Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (308)

Search Parameters:
Keywords = transcription atlas

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1257 KiB  
Article
Androgen receptors and Zinc finger (ZNF) Transcription Factors’ Interplay and Their miRNA Regulation in Prostate Cancer Prognosis
by Laura Boldrini, Savana Watts, Noah Schneider, Rithanya Saravanan and Massimo Bardi
Sci 2025, 7(3), 111; https://doi.org/10.3390/sci7030111 - 5 Aug 2025
Abstract
Transcription factors play crucial roles in regulating gene expression, and any dysregulation in their levels could be involved in cancer progression. The role of androgen receptors (AR) and zinc finger (ZNF) proteins in tumors, like prostate cancer (PC), remains poorly understood. Moreover, due [...] Read more.
Transcription factors play crucial roles in regulating gene expression, and any dysregulation in their levels could be involved in cancer progression. The role of androgen receptors (AR) and zinc finger (ZNF) proteins in tumors, like prostate cancer (PC), remains poorly understood. Moreover, due to the multifaceted transcriptional behavior of ARs and ZNFs, their biological role in cancer progression may also depend on the interplay with micro-RNAs (miRNAs). Based on The Cancer Genome Atlas (TCGA) database, we analyzed the expression levels of zinc finger transcripts and ARs in PC. Specifically, exploring their involvement in cancer progression and regulation by miRNAs. The analysis relied on several tools to create a multivariate combination of the original biomarkers to improve their diagnostic efficacy. Multidimensional Scaling (MDS) identified two new dimensions that were entered into a regression analysis to determine the best predictors of overall survival (OS) and disease-free interval (DFI). A combination of both dimensions predicted almost 50% (R2 = 0.46) of the original variance of OS. Kaplan–Meier survival analysis also confirmed the significance of these two dimensions regarding the clinical output. This study showed preliminary evidence that several transcription factor expression levels belonging to the zinc family and related miRNAs can effectively predict patients’ overall PC survivability. Full article
Show Figures

Figure 1

22 pages, 6854 KiB  
Article
Profiling the Expression Level of a Gene from the Caspase Family in Triple-Negative Breast Cancer
by Anna Makuch-Kocka, Janusz Kocki, Jacek Bogucki, Przemysław Kołodziej, Monika Lejman, Karolina Szalast and Anna Bogucka-Kocka
Int. J. Mol. Sci. 2025, 26(15), 7463; https://doi.org/10.3390/ijms26157463 - 1 Aug 2025
Viewed by 123
Abstract
It is believed that caspases may play a significant role in the development of cancer, and the expression levels of genes encoding these proteins may influence the prognosis and clinical course of cancer. Taking into account the information presented, we examined the expression [...] Read more.
It is believed that caspases may play a significant role in the development of cancer, and the expression levels of genes encoding these proteins may influence the prognosis and clinical course of cancer. Taking into account the information presented, we examined the expression profiles of 11 genes from the caspase family in patients diagnosed with triple-negative breast cancer (TNBC). We qualified 29 patients with TNBC. A fragment of the tumor and a fragment of normal tissue surrounding the tumor were collected from each patient. Then, RNA was isolated, and the reverse transcription process was performed. The expression levels of caspase family genes were determined using the real-time PCR method. The obtained data were correlated with clinical data and compared with data from the Cancer Genome Atlas database using the Breast Cancer Gene Expression Miner v4.8 and Ualcan. Based on the results of the conducted research, it can be assumed that the levels of expression of caspase family genes may be correlated with the clinical course of cancer in patients with TNBC, and further research may indicate that profiling the expression levels of these genes may be used in selecting personalized treatment methods. Full article
(This article belongs to the Special Issue Molecular Genetics of Breast Cancer—Recent Progress)
Show Figures

Figure 1

21 pages, 2141 KiB  
Article
Integrating Full-Length and Second-Generation Transcriptomes to Elucidate the ApNPV-Induced Transcriptional Reprogramming in Antheraea pernyi Midgut
by Xinlei Liu, Ying Li, Xinfeng Yang, Xuwei Zhu, Fangang Meng, Yaoting Zhang and Jianping Duan
Insects 2025, 16(8), 792; https://doi.org/10.3390/insects16080792 - 31 Jul 2025
Viewed by 227
Abstract
The midgut of Antheraea pernyi plays a critical role in antiviral defense. However, its transcriptional complexity remains poorly understood. Here, a full-length (FL) transcriptome atlas of A. pernyi midgut was developed by integrating PacBio Iso-Seq and RNA-seq techniques. The transcriptome sequences included 1850 [...] Read more.
The midgut of Antheraea pernyi plays a critical role in antiviral defense. However, its transcriptional complexity remains poorly understood. Here, a full-length (FL) transcriptome atlas of A. pernyi midgut was developed by integrating PacBio Iso-Seq and RNA-seq techniques. The transcriptome sequences included 1850 novel protein-coding genes, 17,736 novel alternative isoforms, 1664 novel long non-coding RNAs (lncRNAs), and 858 transcription factors (TFs). In addition, 2471 alternative splicing (AS) events and 3070 alternative polyadenylation (APA) sites were identified. Moreover, 3426 and 4796 differentially expressed genes (DEGs) and isoforms were identified after ApNPV infection, respectively, besides the differentially expressed lncRNAs (164), TFs (171), and novel isoforms of ApRelish (1) and ApSOCS2 (4). Enrichment analyses showed that KEGG pathways related to metabolism were suppressed, whereas GO terms related to DNA synthesis and replication were induced. Furthermore, the autophagy and apoptosis pathways were significantly enriched among the upregulated genes. Protein–protein interaction network (PPI) analysis revealed the coordinated downregulation of genes involved in mitochondrial ribosomes, V-type and F-type ATPases, and oxidative phosphorylation, indicating the disruption of host energy metabolism and organelle acidification. Moreover, coordinated upregulation of genes associated with cytoplasmic ribosomes was observed, suggesting that the infection by ApNPV interferes with host translational machinery. These results show that ApNPV infection reprograms energy metabolism, biosynthetic processes, and immune response in A. pernyi midgut. Our study provides a foundation for elucidating the mechanisms of A. pernyi–virus interactions, particularly how the viruses affect host defense strategies. Full article
(This article belongs to the Special Issue Genomics and Molecular Biology in Silkworm)
Show Figures

Graphical abstract

18 pages, 1337 KiB  
Article
Dysregulated Alternative Splicing in Breast Cancer Subtypes of RIF1 and Other Transcripts
by Emma Parker, Laura Akintche, Alexandra Pyatnitskaya, Shin-ichiro Hiraga and Anne D. Donaldson
Int. J. Mol. Sci. 2025, 26(15), 7308; https://doi.org/10.3390/ijms26157308 - 29 Jul 2025
Viewed by 285
Abstract
Genome instability is a hallmark of cancer, often driven by mutations and altered expression of genome maintenance factors involved in DNA replication and repair. Rap1 Interacting Factor 1 (RIF1) plays a crucial role in genome stability and is implicated in cancer pathogenesis. Cells [...] Read more.
Genome instability is a hallmark of cancer, often driven by mutations and altered expression of genome maintenance factors involved in DNA replication and repair. Rap1 Interacting Factor 1 (RIF1) plays a crucial role in genome stability and is implicated in cancer pathogenesis. Cells express two RIF1 splice variants, RIF1-Long and RIF1-Short, which differ in their ability to protect cells from DNA replication stress. Here, we investigate differential expression and splicing of RIF1 in cancer cell lines following replication stress and in patients using matched normal and tumour data from The Cancer Genome Atlas (TCGA). Overall RIF1 expression is altered in several cancer types, with increased transcript levels in colon and lung cancers. RIF1 also exhibits distinct splicing patterns, particularly in specific breast cancer subtypes. In Luminal A (LumA), Luminal B (LumB), and HER2-enriched breast cancers (HER2E), RIF1 Exon 31 tends to be excluded, favouring RIF1-Short expression and correlating with poorer clinical outcomes. These breast cancer subtypes also tend to exclude other short exons, suggesting length-dependent splicing dysregulation. Basal breast cancer also shows exon exclusion, but unlike other subtypes, it shows no short-exon bias. Surprisingly, however, in basal breast cancer, RIF1 Exon 31 is not consistently excluded, which may impact prognosis since RIF1-Long protects against replication stress. Full article
(This article belongs to the Special Issue New Advances in Cancer Genomics)
Show Figures

Figure 1

19 pages, 7071 KiB  
Article
Differential Role of CD318 in Tumor Immunity Affecting Prognosis in Colorectal Cancer Compared to Other Adenocarcinomas
by Bhaumik Patel, Marina Curcic, Mohamed Ashraf Eltokhy and Sahdeo Prasad
J. Clin. Med. 2025, 14(14), 5139; https://doi.org/10.3390/jcm14145139 - 19 Jul 2025
Viewed by 391
Abstract
Background/Objectives: CD318 (also known as CDCP1) is a transmembrane protein that is overexpressed in many cancers and contributes to tumor progression, invasion, and metastasis by activating SRC family kinases through phosphorylation. Emerging evidence also suggests that CD318 plays a role in modulating [...] Read more.
Background/Objectives: CD318 (also known as CDCP1) is a transmembrane protein that is overexpressed in many cancers and contributes to tumor progression, invasion, and metastasis by activating SRC family kinases through phosphorylation. Emerging evidence also suggests that CD318 plays a role in modulating the tumor immune microenvironment, although its precise mechanism in tumor progression is still not well understood. Methods: To investigate this, we analyzed the expression and immune-related functions of CD318 using the publicly available data from The Cancer Genome Atlas (TCGA) across colorectal adenocarcinoma (COAD), cervical squamous cell carcinoma (CESC), lung adenocarcinoma (LUAD), and pancreatic adenocarcinoma (PAAD). Results: All four cancers exhibited a high level of CD318 expression. Notably, in CESC, LUAD, and PAAD, plasmin-mediated cleavage of CD318 leads to phosphorylation of SRC and protein kinase C delta (PKCδ), which activates HIF1α and/or p38 MAPK. These downstream effectors translocate to the nucleus and promote the transcriptional upregulation of TGFβ1, fostering an immunosuppressive tumor microenvironment through Treg cell recruitment. In contrast, this signaling cascade appears to be absent in COAD. Instead, our analysis indicate that intact CD318 in COAD interacts with the surface receptors CD96 and CD160, which are found on CD8+ T cells and NK cells. Conclusions: This interaction enhances cytotoxic immune responses in COAD by promoting CD8+ T cell and NK cell activity, offering a possible explanation for the favorable prognosis associated with high CD318 expression in COAD, compared to the poorer outcomes observed in CESC, LUAD, and PAAD. Full article
Show Figures

Figure 1

15 pages, 4716 KiB  
Article
Deletion of Ptpmt1 by αMHC-Cre in Mice Results in Left Ventricular Non-Compaction
by Lei Huang, Maowu Cao, Xiangbin Zhu, Na Li, Can Huang, Kunfu Ouyang and Ze'e Chen
J. Dev. Biol. 2025, 13(3), 25; https://doi.org/10.3390/jdb13030025 - 18 Jul 2025
Viewed by 298
Abstract
Background: Left ventricular non-compaction cardiomyopathy (LVNC) is a congenital heart disease characterized by abnormal prenatal development of the left ventricle that has an aberrantly thick trabecular layer and a thinner compacted myocardial layer. However, the underlying molecular mechanisms of LVNC regulated by mitochondrial [...] Read more.
Background: Left ventricular non-compaction cardiomyopathy (LVNC) is a congenital heart disease characterized by abnormal prenatal development of the left ventricle that has an aberrantly thick trabecular layer and a thinner compacted myocardial layer. However, the underlying molecular mechanisms of LVNC regulated by mitochondrial phosphatase genes remain largely unresolved. Methods: We generated a mouse model with cardiac-specific deletion (CKO) of Ptpmt1, a type of mitochondrial phosphatase gene, using the αMHC-Cre, and investigated the effects of cardiac-specific Ptpmt1 deficiency on cardiac development. Morphological, histological, and immunofluorescent analyses were conducted in Ptpmt1 CKO and littermate controls. A transcriptional atlas was identified by RNA sequencing (RNA-seq) analysis. Results: We found that CKO mice were born at the Mendelian ratio with normal body weights. However, most of the CKO mice died within 24 h after birth, developing spontaneous ventricular tachycardia. Morphological and histological analysis further revealed that newborn CKO mice developed an LVNC phenotype, evidenced by a thicker trabecular layer and a thinner myocardium layer, when compared with the littermate control. We then examined the embryonic hearts and found that such an LVNC phenotype could also be observed in CKO hearts at E15.5 but not at E13.5. We also performed the EdU incorporation assay and demonstrated that cardiac cell proliferation in both myocardium and trabecular layers was significantly reduced in CKO hearts at E15.5, which is also consistent with the dysregulation of genes associated with heart development and cardiomyocyte proliferation in CKO hearts at the same stage, as revealed by both the transcriptome analysis and the quantitative real-time PCR. Deletion of Ptpmt1 in mouse cardiomyocytes also induced an increase in phosphorylated eIF2α and ATF4 levels, indicating a mitochondrial stress response in CKO hearts. Conclusions: Our results demonstrated that Ptpmt1 may play an essential role in regulating left ventricular compaction during mouse heart development. Full article
Show Figures

Figure 1

18 pages, 20761 KiB  
Article
Integrated Meta-Analysis Identifies Keratin Family Genes and Associated Genes as Key Biomarkers and Therapeutic Targets in Metastatic Cutaneous Melanoma
by Sumaila Abubakari, Yeşim Aktürk Dizman and Filiz Karaman
Diagnostics 2025, 15(14), 1770; https://doi.org/10.3390/diagnostics15141770 - 13 Jul 2025
Viewed by 464
Abstract
Background/Objectives: Cutaneous melanoma is one of the aggressive forms of skin cancer originating from melanocytes. The high incidence of melanoma metastasis continues to rise, partly due to the complex nature of the molecular mechanisms driving its progression. While melanomas generally arise from melanocytes, [...] Read more.
Background/Objectives: Cutaneous melanoma is one of the aggressive forms of skin cancer originating from melanocytes. The high incidence of melanoma metastasis continues to rise, partly due to the complex nature of the molecular mechanisms driving its progression. While melanomas generally arise from melanocytes, we investigated whether aberrant keratinocyte differentiation pathways—like cornified envelope formation—discriminate primary melanoma from metastatic melanoma, revealing novel biomarkers in progression. Methods: In the present study, we retrieved four datasets (GSE15605, GSE46517, GSE8401, and GSE7553) associated with primary and metastatic melanoma tissues and identified differentially expressed genes (DEGs). Thereafter, an integrated meta-analysis and functional enrichment analysis of the DEGs were performed to evaluate the molecular mechanisms involved in melanoma metastasis, such as immune cell deconvolution and protein-protein interaction (PPI) network construction. Hub genes were identified based on four topological methods, including ‘Betweenness’, ‘MCC’, ‘Degree’, and ‘Bottleneck’. We validated the findings using the TCGA-SKCM cohort. Drug-gene interactions were evaluated using the DGIdb, whereas structural druggability was assessed using the ProteinPlus and AlphaFold databases. Results: We identified a total of eleven hub genes associated with melanoma progression. These included members of the keratin gene family (e.g., KRT5, KRT6A, KRT6B, etc.). Except for the gene CDH1, all the hub genes were downregulated in metastatic melanoma tissues. From a prognostic perspective, these hub genes were associated with poor prognosis (i.e., unfavorable). Using the Human Protein Atlas (HPA), immunohistochemistry evaluation revealed mostly undetected levels in metastatic melanoma. Additionally, the cornified envelope formation was the most enriched pathway, with a gene ratio of 17/33. The tumor microenvironment (TME) of metastatic melanomas was predominantly enriched in NK cell–associated signatures. Finally, several hub genes demonstrated favorable druggable potential for immunotherapy. Conclusions: Through integrated meta-analysis, this study identifies transcriptional, immunological, and structural pathways to melanoma metastasis and highlights keratin family genes as promising biomarkers for therapeutic targeting. Full article
(This article belongs to the Section Pathology and Molecular Diagnostics)
Show Figures

Figure 1

39 pages, 8177 KiB  
Article
Unveiling Epigenetic Regulatory Elements Associated with Breast Cancer Development
by Marta Jardanowska-Kotuniak, Michał Dramiński, Michal Wlasnowolski, Marcin Łapiński, Kaustav Sengupta, Abhishek Agarwal, Adam Filip, Nimisha Ghosh, Vera Pancaldi, Marcin Grynberg, Indrajit Saha, Dariusz Plewczynski and Michał J. Dąbrowski
Int. J. Mol. Sci. 2025, 26(14), 6558; https://doi.org/10.3390/ijms26146558 - 8 Jul 2025
Viewed by 644
Abstract
Breast cancer affects over 2 million women annually and results in 650,000 deaths. This study aimed to identify epigenetic mechanisms impacting breast cancer-related gene expression, discover potential biomarkers, and present a novel approach integrating feature selection, Natural Language Processing, and 3D chromatin structure [...] Read more.
Breast cancer affects over 2 million women annually and results in 650,000 deaths. This study aimed to identify epigenetic mechanisms impacting breast cancer-related gene expression, discover potential biomarkers, and present a novel approach integrating feature selection, Natural Language Processing, and 3D chromatin structure analysis. We used The Cancer Genome Atlas database with over 800 samples and multi-omics datasets (mRNA, miRNA, DNA methylation) to select 2701 features statistically significant in cancer versus control samples, from an initial 417,486, using the Monte Carlo Feature Selection and Interdependency Discovery algorithm. Classification of cancer vs. control samples on the selected features returned very high accuracy, depending on feature-type and classifier. The cancer samples generally showed lower expression of differentially expressed genes (DEGs) and increased β-values of differentially methylated sites (DMSs). We identified mRNAs whose expression is explained by miRNA expression and β-values of DMSs. We recognized DMSs affecting NRF1 and MXI1 transcription factors binding, causing a disturbance in NKAPL and PITX1 expression, respectively. Our 3D models showed more loosely packed chromatin in cancer. This study highlights numerous possible regulatory dependencies, and the presented bioinformatic approach provides a robust framework for data dimensionality reduction, enabling the identification of key features for further experimental validation. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

26 pages, 3644 KiB  
Article
Temporal Shifts in Hormone Signaling Networks Orchestrate Soybean Floral Development Under Field Conditions: An RNA-Seq Study
by Eszter Virág, Géza Hegedűs, Ágnes Nagy, József Péter Pallos and Barbara Kutasy
Int. J. Mol. Sci. 2025, 26(13), 6455; https://doi.org/10.3390/ijms26136455 - 4 Jul 2025
Viewed by 343
Abstract
Floral ontogeny in soybean (Glycine max) is governed by multilayered regulatory hierarchies that integrate phytohormonal cues with precisely choreographed gene-expression programs. Yet, the transcriptomic architecture underpinning this continuum remains only partially resolved. Here, we generated a strand-specific, high-depth temporal transcriptome atlas [...] Read more.
Floral ontogeny in soybean (Glycine max) is governed by multilayered regulatory hierarchies that integrate phytohormonal cues with precisely choreographed gene-expression programs. Yet, the transcriptomic architecture underpinning this continuum remains only partially resolved. Here, we generated a strand-specific, high-depth temporal transcriptome atlas of soybean inflorescences spanning four morphologically defined stadiums (Stadium 0–Stadium 3). We detected transcriptional activity for 60,889 loci; pairwise stadium contrasts revealed 4000–7000 differentially expressed genes, with the most extensive reprogramming coinciding with the onset of anthesis (Stadium 2). Unsupervised clustering delineated ~600 genes peaking at the pre-anthesis phase (Stadium 1), a cohort enriched for transcriptional regulators and floral organ-identity determinants. Stadium-resolved gene-set enrichment and KEGG mapping uncovered dynamic modulation of canonical hormone-signaling pathways—including auxin, cytokinin, gibberellin, abscisic acid, ethylene, jasmonate, and salicylate circuits—reflecting shifting developmental priorities. Forty-five MADS-box transcription factor genes were expressed; notably, JOINTLESS was strongly induced at anthesis, while the root-predominant factor GmNMH7 exhibited unexpected floral expression, implicating a hitherto unappreciated role in reproductive development. Quantitative RT-PCR of representative loci corroborated RNA-seq measurements. This high-resolution atlas refines our understanding of the hormonal and genetic circuitry of soybean floral morphogenesis, furnishing molecular targets for engineering flowering time and inflorescence architecture under fluctuating environmental conditions. Full article
Show Figures

Figure 1

19 pages, 11390 KiB  
Article
Single-Nucleus Transcriptomics Reveals Glial Metabolic–Immune Rewiring and Intercellular Signaling Disruption in Chronic Migraine
by Shuangyuan Hu, Zili Tang, Shiqi Sun, Lu Liu, Yuyan Wang, Longyao Xu, Jing Yuan, Ying Chen, Mingsheng Sun and Ling Zhao
Biomolecules 2025, 15(7), 942; https://doi.org/10.3390/biom15070942 - 28 Jun 2025
Viewed by 573
Abstract
Chronic migraine (CM) is a debilitating neurological disorder, yet the glial-specific mechanisms underlying its pathophysiology in the trigeminal nucleus caudalis (TNC)—a critical hub for craniofacial pain processing—remain poorly understood. Here, we employed single-nucleus RNA sequencing (snRNA-seq) to resolve cell-type-specific transcriptional landscapes in a [...] Read more.
Chronic migraine (CM) is a debilitating neurological disorder, yet the glial-specific mechanisms underlying its pathophysiology in the trigeminal nucleus caudalis (TNC)—a critical hub for craniofacial pain processing—remain poorly understood. Here, we employed single-nucleus RNA sequencing (snRNA-seq) to resolve cell-type-specific transcriptional landscapes in a nitroglycerin (NTG)-induced CM rat model, with a particular focus on microglia and astrocytes. We identified 19 transcriptional clusters representing nine major cell types, among which reactive microglia (NTG-Mic) and astrocytes (NTG-Asts) were markedly expanded. The NTG-Mic displayed a glycolysis-dominant, complement-enriched state, whereas the NTG-Asts exhibited concurrent activation of amino acid transport and cytokine signaling pathways. Pseudotime trajectory analysis revealed bifurcated glial activation paths, with NTG driving both cell types toward terminal reactive states. Intercellular communication inference uncovered suppressed homeostatic interactions (e.g., CSF1-CSF1R) alongside enhanced proinflammatory signaling (e.g., FGF1-FGFR2, PTN-SDC4), particularly affecting neuron–glia and glia–glia crosstalk. Together, these findings define a high-resolution atlas of glial reprogramming in CM, implicating state-specific metabolic–immune transitions and dysregulated glial communication as potential targets for therapeutic intervention. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Graphical abstract

28 pages, 20246 KiB  
Article
The Transcriptomic Signature of Donkey Ovarian Tissue Revealed by Cross-Species Comparative Analysis at Single-Cell Resolution
by Yu Tian, Yilin Niu, Xinhao Zhang, Tao Wang, Zhe Tian, Xiaoyuan Zhang, Jiachen Guo, Wei Ge, Shuqin Liu, Yujiang Sun, Jianjun Li, Wei Shen, Junjie Wang and Teng Zhang
Animals 2025, 15(12), 1761; https://doi.org/10.3390/ani15121761 - 14 Jun 2025
Viewed by 487
Abstract
Donkeys (Equus asinus) hold significant agricultural value in China, particularly for their hides and meat, which possess notable medicinal and dietary importance. However, their reproductive efficiency remains suboptimal compared with other livestock. Ovarian function is a key determinant of fertility, yet [...] Read more.
Donkeys (Equus asinus) hold significant agricultural value in China, particularly for their hides and meat, which possess notable medicinal and dietary importance. However, their reproductive efficiency remains suboptimal compared with other livestock. Ovarian function is a key determinant of fertility, yet the molecular mechanisms underlying donkey ovarian biology remain largely unexplored. To address this gap, we performed single-cell RNA sequencing of donkey ovaries, generating a high-resolution transcriptomic atlas comprising 17,423 cells. Cross-species comparative analysis revealed a high degree of evolutionary conservation in core ovarian cell types, including endothelial, epithelial, immune, and smooth muscle cells, among vertebrates. In contrast, granulosa and theca cells exhibited distinct transcriptional profiles across species, reflecting lineage-specific adaptations. Notably, we identified key genes with donkey-specific expression patterns, including NR3C1 in endothelial cells, LIPE in granulosa cells, and DHRS9 in theca interna cells. Furthermore, an in vitro cumulus–oocyte complex model demonstrated the critical role of GATM in mammalian oocyte maturation. Collectively, these findings provide a comprehensive characterization of ovarian cell-type conservation and species-specific adaptations, offering key molecular insights into the mechanisms underlying cross-species differences in reproductive efficiency. Full article
(This article belongs to the Section Equids)
Show Figures

Figure 1

28 pages, 7669 KiB  
Article
Voices in Motion: Using I-Poems to Uncover Undergraduate University Students’ Psychosocial Journey and Physical Activity Behaviours
by Chanté Johannes, James Reid and Nicolette Roman
Int. J. Environ. Res. Public Health 2025, 22(6), 901; https://doi.org/10.3390/ijerph22060901 - 5 Jun 2025
Viewed by 614
Abstract
Physical inactivity is a pervasive global public health concern, yet there is limited qualitative research exploring the psychosocial dimensions of physical activity (PA) among undergraduate students at a South African university. Therefore, this study aimed to explore students’ PA participation, by providing insights [...] Read more.
Physical inactivity is a pervasive global public health concern, yet there is limited qualitative research exploring the psychosocial dimensions of physical activity (PA) among undergraduate students at a South African university. Therefore, this study aimed to explore students’ PA participation, by providing insights into the psychosocial factors that shape their experiences. Interviews were conducted with 18 undergraduate university students between July and August 2023. I-poems, a creative qualitative method, were created from interview transcripts by isolating sentences featuring the pronoun “I” and arranging them into poetic stanzas without altering their sequence. This approach amplifies the participants’ voices, offering an authentic window into their lived experiences. Data was coded using the Atlas Ti v.8 software and thematically analysed to generate common themes. The I-poems revealed rich, layered insights from students regarding the psychosocial aspects of PA, highlighting themes such as mental health, motivation and social support. By centring the participants’ “I” narratives, the method foregrounded their voices, enabling a deeper exploration of their embodied PA experiences. This study highlights the potential of I-poems as a creative qualitative method to explore the intricacies of students’ PA journeys. The findings highlight the importance of considering psychosocial factors in understanding PA engagement, offering valuable subjective perspectives for designing contextually relevant and university student-tailored interventions that are suitable. Full article
(This article belongs to the Special Issue Health Behaviors and Mental Health Among College Students)
Show Figures

Figure 1

19 pages, 2458 KiB  
Article
Pan-Cancer Analysis Identifies a Ras-Related GTPase as a Potential Modulator of Cancer
by Hsiang-Yin Hsueh, Kristyn Gumpper-Fedus, Jelmer W. Poelstra, Kenneth L. Pitter and Zobeida Cruz-Monserrate
Int. J. Mol. Sci. 2025, 26(9), 4419; https://doi.org/10.3390/ijms26094419 - 6 May 2025
Viewed by 769
Abstract
Ras signaling regulates many cellular processes in cancer development. While well-known Ras-related oncogenes, such as KRAS, have been extensively explored, the role of other Ras-related genes in cancer remains poorly studied. Dexamethasone-induced Ras-related protein 1 (RASD1), a member of the Ras superfamily, is [...] Read more.
Ras signaling regulates many cellular processes in cancer development. While well-known Ras-related oncogenes, such as KRAS, have been extensively explored, the role of other Ras-related genes in cancer remains poorly studied. Dexamethasone-induced Ras-related protein 1 (RASD1), a member of the Ras superfamily, is widely expressed across various tissues and is involved in inhibiting cell growth and inducing apoptosis, suggesting a potential role as a tumor suppressor. Here, we investigated RASD1 expression across multiple tissues and cancers, utilizing data from The Cancer Genome Atlas (TCGA), Human Protein Atlas, and Genotype-Tissue Expression (GTEx) databases. Our analysis revealed a significant downregulation of RASD1 mRNA expression in several cancer types compared to normal tissues, correlating with low levels of promoter methylation. Interestingly, high RASD1 expression correlated with a favorable prognosis in multiple cancers. Immune cell infiltration analysis indicated that elevated RASD1 expression is associated with an increased infiltration of CD4+ T cells and myeloid-derived dendritic cells in cancer. Furthermore, the expression of genes exhibiting similar expression patterns as RASD1 suggest that RASD1 may play a role in interleukin-4-mediated apoptosis and could regulate the transcription of the phosphatase and tensin homolog (PTEN) gene. Overall, these findings suggest that RASD1 may modulate immune signaling and tumor suppressive pathways. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

20 pages, 7995 KiB  
Article
Reduced HLA-I Transcript Levels and Increased Abundance of a CD56dim NK Cell Signature Are Associated with Improved Survival in Lower-Grade Gliomas
by Md Abdullah Al Kamran Khan, Lorenza Peel, Alexander J. Sedgwick, Yuhan Sun, Julian P. Vivian, Alexandra J. Corbett, Riccardo Dolcetti, Theo Mantamadiotis and Alexander D. Barrow
Cancers 2025, 17(9), 1570; https://doi.org/10.3390/cancers17091570 - 5 May 2025
Viewed by 877
Abstract
Background: Human leukocyte antigen class I (HLA-I) plays a pivotal role in shaping anti-tumour immunity by influencing the functionality of T cells and natural killer (NK) cells within the tumour microenvironment. Methods: Here, we explored the transcriptional landscape of HLA-I molecules across various [...] Read more.
Background: Human leukocyte antigen class I (HLA-I) plays a pivotal role in shaping anti-tumour immunity by influencing the functionality of T cells and natural killer (NK) cells within the tumour microenvironment. Methods: Here, we explored the transcriptional landscape of HLA-I molecules across various solid cancer transcriptomes from The Cancer Genome Atlas (TCGA) database and assessed the impact of HLA-I expression on the clinical significance of tumour-infiltrating CD56dim and CD56bright NK cells. Results: Our analysis revealed that high HLA-I expression correlated with reduced patient survival in the TCGA lower-grade glioma (LGG) cohort, with this association varying by histopathological subtype. We then estimated the relative abundance of 23 immune and stromal cell signatures in LGG transcriptomes using a cellular deconvolution approach, which revealed that LGG patients with low HLA-I expression and high CD56dim NK cell abundance had better survival outcomes compared to those with high HLA-I expression and low CD56dim NK cell abundance. Furthermore, HLA-I expression was positively correlated with various inhibitory NK cell receptors and negatively correlated with activating NK cell receptors, particularly those within the killer cell lectin-like receptor (KLR) gene family. High co-expression of HLA-E and NKG2A predicted poor survival outcomes in LGG patients, whereas low HLA-E and high NKG2C/E abundance predicted more favourable outcomes, suggesting a potential modulatory role of HLA-I on the tumour-infiltrating cytotoxic CD56dim NK cell subset. Conclusions: Overall, our study unveils a potential role for deregulated HLA-I expression in modulating the clinical impact of glioma-infiltrating CD56dim NK cells. These findings lay the foundation for future in-depth experimental studies to investigate the underlying mechanisms. Full article
Show Figures

Figure 1

13 pages, 2446 KiB  
Review
Using the Allen Brain Cell Atlas of the Human Brain to Gain Insights into C-Terminal-Binding Protein 1 (CtBP1)’s Potential Function
by Suhjin Lee and Uthayashanker R. Ezekiel
Biologics 2025, 5(2), 14; https://doi.org/10.3390/biologics5020014 - 5 May 2025
Viewed by 886
Abstract
C-terminal-binding proteins (CtBPs) dimerize and function predominantly as transcriptional corepressors by recruiting various chromatin-modifying factors to promoter-bound repressors. Hypotonia, ataxia, developmental delay, and tooth enamel defects syndrome (HADDTS) is a recently discovered neurodevelopmental disorder resulting from a heterozygous missense mutation in CTBP1. [...] Read more.
C-terminal-binding proteins (CtBPs) dimerize and function predominantly as transcriptional corepressors by recruiting various chromatin-modifying factors to promoter-bound repressors. Hypotonia, ataxia, developmental delay, and tooth enamel defects syndrome (HADDTS) is a recently discovered neurodevelopmental disorder resulting from a heterozygous missense mutation in CTBP1. It is often associated with the early onset of profound cerebellar atrophy in patients. Allen Institute’s Allen Brain Cell (ABC) atlas of human brain data was used to localize CTBP1 expression in the brain to elucidate the etiology of HADDTS. Based on the ABC atlas, CTBP1 is highly expressed in the upper rhombic lip supercluster, which gives rise to cerebellar cells and provides insights into the cerebellar pathophysiology observed in HADDTS patients. Full article
Show Figures

Figure 1

Back to TopTop