Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = trans-prenyltransferases

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2330 KiB  
Article
Functional Prediction of trans-Prenyltransferases Reveals the Distribution of GFPPSs in Species beyond the Brassicaceae Clade
by Jing Zhang, Yihua Ma, Qingwen Chen, Mingxia Yang, Deyu Feng, Fei Zhou, Guodong Wang and Chengyuan Wang
Int. J. Mol. Sci. 2022, 23(16), 9471; https://doi.org/10.3390/ijms23169471 - 22 Aug 2022
Cited by 2 | Viewed by 2361
Abstract
Terpenoids are the most diverse class of plant primary and specialized metabolites, and trans-prenyltransferases (trans-PTs) are the first branch point to synthesize precursors of various chain lengths for further metabolism. Whereas the catalytic mechanism of the enzyme is known, there [...] Read more.
Terpenoids are the most diverse class of plant primary and specialized metabolites, and trans-prenyltransferases (trans-PTs) are the first branch point to synthesize precursors of various chain lengths for further metabolism. Whereas the catalytic mechanism of the enzyme is known, there is no reliable method for precisely predicting the functions of trans-PTs. With the exponentially increasing number of available trans-PTs genes in public databases, an in silico functional prediction method for this gene family is urgently needed. Here, we present PTS-Pre, a web tool developed on the basis of the “three floors” model, which shows an overall 86% prediction accuracy for 141 experimentally determined trans-PTs. The method was further validated by in vitro enzyme assays for randomly selected trans-PTs. In addition, using this method, we identified nine new GFPPSs from different plants which are beyond the previously reported Brassicaceae clade, suggesting these genes may have occurred via convergent evolution and are more likely lineage-specific. The high accuracy of our blind prediction validated by enzymatic assays suggests that PTS-Pre provides a convenient and reliable method for genome-wide functional prediction of trans-PTs enzymes and will surely benefit the elucidation and metabolic engineering of terpenoid biosynthetic pathways. Full article
Show Figures

Graphical abstract

18 pages, 3735 KiB  
Article
Effect of Developmental Stages on Genes Involved in Middle and Downstream Pathway of Volatile Terpene Biosynthesis in Rose Petals
by Ying Kong, Huan Wang, Lixin Lang, Xiaoying Dou and Jinrong Bai
Genes 2022, 13(7), 1177; https://doi.org/10.3390/genes13071177 - 30 Jun 2022
Cited by 8 | Viewed by 2519
Abstract
Terpenoids are economically and ecologically important compounds, and they are vital constituents in rose flower fragrance and rose essential oil. The terpene synthase genes (TPSs), trans-prenyltransferases genes (TPTs), NUDX1 are involved in middle and downstream pathway of volatile terpene biosynthesis in rose [...] Read more.
Terpenoids are economically and ecologically important compounds, and they are vital constituents in rose flower fragrance and rose essential oil. The terpene synthase genes (TPSs), trans-prenyltransferases genes (TPTs), NUDX1 are involved in middle and downstream pathway of volatile terpene biosynthesis in rose flowers. We identified 7 complete RcTPTs, 49 complete RcTPSs, and 9 RcNUDX1 genes in the genome of Rosachinensis. During the flower opening process of butterfly rose (Rosachinensis ‘Mutabilis’, MU), nine RcTPSs expressed in the petals of opening MU flowers exhibited two main expression trends, namely high and low, in old and fresh petals. Five short-chain petal-expressed RcTPTs showed expression patterns corresponding to RcTPSs. Analysis of differential volatile terpenes and differential expressed genes indicated that higher emission of geraniol from old MU petals might be related to the RcGPPS expression. Comprehensive analysis of volatile emission, sequence structure, micro-synteny and gene expression suggested that RcTPS18 may encode (E,E)-α-farnesene synthase. These findings may be useful for elucidating the molecular mechanism of terpenoid metabolism in rose and are vital for future studies on terpene regulation. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

19 pages, 8892 KiB  
Article
The Predicted Functional Compartmentation of Rice Terpenoid Metabolism by Trans-Prenyltransferase Structural Analysis, Expression and Localization
by Min Kyoung You, Yeo Jin Lee, Ji Su Yu and Sun-Hwa Ha
Int. J. Mol. Sci. 2020, 21(23), 8927; https://doi.org/10.3390/ijms21238927 - 25 Nov 2020
Cited by 7 | Viewed by 3307
Abstract
Most terpenoids are derived from the basic terpene skeletons of geranyl pyrophosphate (GPP, C10), farnesyl-PP (FPP, C15) and geranylgeranyl-PP (GGPP, C20). The trans-prenyltransferases (PTs) mediate the sequential head-to-tail condensation of an isopentenyl-PP (C5) with [...] Read more.
Most terpenoids are derived from the basic terpene skeletons of geranyl pyrophosphate (GPP, C10), farnesyl-PP (FPP, C15) and geranylgeranyl-PP (GGPP, C20). The trans-prenyltransferases (PTs) mediate the sequential head-to-tail condensation of an isopentenyl-PP (C5) with allylic substrates. The in silico structural comparative analyses of rice trans-PTs with 136 plant trans-PT genes allowed twelve rice PTs to be identified as GGPS_LSU (OsGGPS1), homomeric G(G)PS (OsGPS) and GGPS_SSU-II (OsGRP) in Group I; two solanesyl-PP synthase (OsSPS2 and 3) and two polyprenyl-PP synthases (OsSPS1 and 4) in Group II; and five FPSs (OsFPS1, 2, 3, 4 and 5) in Group III. Additionally, several residues in “three floors” for the chain length and several essential domains for enzymatic activities specifically varied in rice, potentiating evolutionarily rice-specific biochemical functions of twelve trans-PTs. Moreover, expression profiling and localization patterns revealed their functional compartmentation in rice. Taken together, we propose the predicted topology-based working model of rice PTs with corresponding terpene metabolites: GPP/GGPPs mainly in plastoglobuli, SPPs in stroma, PPPs in cytosol, mitochondria and chloroplast and FPPs in cytosol. Our findings could be suitably applied to metabolic engineering for producing functional terpene metabolites in rice systems. Full article
(This article belongs to the Special Issue Biological Networks of Specialized Metabolites and Plants)
Show Figures

Figure 1

13 pages, 1842 KiB  
Article
Identification and Characterization of trans-Isopentenyl Diphosphate Synthases Involved in Herbivory-Induced Volatile Terpene Formation in Populus trichocarpa
by Nathalie D. Lackus, Nora P. Petersen, Raimund Nagel, Axel Schmidt, Sandra Irmisch, Jonathan Gershenzon and Tobias G. Köllner
Molecules 2019, 24(13), 2408; https://doi.org/10.3390/molecules24132408 - 29 Jun 2019
Cited by 15 | Viewed by 3935
Abstract
In response to insect herbivory, poplar releases a blend of volatiles that plays important roles in plant defense. Although the volatile bouquet is highly complex and comprises several classes of compounds, it is dominated by mono- and sesquiterpenes. The most common precursors for [...] Read more.
In response to insect herbivory, poplar releases a blend of volatiles that plays important roles in plant defense. Although the volatile bouquet is highly complex and comprises several classes of compounds, it is dominated by mono- and sesquiterpenes. The most common precursors for mono- and sesquiterpenes, geranyl diphosphate (GPP) and (E,E)-farnesyl diphosphate (FPP), respectively, are in general produced by homodimeric or heterodimeric trans-isopentenyl diphosphate synthases (trans-IDSs) that belong to the family of prenyltransferases. To understand the molecular basis of herbivory-induced terpene formation in poplar, we investigated the trans-IDS gene family in the western balsam poplar Populus trichocarpa. Sequence comparisons suggested that this species possesses a single FPP synthase gene (PtFPPS1) and four genes encoding two large subunits (PtGPPS1.LSU and PtGPPS2.LSU) and two small subunits (PtGPPS.SSU1 and PtGPPS.SSU2) of GPP synthases. Transcript accumulation of PtGPPS1.LSU and PtGPPS.SSU1 was significantly upregulated upon leaf herbivory, while the expression of PtFPPS1, PtGPPS2.LSU, and PtGPPS.SSU2 was not influenced by the herbivore treatment. Heterologous expression and biochemical characterization of recombinant PtFPPS1, PtGPPS1.LSU, and PtGPPS2.LSU confirmed their respective IDS activities. Recombinant PtGPPS.SSU1 and PtGPPS.SSU2, however, had no enzymatic activity on their own, but PtGPPS.SSU1 enhanced the GPP synthase activities of PtGPPS1.LSU and PtGPPS2.LSU in vitro. Altogether, our data suggest that PtGPPS1.LSU and PtGPPS2.LSU in combination with PtGPPS.SSU1 may provide the substrate for herbivory-induced monoterpene formation in P. trichocarpa. The sole FPP synthase PtFPPS1 likely produces FPP for both primary and specialized metabolism in this plant species. Full article
(This article belongs to the Special Issue Plant Isoprenoids)
Show Figures

Figure 1

Back to TopTop