Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = transannular interactions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1997 KiB  
Article
Bis-Iridoid Glycosides and Triterpenoids from Kolkwitzia amabilis and Their Potential as Inhibitors of ACC1 and ACL
by Jiang Wan, Ze-Yu Zhao, Can Wang, Chun-Xiao Jiang, Ying-Peng Tong, Yi Zang, Yeun-Mun Choo, Jia Li and Jin-Feng Hu
Molecules 2024, 29(24), 5980; https://doi.org/10.3390/molecules29245980 - 18 Dec 2024
Cited by 3 | Viewed by 906
Abstract
A comprehensive phytochemical investigation of the twigs/leaves and flower buds of Kolkwitzia amabilis, a rare deciduous shrub native to China, led to the isolation of 39 structurally diverse compounds. These compounds include 11 iridoid glycosides (14 and 7 [...] Read more.
A comprehensive phytochemical investigation of the twigs/leaves and flower buds of Kolkwitzia amabilis, a rare deciduous shrub native to China, led to the isolation of 39 structurally diverse compounds. These compounds include 11 iridoid glycosides (14 and 713), 20 triterpenoids (5, 6, and 1431), and 8 phenylpropanoids (3239). Among these, amabiliosides A (1) and B (2) represent previously undescribed bis-iridoid glycosides, while amabiliosides C (3) and D (4) feature a unique bis-iridoid-monoterpenoid indole alkaloid scaffold with a tetrahydro-β-carboline-5-carboxylic acid moiety. Amabiliacids A (5) and B (6) are 24-nor-ursane-type triterpenoids characterized by an uncommon ∆11,13(18) transannular double bond. Their chemical structures and absolute configurations were elucidated through spectroscopic data and electronic circular dichroism analyses. Compound 2 exhibited a moderate inhibitory effect against acetyl CoA carboxylase 1 (ACC1), with an IC50 value of 9.6 μM. Lonicejaposide C (8), 3β-O-trans-caffeoyl-olean-12-en-28-oic acid (29), and (23E)-coumaroylhederagenin (31) showed notable inhibitory effects on ATP-citrate lyase (ACL), with IC50 values of 3.6, 1.6, and 4.7 μM, respectively. Additionally, 3β-acetyl-ursolic acid (17) demonstrated dual inhibitory activity against both ACC1 and ACL, with IC50 values of 10.3 and 2.0 μM, respectively. The interactions of the active compounds with ACC1 and ACL enzymes were examined through molecular docking studies. From a chemotaxonomic perspective, the isolation of bis-iridoid glycosides in this study may aid in clarifying the taxonomic relationship between the genera Kolkwitzia and Lonicera within the Caprifoliaceae family. These findings highlight the importance of conserving plant species with unique and diverse secondary metabolites, which could serve as potential sources of new therapeutic agents for treating ACC1/ACL-associated diseases. Full article
(This article belongs to the Special Issue Terpenes, Steroids and Their Derivatives (2nd Edition) )
Show Figures

Graphical abstract

12 pages, 3364 KiB  
Article
Computational Evaluation of N-Based Transannular Interactions in Some Model Fused Medium-Sized Heterocyclic Systems and Implications for Drug Design
by Renate Griffith and John B. Bremner
Molecules 2023, 28(4), 1631; https://doi.org/10.3390/molecules28041631 - 8 Feb 2023
Cited by 5 | Viewed by 1816
Abstract
As part of a project on fused medium-sized ring systems as potential drugs, we have previously demonstrated the usefulness of Density Functional Theory (DFT) to evaluate amine nitrogen-based transannular interactions across the central 10-membered ring in the bioactive dibenzazecine alkaloid, protopine. A range [...] Read more.
As part of a project on fused medium-sized ring systems as potential drugs, we have previously demonstrated the usefulness of Density Functional Theory (DFT) to evaluate amine nitrogen-based transannular interactions across the central 10-membered ring in the bioactive dibenzazecine alkaloid, protopine. A range of related hypothetical systems have been investigated, together with transannular interactions involving ring-embedded imino or azo group nitrogens and atoms or groups (Y) across the ring. Electrostatic potential energies mapped onto electron density surfaces in the different ring conformations were evaluated in order to characterise these conformations. Unexpectedly, the presence of sp2 hybridised nitrogen atoms in the medium-sized rings did not influence the conformations appreciably. The strength and type of the NY interactions are determined primarily by the nature of Y. This is also the case when the substituent on the interacting nitrogen is varied from CH3 (protopine) to H or OH. With Y = BOH, very strong interactions were observed in protopine analogues, as well as in rings incorporating imino or azo groups. Strong to moderate interactions were observed with Y = CS, CO and SO in all ring systems. Weaker interactions were observed with Y = S, O and weaker ones again with an sp3 hybridised carbon (Y = CH2). The transannular interactions can influence conformational preferencing and shape and change electron distributions at key sites, which theoretically could modify properties of the molecules while providing new or enhanced sites for biological target interactions, such as the H or OH substituent. The prediction of new strong transannular interaction types such as with Y = BOH and CS should be helpful in informing priorities for synthesis and other experimental studies. Full article
Show Figures

Graphical abstract

9 pages, 2020 KiB  
Article
Controlling Charge Transport in Molecular Wires through Transannular π–π Interaction
by Jianjian Song, Jianglin Zhu, Zhaoyong Wang and Gang Liu
Materials 2022, 15(21), 7801; https://doi.org/10.3390/ma15217801 - 4 Nov 2022
Cited by 1 | Viewed by 1848
Abstract
This paper describes the influence of the transannular π–π interaction in controlling the carrier transport in molecular wires by employing the STM break junction technique. Five pentaphenylene-based molecular wires that contained [2.2]paracyclophane-1,9-dienes (PCD) as the building block were prepared as model compounds. Functional [...] Read more.
This paper describes the influence of the transannular π–π interaction in controlling the carrier transport in molecular wires by employing the STM break junction technique. Five pentaphenylene-based molecular wires that contained [2.2]paracyclophane-1,9-dienes (PCD) as the building block were prepared as model compounds. Functional substituents with different electronic properties, ranging from strong acceptors to strong donors, were attached to the top parallel aromatic ring and used as a gate. It was found that the carrier transport features of these molecular wires, such as single-molecule conductance and a charge-tunneling barrier, can be systematically controlled through the transannular π–π interaction. Full article
(This article belongs to the Special Issue Advanced Science and Technology of Polymer Matrix Nanomaterials)
Show Figures

Figure 1

11 pages, 1717 KiB  
Article
Seven Conformations of the Macrocycle Cyclododecanone Unveiled by Microwave Spectroscopy
by Ecaterina Burevschi and M. Eugenia Sanz
Molecules 2021, 26(17), 5162; https://doi.org/10.3390/molecules26175162 - 26 Aug 2021
Cited by 8 | Viewed by 3778
Abstract
The physicochemical properties and reactivity of macrocycles are critically shaped by their conformations. In this work, we have identified seven conformations of the macrocyclic ketone cyclododecanone using chirped-pulse Fourier transform microwave spectroscopy in combination with ab initio and density functional theory calculations. Cyclododecanone [...] Read more.
The physicochemical properties and reactivity of macrocycles are critically shaped by their conformations. In this work, we have identified seven conformations of the macrocyclic ketone cyclododecanone using chirped-pulse Fourier transform microwave spectroscopy in combination with ab initio and density functional theory calculations. Cyclododecanone is strongly biased towards adopting a square configuration of the heavy atom framework featuring three C–C bonds per side. The substitution and effective structures of this conformation have been determined through the observation of its 13C isotopologues. The minimisation of transannular interactions and, to a lesser extent, HCCH eclipsed configurations drive conformational preferences. Our results contribute to a better understanding of the intrinsic forces mediating structural choices in macrocycles. Full article
Show Figures

Graphical abstract

28 pages, 10458 KiB  
Review
Synthesis of Medium-Sized Heterocycles by Transition-Metal-Catalyzed Intramolecular Cyclization
by Mickael Choury, Alexandra Basilio Lopes, Gaëlle Blond and Mihaela Gulea
Molecules 2020, 25(14), 3147; https://doi.org/10.3390/molecules25143147 - 9 Jul 2020
Cited by 66 | Viewed by 8279
Abstract
Medium-sized heterocycles (with 8 to 11 atoms) constitute important structural components of several biologically active natural compounds and represent promising scaffolds in medicinal chemistry. However, they are under-represented in the screening of chemical libraries as a consequence of being difficult to access. In [...] Read more.
Medium-sized heterocycles (with 8 to 11 atoms) constitute important structural components of several biologically active natural compounds and represent promising scaffolds in medicinal chemistry. However, they are under-represented in the screening of chemical libraries as a consequence of being difficult to access. In particular, methods involving intramolecular bond formation are challenging due to unfavorable enthalpic and entropic factors, such as transannular interactions and conformational constraints. The present review focuses on the synthesis of medium-sized heterocycles by transition-metal-catalyzed intramolecular cyclization, which despite its drawbacks remains a straightforward and attractive synthesis strategy. The obtained heterocycles differ in their nature, number of heteroatoms, and ring size. The methods are classified according to the metal used (palladium, copper, gold, silver), then subdivided according to the type of bond formed, namely carbon–carbon or carbon–heteroatom. Full article
(This article belongs to the Special Issue Advances in Cross-Coupling Reactions)
Show Figures

Figure 1

16 pages, 6164 KiB  
Article
Mechanism of Reactions of 1-Substituted Silatranes and Germatranes, 2,2-Disubstituted Silocanes and Germocanes, 1,1,1-Trisubstituted Hyposilatranes and Hypogermatranes with Alcohols (Methanol, Ethanol): DFT Study
by Denis Chachkov, Rezeda Ismagilova and Yana Vereshchagina
Molecules 2020, 25(12), 2803; https://doi.org/10.3390/molecules25122803 - 17 Jun 2020
Cited by 8 | Viewed by 2928
Abstract
The mechanism of reactions of silatranes and germatranes, and their bicyclic and monocyclic analogues with one molecule of methanol or ethanol, was studied at the Density Functional Theory (DFT) B3PW91/6-311++G(df,p) level of theory. Reactions of 1-substituted sil(germ)atranes, 2,2-disubstituted sil(germ)ocanes, and 1,1,1-trisubstituted hyposil(germ)atranes with [...] Read more.
The mechanism of reactions of silatranes and germatranes, and their bicyclic and monocyclic analogues with one molecule of methanol or ethanol, was studied at the Density Functional Theory (DFT) B3PW91/6-311++G(df,p) level of theory. Reactions of 1-substituted sil(germ)atranes, 2,2-disubstituted sil(germ)ocanes, and 1,1,1-trisubstituted hyposil(germ)atranes with alcohol (methanol, ethanol) proceed in one step through four-center transition states followed by the opening of a silicon or germanium skeleton and the formation of products. According to quantum chemical calculations, the activation energies and Gibbs energies of activation of reactions with methanol and ethanol are close, their values decrease in the series of atranes–ocanes–hypoatranes for interactions with both methanol and ethanol. The reactions of germanium-containing derivatives are characterized by lower activation energies in comparison with the reactions of corresponding silicon-containing compounds. The annular configurations of the product molecules with electronegative substituents are stabilized by the transannular N→X (X = Si, Ge) bond and different intramolecular hydrogen contacts with the participation of heteroatoms of substituents at the silicon or germanium. Full article
(This article belongs to the Special Issue Structure and Conformational Analysis of Heterocyclic Compounds)
Show Figures

Graphical abstract

14 pages, 606 KiB  
Article
Homoconjugation vs. Exciton Coupling in Chiral α,β-Unsaturated Bicyclo[3.3.1]nonane Dinitrile and Carboxylic Acids
by Gintautas Bagdžiūnas, Eugenijus Butkus and Sigitas Stončius
Molecules 2014, 19(7), 9893-9906; https://doi.org/10.3390/molecules19079893 - 8 Jul 2014
Cited by 4 | Viewed by 7444
Abstract
The chiroptical properties of enantiomerically pure bicyclo[3.3.1]nona-2,6-diene-2,6-dicarbonitrile and related acids were studied by circular dichroism spectroscopy and theoretical computations. A consideration of the molecular structure of the synthesized difunctional compounds revealed that chromophores are predisposed to transannular through-space interaction due to a favourable [...] Read more.
The chiroptical properties of enantiomerically pure bicyclo[3.3.1]nona-2,6-diene-2,6-dicarbonitrile and related acids were studied by circular dichroism spectroscopy and theoretical computations. A consideration of the molecular structure of the synthesized difunctional compounds revealed that chromophores are predisposed to transannular through-space interaction due to a favourable conformation of the bicyclic skeleton and a rather small interchromophoric distance. Evidence for non-exciton-type coupling between the two acrylonitrile and acrylate moieties in 3 and 4, respectively, was obtained by chiroptical spectroscopy and DFT calculations. Full article
(This article belongs to the Special Issue Dynamic Stereochemistry)
Show Figures

Figure 1

Back to TopTop