (GFP)-tagged plasmid in HEK293-293 and brain cancer MG-U87 cell lines, as well as within in vivo mouse models. The CNPs were prepared via a complex coacervation method, resulting in nanoparticles of approximately 260 nm in size. In vitro cytotoxicity analysis revealed that the CNPs had better cell viability (85%) in U87 cells compared to the chemical transfection reagent (CTR) (72%). Moreover, the transfection efficiency of the CNPs was also higher, as indicated by fluorescent emission microscopy (20.56% vs. 17.79%) and fluorescent-activated cell sorting (53% vs. 27%). In vivo assays using Balb/c mice revealed that the CNPs could efficiently cross the BBB, suggesting their potential as efficient gene delivery vehicles for targeted therapies against brain cancers as well as other brain diseases for which the efficient targeting of a therapeutic load to the brain cells has proven to be a real challenge. Full article
(This article belongs to the Special Issue Drug Therapy for Glioma)
Show Figures

Graphical abstract

14 pages, 2929 KiB  
Article
Automated Mass Photometry of Adeno-Associated Virus Vectors from Crude Cell Extracts
by Christina Wagner, Felix F. Fuchsberger, Bernd Innthaler, Robert Pachlinger, Irene Schrenk, Martin Lemmerer and Ruth Birner-Gruenberger
Int. J. Mol. Sci. 2024, 25(2), 838; https://doi.org/10.3390/ijms25020838 - 9 Jan 2024
Cited by 3 | Viewed by 4044
Abstract
Mass photometry (MP) is a fast and simple analysis method for the determination of the proportions of subpopulations in an AAV sample. It is label-free and requires minimal sample volumes between 5–10 µL, which makes it a promising candidate over orthogonal techniques such [...] Read more.
Mass photometry (MP) is a fast and simple analysis method for the determination of the proportions of subpopulations in an AAV sample. It is label-free and requires minimal sample volumes between 5–10 µL, which makes it a promising candidate over orthogonal techniques such as analytical ultracentrifugation (AUC), cryo-transmission electron microscopy (Cryo-TEM) or charge-detection mass spectrometry (CDMS). However, these methods are limited in their application to purified samples only. Here we developed a purification step based on single-domain monospecific antibody fragments immobilised on either a poly(styrene-divinylbenzene) resin or on magnetic beads prior to MP analysis that allows the quantification of empty, partially filled, full and overfull AAV vectors in crude cell extracts. This is aimed at identifying potentially promising harvest conditions that yield large numbers of filled AAV vectors during the early stages of the viral vector development platform, e.g., the type of transfection reagent used. Furthermore, we provide a direct comparison of the automated and manual handling of the mass photometer with respect to the quantities of AAV subspecies, molar mass of the capsid and payload, and highlight the differences between the “buffer-free” sample measurement and the “buffer-dilution” mode. In addition, we provide information on which candidates to use for calibration and demonstrate the limitations of the mass photometer with respect to the estimation of the capsid titer. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

15 pages, 1039 KiB  
Review
Exploring Various Transfection Approaches and Their Applications in Studying the Regenerative Potential of Dental Pulp Stem Cells
by Hanaa Alkharobi
Curr. Issues Mol. Biol. 2023, 45(12), 10026-10040; https://doi.org/10.3390/cimb45120626 - 13 Dec 2023
Cited by 4 | Viewed by 2089
Abstract
Transfection is a contemporary approach for introducing foreign genetic material into target cells. The effective transport of genetic materials into cells is mostly influenced by (a) the characteristics of the genetic material (quantity and quality), (b) the transfection procedure (incubation time, ratio of [...] Read more.
Transfection is a contemporary approach for introducing foreign genetic material into target cells. The effective transport of genetic materials into cells is mostly influenced by (a) the characteristics of the genetic material (quantity and quality), (b) the transfection procedure (incubation time, ratio of the reagents to the introduced genetic material, and components of cell culture), and (c) targeted cells for transfection (cell origin and cell type). This review summarizes the findings of different studies focusing on various transfection approaches and their applications to explore the regenerative potential of dental pulp stem cells (DPSCs). Several databases, including Scopus, Google Scholar, and PubMed, were searched to obtain the literature for the current review. Different keywords were used as key terms in the search. Approximately 200 articles were retained after removing duplicates from different databases. Articles published in English that discussed different transfection approaches were included. Several sources were excluded because they did not meet the inclusion criteria. Approximately 70 relevant published sources were included in the final stage to achieve the study objectives. This review demonstrated that no single transfection system is applicable to all cases and the various cell types with no side effects. Further studies are needed to focus on optimizing process parameters, decreasing the toxicity and side effects of available transfection techniques, and increasing their efficiencies. Moreover, this review sheds light on the impact of using different valuable transfection approaches to investigate the regenerative potential of DPSCs. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

17 pages, 5488 KiB  
Article
Exploring Parametric and Mechanistic Differences between Expi293FTM and ExpiCHO-STM Cells for Transient Antibody Production Optimization
by Jing Zhou, Guoying Grace Yan, David Cluckey, Caryl Meade, Margaret Ruth, Rhady Sorm, Amy S. Tam, Sean Lim, Constantine Petridis, Laura Lin, Aaron M. D’Antona and Xiaotian Zhong
Antibodies 2023, 12(3), 53; https://doi.org/10.3390/antib12030053 - 10 Aug 2023
Cited by 3 | Viewed by 5892
Abstract
Rapidly producing drug-like antibody therapeutics for lead molecule discovery and candidate optimization is typically accomplished by large-scale transient gene expression technologies (TGE) with cultivated mammalian cells. The TGE methodologies have been extensively developed over the past three decades, yet produce significantly lower yields [...] Read more.
Rapidly producing drug-like antibody therapeutics for lead molecule discovery and candidate optimization is typically accomplished by large-scale transient gene expression technologies (TGE) with cultivated mammalian cells. The TGE methodologies have been extensively developed over the past three decades, yet produce significantly lower yields than the stable cell line approach, facing the technical challenge of achieving universal high expression titers for a broad range of antibodies and therapeutics modalities. In this study, we explored various parameters for antibody production in the TGE cell host Expi293FTM and ExpiCHO-STM with the transfection reagents ExpiFectamineTM and polyethylenimine. We discovered that there are significant differences between Expi293FTM and ExpiCHO-STM cells with regards to DNA complex formation time and ratio, complex formation buffers, DNA complex uptake trafficking routes, responses to dimethyl sulfoxide and cell cycle inhibitors, as well as light-chain isotype expression preferences. This investigation mechanistically dissected the TGE processes and provided a new direction for future transient antibody production optimization. Full article
(This article belongs to the Section Antibody Discovery and Engineering)
Show Figures

Figure 1

Back to TopTop