Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = total sliding-mode control (TSMC)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 5306 KiB  
Article
Robust Higher-Order Nonsingular Terminal Sliding Mode Control of Unknown Nonlinear Dynamic Systems
by Quanmin Zhu, Jianhua Zhang, Zhen Liu and Shuanghe Yu
Mathematics 2025, 13(10), 1559; https://doi.org/10.3390/math13101559 - 9 May 2025
Cited by 3 | Viewed by 615
Abstract
In contrast to the majority of model-based terminal sliding mode control (TSMC) approaches that rely on the plant physical model and/or data-driven adaptive pointwise model, this study treats the unknown dynamic plant as a total uncertainty in a black box with enabled control [...] Read more.
In contrast to the majority of model-based terminal sliding mode control (TSMC) approaches that rely on the plant physical model and/or data-driven adaptive pointwise model, this study treats the unknown dynamic plant as a total uncertainty in a black box with enabled control inputs and attainable outputs (either measured or estimated), which accordingly proposes a model-free (MF) nonsingular terminal sliding mode control (MFTSMC) for higher-order dynamic systems to reduce the tedious modelling work and the design complexity associated with the model-based control approaches. The total model-free controllers, derived from the Lyapunov differential inequality, obviously provide conciseness and robustness in analysis/design/tuning and implementation while keeping the essence of the TSMC. Three simulated bench test examples, in which two of them have representatively numerical challenges and the other is a two-link rigid robotic manipulator with two input and two output (TITO) operational mode as a typical multi-degree interconnected nonlinear dynamics tool, are studied to demonstrate the effectiveness of the MFTSMC and employed to show the user-transparent procedure to facilitate the potential applications. The major MFTSMC performance includes (1) finite time (2.5±0.05 s) dynamic stabilization to equilibria in dealing with total physical model uncertainty and disturbance, (2) effective dynamic tracking and small steady state error 0±0.002, (3) robustness (zero sensitivity at state output against the unknown bounded internal uncertainty and external disturbance), (4) no singularity issue in the neighborhood of TSM σ=0, (5) stable chattering with low amplitude (±0.01) at frequency 50 mHz due to high gain used against disturbance d(t)=100+30sin(2πt)). The simulation results are similar to those from well-known nominal model-based approaches. Full article
(This article belongs to the Special Issue New Advances in Nonlinear Dynamics Theory and Applications)
Show Figures

Figure 1

18 pages, 2154 KiB  
Article
Lane-Changing Strategy Based on a Novel Sliding Mode Control Approach for Connected Automated Vehicles
by Chengmei Wang and Yuchuan Du
Appl. Sci. 2022, 12(21), 11000; https://doi.org/10.3390/app122111000 - 30 Oct 2022
Cited by 9 | Viewed by 2171
Abstract
Safe and efficient autonomous lane changing is a key step of connected automated vehicles (CAVs), which can greatly reduce the traffic accident rate and relieve the traffic pressure. Aiming at the requirements of the smoothness and efficiency of the lane-changing trajectory of CAVs, [...] Read more.
Safe and efficient autonomous lane changing is a key step of connected automated vehicles (CAVs), which can greatly reduce the traffic accident rate and relieve the traffic pressure. Aiming at the requirements of the smoothness and efficiency of the lane-changing trajectory of CAVs, it is necessary to design the lane changing controller to integrate the sensing, decision-making, and control tasks in the driving process. Firstly, based on the vehicle dynamics model, this paper proposes a vehicle lane-changing control strategy based on NNTSMC method (neural network enhanced non-singular fast terminal sliding mode control). The designed lane-changing controller can well realize the designed path tracking, and both lateral position and yaw angle can well track the expected value. This method enables the vehicle to control the front wheel steering angle intelligently, and the lateral acceleration during steering changes in the small scope, which ensures the steering stability of the vehicle. In this study, an improved adaptive RBF neural network with bounded mapping is designed to estimate the upper bound of the total disturbance of the system, which effectively reduces the chattering phenomenon of the control force. The Lyapunov function constructed in this study proves that the designed controller can ensure the stability of the controlled system. Finally, a comparative experiment is performed by the MATLAB/Simulink-CarSim co-simulation. Compared with SMC and TSMC (non-singular fast terminal sliding mode control), the proposed method has a performance improvement of at least 58.0% and 34.1%, respectively. The effectiveness and superiority of the proposed control method were confirmed by the experiments on the co-simulation platform. Full article
Show Figures

Figure 1

27 pages, 46819 KiB  
Article
Robust Power Sharing and Voltage Stabilization Control Structure via Sliding-Mode Technique in Islanded Micro-Grid
by Quan-Quan Zhang and Rong-Jong Wai
Energies 2021, 14(4), 883; https://doi.org/10.3390/en14040883 - 8 Feb 2021
Cited by 12 | Viewed by 3339
Abstract
With a focus on the problems of active power sharing and voltage deviation of parallel-connected inverters in an islanded micro-grid (MG), in this study, the power-voltage droop controller and the inner voltage regulator are redesigned based on a total sliding-mode control (TSMC) technique. [...] Read more.
With a focus on the problems of active power sharing and voltage deviation of parallel-connected inverters in an islanded micro-grid (MG), in this study, the power-voltage droop controller and the inner voltage regulator are redesigned based on a total sliding-mode control (TSMC) technique. As for the power-voltage droop control loop, a droop control relation error between the active power and the point-of-common-coupling (PCC) voltage amplitude is defined. Then, the TSMC scheme is adopted to reach the new droop control relation, where the active power sharing and voltage amplitude recovery can be achieved simultaneously. Owing to the faster dynamic response and strong robustness provided by the TSMC framework, high-precision active power sharing during transient state also can be ensured without the influence of line impedances. The power allocation error can be improved by more than 81.2% and 50% than the conventional and proportional-integral (PI)-based droop control methods, respectively, and the voltage deviation rate can be reduced to 0.16%. Moreover, a small-signal model of the TSMC-based droop-controlled system is established, and the influences of control parameters on the system stability and the dynamic response are also investigated. The effectiveness of the proposed control method is verified by numerical simulations and experimental results. Full article
(This article belongs to the Special Issue Optimal Control of Smart Distributed Power and Energy Systems)
Show Figures

Figure 1

Back to TopTop