Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = train-bridge multi-body system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2364 KB  
Article
Braking Performance and Response Analysis of Trains on Bridges Under Seismic Excitation
by Yuanqing Lu, Xiaonan Xie, Hongkai Ma and Ping Xiang
Appl. Sci. 2025, 15(12), 6799; https://doi.org/10.3390/app15126799 - 17 Jun 2025
Viewed by 738
Abstract
Earthquakes can trigger emergency braking in urban rail systems, yet the combined effect of braking and ground motion on train–bridge safety remains poorly quantified. Using the Wuxi Metro Line S1 (160 km/h initial speed) on a ten-span simply supported bridge as a case [...] Read more.
Earthquakes can trigger emergency braking in urban rail systems, yet the combined effect of braking and ground motion on train–bridge safety remains poorly quantified. Using the Wuxi Metro Line S1 (160 km/h initial speed) on a ten-span simply supported bridge as a case study, we build a multi-body dynamic subway model coupled to a finite element track–bridge model with non-linear Hertz wheel–rail contact. Under the design-basis earthquake (PGA ≈ 0.10 g), the train’s derailment coefficient and lateral car body acceleration rise by 37% and 45%, while the bridge’s lateral and vertical accelerations increase by 62% and 30%, respectively. Introducing a constant emergency brake deceleration of 1.2 m/s2 cuts those train-side peaks by 20–25% and lowers the bridge’s lateral acceleration by 18%. The results show that timely braking not only protects passengers but also mitigates seismic demand on the structure, offering quantitative guidance for urban rail emergency protocols in earthquake-prone regions. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

32 pages, 13506 KB  
Article
VR Co-Lab: A Virtual Reality Platform for Human–Robot Disassembly Training and Synthetic Data Generation
by Yashwanth Maddipatla, Sibo Tian, Xiao Liang, Minghui Zheng and Beiwen Li
Machines 2025, 13(3), 239; https://doi.org/10.3390/machines13030239 - 17 Mar 2025
Cited by 3 | Viewed by 3063
Abstract
This research introduces a virtual reality (VR) training system for improving human–robot collaboration (HRC) in industrial disassembly tasks, particularly for e-waste recycling. Conventional training approaches frequently fail to provide sufficient adaptability, immediate feedback, or scalable solutions for complex industrial workflows. The implementation leverages [...] Read more.
This research introduces a virtual reality (VR) training system for improving human–robot collaboration (HRC) in industrial disassembly tasks, particularly for e-waste recycling. Conventional training approaches frequently fail to provide sufficient adaptability, immediate feedback, or scalable solutions for complex industrial workflows. The implementation leverages Quest Pro’s body-tracking capabilities to enable ergonomic, immersive interactions with planned eye-tracking integration for improved interactivity and accuracy. The Niryo One robot aids users in hands-on disassembly while generating synthetic data to refine robot motion planning models. A Robot Operating System (ROS) bridge enables the seamless simulation and control of various robotic platforms using Unified Robotics Description Format (URDF) files, bridging virtual and physical training environments. A Long Short-Term Memory (LSTM) model predicts user interactions and robotic motions, optimizing trajectory planning and minimizing errors. Monte Carlo dropout-based uncertainty estimation enhances prediction reliability, ensuring adaptability to dynamic user behavior. Initial technical validation demonstrates the platform’s potential, with preliminary testing showing promising results in task execution efficiency and human–robot motion alignment, though comprehensive user studies remain for future work. Limitations include the lack of multi-user scenarios, potential tracking inaccuracies, and the need for further real-world validation. This system establishes a sandbox training framework for HRC in disassembly, leveraging VR and AI-driven feedback to improve skill acquisition, task efficiency, and training scalability across industrial applications. Full article
Show Figures

Figure 1

14 pages, 8496 KB  
Article
Evaluation of the Dynamic Amplification Factors of a Monorail Tourism Transit System Based on Probability Statistics
by Fengqi Guo, Chenjia Li, Qiaoyun Liao, Yongfeng Yan, Changxing Wu and Liqiang Jiang
Mathematics 2024, 12(8), 1221; https://doi.org/10.3390/math12081221 - 18 Apr 2024
Cited by 2 | Viewed by 1366
Abstract
The straddle monorail tourist transportation system (MTTS) has developed rapidly in recent years, and its structure is an elevated steel structure with a beam–column system, and the design is executed according to the Safety Code for Large Amusement Rides (GB 8408-2018). However, the [...] Read more.
The straddle monorail tourist transportation system (MTTS) has developed rapidly in recent years, and its structure is an elevated steel structure with a beam–column system, and the design is executed according to the Safety Code for Large Amusement Rides (GB 8408-2018). However, the impact coefficient value of this code is deemed partially unreasonable. Based on this, relying on the Seven Colors Yunnan Happy World project, the dynamic response test is carried out; using the finite element (FEM) software ANSYS (2021) and multibody dynamics (MBD) software SIMPACK (2021x) combined with the monorail unevenness spectra based on the measured monorail, the straddle monorail vehicle–bridge coupling vibration model is established, and mutual verification is carried out with the measured data. A continuous random variable probability model is adopted for the regularity study of impact coefficient samples, combined with probability statistics and the function fitting method to analyse the calculation results and derive the MTTS displacement impact coefficient calculation formula with beam span and driving speed as variables. The results show that the calculated values of the finite element model are in good agreement with the measured data, and the MTTS impact coefficients conform to the extreme value I-type distribution in the probability distribution law, which is inversely proportional to the span and is directly proportional to the traveling speed. Considering a multi-factor MTTS displacement impact coefficient fitting formula of high fit can better reflect the impact coefficient, monorail girder span, and train speed of the interrelationship for related research and design reference, in order to ensure safety and, at the same time, to improve the economy. Full article
(This article belongs to the Special Issue Model and Simulation in Structural Engineering)
Show Figures

Figure 1

23 pages, 8993 KB  
Article
Application of Vehicle-Based Indirect Structural Health Monitoring Method to Railway Bridges—Simulation and In Situ Test
by Michael Reiterer, Lara Bettinelli, Janez Schellander, Andreas Stollwitzer and Josef Fink
Appl. Sci. 2023, 13(19), 10928; https://doi.org/10.3390/app131910928 - 2 Oct 2023
Cited by 5 | Viewed by 2194
Abstract
In recent years, the vehicle-based indirect Structural Health Monitoring (iSHM) method has been increasingly used to identify the dynamic characteristics of railway bridges during train crossings, and it has been shown that this method has several advantages compared to traditional SHM methods. A [...] Read more.
In recent years, the vehicle-based indirect Structural Health Monitoring (iSHM) method has been increasingly used to identify the dynamic characteristics of railway bridges during train crossings, and it has been shown that this method has several advantages compared to traditional SHM methods. A major advantage is that sensors are just mounted on the vehicle, and no sensors or data acquisition systems need to be installed on the railway bridge. In this paper, the application of the vehicle-based iSHM method is demonstrated numerically and experimentally for determining the natural frequencies of railway steel bridges during train crossing. The coupled linear equations of motion of the train-bridge multi-body system are derived, and train crossing simulations are conducted numerically, considering different train speeds. Three different railway bridges are considered, and the train-induced vibration responses are calculated for both the train multi-body system and the railway bridge models. Different representative evaluation points are chosen for the wheelsets, bogies, and car bodies of the considered vehicle. To calibrate the numerical model, the resonance frequencies of an existing single-span steel bridge are measured in situ by the application of forced vibration tests. Besides the executed in situ measurements of the bridge, the considered crossing vehicle is also instrumented with several accelerometers at the wheelsets, bogies, and car bodies, and the vibration responses of both the bridge and the crossing vehicle are measured simultaneously during the duration of several train crossings with different train speeds. The recorded vibration responses are analyzed in the frequency domain and compared with numerical simulation results. It is shown that the first bending frequency of the considered railway bridge can be clearly identified from the computed frequency response spectra and that the vehicle-based iSHM method provides a promising tool for identifying the dynamic characteristics of railway bridges. Full article
Show Figures

Figure 1

15 pages, 5981 KB  
Article
Influence of Variable Height of Piers on the Dynamic Characteristics of High-Speed Train–Track–Bridge Coupled Systems in Mountainous Areas
by Yingying Zeng, Lizhong Jiang, Zhixiong Zhang, Han Zhao, Huifang Hu, Peng Zhang, Fang Tang and Ping Xiang
Appl. Sci. 2023, 13(18), 10271; https://doi.org/10.3390/app131810271 - 13 Sep 2023
Cited by 17 | Viewed by 2010
Abstract
With the increase in the occupancy ratio of bridges and the speed of trains, the probability of trains being located on bridges during earthquakes increases, and the risk of derailment increases. To investigate the influence of unequal-height piers on the dynamic response of [...] Read more.
With the increase in the occupancy ratio of bridges and the speed of trains, the probability of trains being located on bridges during earthquakes increases, and the risk of derailment increases. To investigate the influence of unequal-height piers on the dynamic response of high-speed railway train bridge systems, a seismic action model of high-speed train–track–bridge dynamic systems was established based on the in-house code using the finite element method and multi-body dynamics method. It is found that (1) compared to equal-height piers, the peak lateral dynamic response of unequal-height piers (with gradually increasing pier heights) decreases, while the peak vertical dynamic response increases; (2) the peak lateral dynamic response of unequal-height piers (with a steep increase in pier height) increases sharply, while the peak vertical dynamic response decreases; and (3) the safety indicators of equal-height piers are significantly superior to the two unequal-height pier operating conditions. Full article
(This article belongs to the Collection Analysis of Dynamics of Railway Vehicles)
Show Figures

Figure 1

24 pages, 8140 KB  
Article
Vibration Response Analysis of Overhead System Regarding Train-Track-Bridge Dynamic Interaction
by Xiangyan Fan, Laijun Liu, Xiaodan Wang, Jincheng Cao and Wenjie Cheng
Appl. Sci. 2022, 12(18), 9053; https://doi.org/10.3390/app12189053 - 8 Sep 2022
Cited by 3 | Viewed by 2596
Abstract
Based on the paucity of studies on the analysis of the coupled vibration response of the train-track-overhead System, in this article, finite element software ABAQUS was integrated with multi-body dynamics software, Universal Mechanism (UM), to construct a joint simulation model of the train-track [...] Read more.
Based on the paucity of studies on the analysis of the coupled vibration response of the train-track-overhead System, in this article, finite element software ABAQUS was integrated with multi-body dynamics software, Universal Mechanism (UM), to construct a joint simulation model of the train-track overhead system under a railway line, with the focus on the investigation of the influence of different track irregularity levels, speeds and damping coefficients on the coupled vibration response of the vehicle-track-overhead system. The findings demonstrate that the response of the train body is sensitive to track irregularity, which primarily impacts the safety index of train operation. The results also suggest that the level of track irregularity should be rigorously regulated above AAR5 during construction. The train-track-overhead system functions well and satisfies the overhead system’s design requirements when the train travels through the reinforced line at a speed of no more than 60 km/h. When the train speed is 100 km/h, the vertical acceleration exceeds the limit for the “I” overhead system. There is a possibility of excessive lateral acceleration of the train body and excessive lateral force of the wheel and rail when the train speed is greater than 60 km/h, which endangers the safety of the driver. While it has little effect on the mid-span and vertical displacements, the damping factor of the bridge has a substantial impact on the vertical acceleration and mid-span acceleration of the vertical and horizontal beams. The study’s findings provide useful guidance. Full article
Show Figures

Figure 1

14 pages, 3758 KB  
Article
Dynamic Response of a Bridge–Embankment Transition with Emphasis on the Coupled Train–Track–Subgrade System
by Ping Hu, Chunshun Zhang, Wei Guo and Yonghe Wang
Appl. Sci. 2020, 10(17), 5982; https://doi.org/10.3390/app10175982 - 29 Aug 2020
Cited by 10 | Viewed by 2854
Abstract
Dynamic response of a bridge–embankment transition is determined by, and therefore an indicator of, the coupled train–track–subgrade system. This study aims to investigate the approach of coupling the train–track–subgrade system to determine the dynamic response of the transition. The coupled system is established [...] Read more.
Dynamic response of a bridge–embankment transition is determined by, and therefore an indicator of, the coupled train–track–subgrade system. This study aims to investigate the approach of coupling the train–track–subgrade system to determine the dynamic response of the transition. The coupled system is established numerically based on the weak energy variation, the overall Lagrange format of D’Alembert’s principle and dynamics of the multi-rigid body, which is verified by in-site measurements. With this model, the influence of rail bending, differential settlement and other factors on the dynamic performance of the transition system is analyzed. The results show that when the train driving speed is 350 km/h, basic requirements should be satisfied. These requirements include that the irregularity bending of the bridge–embankment transition section should be less than 1/1000, the rigidity ratio should be controlled within 1:6, and the length of the transition section should be more than 25 m. In addition, the differential settlement should not exceed 5 mm. Among these factors, the differential settlement and the bending of the rail surface are the main ones to cause the severe dynamic irregularity of the transition section. Our analysis also indicates a requirement to strengthen the 18 m and 25–30 m distance from the abutment tail and the bed structure. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

17 pages, 3844 KB  
Article
A Case Study of Dynamic Response Analysis and Safety Assessment for a Suspended Monorail System
by Yulong Bao, Yongle Li and Jiajie Ding
Int. J. Environ. Res. Public Health 2016, 13(11), 1121; https://doi.org/10.3390/ijerph13111121 - 10 Nov 2016
Cited by 60 | Viewed by 8777
Abstract
A suspended monorail transit system is a category of urban rail transit, which is effective in alleviating traffic pressure and injury prevention. Meanwhile, with the advantages of low cost and short construction time, suspended monorail transit systems show vast potential for future development. [...] Read more.
A suspended monorail transit system is a category of urban rail transit, which is effective in alleviating traffic pressure and injury prevention. Meanwhile, with the advantages of low cost and short construction time, suspended monorail transit systems show vast potential for future development. However, the suspended monorail has not been systematically studied in China, and there is a lack of relevant knowledge and analytical methods. To ensure the health and reliability of a suspended monorail transit system, the driving safety of vehicles and structure dynamic behaviors when vehicles are running on the bridge should be analyzed and evaluated. Based on the method of vehicle-bridge coupling vibration theory, the finite element method (FEM) software ANSYS and multi-body dynamics software SIMPACK are adopted respectively to establish the finite element model for bridge and the multi-body vehicle. A co-simulation method is employed to investigate the vehicle-bridge coupling vibration for the transit system. The traffic operation factors, including train formation, track irregularity and tire stiffness, are incorporated into the models separately to analyze the bridge and vehicle responses. The results show that the coupling of dynamic effects of the suspended monorail system between vehicle and bridge are significant in the case studied, and it is strongly suggested to take necessary measures for vibration suppression. The simulation of track irregularity is a critical factor for its vibration safety, and the track irregularity of A-level road roughness negatively influences the system vibration safety. Full article
(This article belongs to the Special Issue Traffic Safety and Injury Prevention)
Show Figures

Figure 1

Back to TopTop