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Abstract: Safe and efficient autonomous lane changing is a key step of connected automated vehicles
(CAVs), which can greatly reduce the traffic accident rate and relieve the traffic pressure. Aiming
at the requirements of the smoothness and efficiency of the lane-changing trajectory of CAVs, it
is necessary to design the lane changing controller to integrate the sensing, decision-making, and
control tasks in the driving process. Firstly, based on the vehicle dynamics model, this paper proposes
a vehicle lane-changing control strategy based on NNTSMC method (neural network enhanced
non-singular fast terminal sliding mode control). The designed lane-changing controller can well
realize the designed path tracking, and both lateral position and yaw angle can well track the expected
value. This method enables the vehicle to control the front wheel steering angle intelligently, and the
lateral acceleration during steering changes in the small scope, which ensures the steering stability
of the vehicle. In this study, an improved adaptive RBF neural network with bounded mapping
is designed to estimate the upper bound of the total disturbance of the system, which effectively
reduces the chattering phenomenon of the control force. The Lyapunov function constructed in this
study proves that the designed controller can ensure the stability of the controlled system. Finally, a
comparative experiment is performed by the MATLAB/Simulink-CarSim co-simulation. Compared
with SMC and TSMC (non-singular fast terminal sliding mode control), the proposed method has a
performance improvement of at least 58.0% and 34.1%, respectively. The effectiveness and superiority
of the proposed control method were confirmed by the experiments on the co-simulation platform.

Keywords: connected automated vehicles (CAVs); lane-changing strategy; vehicle dynamics model;
trajectory tracking; sliding mode control; neural network

1. Introduction

Lane change is one of the most common maneuvers for vehicles on the road, and it
needs drivers to consider risk avoidance in multiple directions at the same time, which
is usually a driving behavior with high-risk coefficients. In 1999, there were more than
half a million lane change-related accidents in the United States in one year [1]. Data show
that, during lane changes, driver stress increases significantly, and driving is more prone to
errors, leading to higher risks. Vehicle lane-changing behavior is influenced not only by the
surrounding traffic environment but also by the surrounding traffic flow, hence research
into autonomous lane-changing technology is crucial [2]. To accomplish autonomous
lane-changing driving, vehicles can employ the vehicular networks [3] or use the on-board
sensors to gather information about the surrounding traffic [4]. Furthermore, the built-in
sensors can help vehicles with measuring operating conditions [5]. These devices may allow
them to make more informed decisions about the lane-changing procedure, improving
vehicle safety, comfort, and efficiency [6]. It is worth mentioning that related technologies
related to vehicular networks and vehicle control system, such as authentication and
privacy schemes, are also important guarantees for the reliable operation of vehicles [7–9].
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The key technologies of autonomous lane change can be divided into three cate-
gories [10]: lane change decision, lane change path planning, and lane change path tracking
control. A lane change decision provides a logical direction for vehicle lane shift. Currently,
the most frequent lane shifting models utilized in vehicle lane-changing decision-making
mechanisms are the Gipps model [11], the MITSIM model [12], the AIMSUN2 model [13],
the CA model [14], the CORSIM model [15], and the SITRAS model [16]. The design of the
lane change path must be taken into consideration if it is decided to perform a lane change
after the judgment of lane change decision [17]. The purpose of the lane change path design
is to make the vehicle have a virtual path as a reference in the process of lane change, so that
the lane change action can be completed more safely and smoothly [18,19]. The planning
of lane change trajectory needs to transform the time and distance planning problems
into constraint optimization problems, and the evaluation indexes in the driving process
need to be considered to calculate the reference trajectory satisfying the safety, comfort,
and lane change efficiency [20]. The polynomial method [21], trapezoidal acceleration
method [22], arc trajectory planning method [23], sine function method [24], and other
trajectory functions are indeed common lane change reference trajectory design methods.
Designers can choose a solution according to the characteristics of application scenarios as
well as the advantages and disadvantages of each method [25].

It is necessary to investigate autonomous vehicle lane-changing to improve driving
safety and road smoothness. The actual situation of a vehicle lane-changing procedure can
be simplified to a straightforward lane change scenario, which includes the target vehicle
A0, vehicle A1 in front of the lane, and vehicle A2 in the neighboring lane, using an urban
two-lane road as an example. Figure 1 depicts the schematic diagram of a lane-changing
scenario. Vehicle A0 has lane change intention because it is dissatisfied with the current
lane’s speed due to the vehicle A1’s slower speed in front of it. After vehicle A0 has the
demand for a lane change, it should not have a serious impact on the traffic flow on the
basis of ensuring its driving demand. Vehicle A0 moves into the stage of preparing for a
lane change in phases t0 − t1. Vehicle A0 crosses the two-lane decomposition line at time
t2 in phases t1 − t3, which is a lane-changing operation. Phases t1 − t3 correspond to the
lane-changing process, where vehicle A0 crosses the two-lane separation line at t2.

A2

A0 A1

A0

A0

A0

0t 1t

2t

3t

Figure 1. Schematic diagram of the vehicle lane-changing scenario.

Vehicles with intelligent lane change controllers can avoid human error to the greatest
extent possible, lowering the risk of collision with vehicle A1 and vehicle A2 on the road.
The lane-changing time and trajectory can also be strictly tracked by using mathematical
calculations rather than the driver’s experience judgement. Based on this process, we can
conclude that the use of lane-changing technology will significantly improve CAV’s safety,
lane-changing efficiency, and passenger comfort.

Aiming at the demand of lane-changing technology, this study proposes a novel lane-
changing control strategy based on the NNTSMC method. The contributions of this paper
are as follows: (1) The lane-changing control system oriented to the desired lane-changing
trajectory is designed based on the vehicle dynamics model and road condition information.
(2) A modified sliding mode control method for lane-changing is designed, which can
avoid the shortcomings of traditional sliding mode control. (3) The constructed Lyapunov
function demonstrates the stability of the control system. The lane-changing controller is
constructed in MATLAB/Simulink-CarSim co-simulation environments. The effectiveness
and superiority are confirmed by several experiments.
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The remainder of this paper is logically organized as follows: Section 2 primarily
analyzes the related work of lane-changing through the literature across the world. The
mathematical derivation of the vehicle dynamics model is given in Section 3. The vehicle
lane-changing controller description and problem formulation are covered in Section 4.
Section 5 contains the analysis of the performances of the verification experiments and the
effectiveness of the control mechanism. Section 6 presents a brief conclusion.

2. Related Work

The most fundamental requirement for accomplishing lane change is vehicle motion
control that meets the criteria of trajectory tracking, in addition to faultless lane change
judgment and vehicle trajectory planning [19]. If the vehicle trajectory tracking does not
satisfy the kinematics and dynamics of the vehicle, as well as the driving limitations, the
vehicle will vibrate while driving. In addition to reducing passenger comfort, driving shock
creates a significant potential safety threat when driving at high speeds. In high-speed
driving scenarios, the controller must meet the requirements of quick response speed,
high response accuracy, and high adaptability to respond to diverse vehicle lane-changing
conditions. In addition to the studies mentioned above, there are numerous other studies
concentrating on the tracking of autonomous vehicles’ lane change trajectories, the most
of which are based on kinematics or dynamics models and achieve tracking control using
different control techniques.

In order to determine the expected yaw angle and yaw speed of vehicles changing
lanes, Ren et al. [26] created the lateral acceleration based on positive and negative trape-
zoidal restrictions. After that, the tracking control law of the longitudinal and lateral
coupling variable structure for lane change is constructed using the finite-time sliding
mode approach law. Qi et al. [27] researched lane change control of intelligent vehicles
employing four-wheel active steering technology to enhance the control performance of
vehicle lateral movement. A standard cosine function lane change trajectory is the lane
change route model. They created a Simulink simulation model for the closed-loop control
system of the vehicle lane shifting path tracking and performed simulation experiments
based on the fuzzy adaptive PID theory. The outcomes of the simulation demonstrate
that the proposed lane change tracking controller can actually accomplish the desired lane
change track tracking. Guo et al. [28] built a novel dummy variable and derived the trajec-
tory tracking controller of a closed-loop control structure by applying integral backsliding
approach in order to accomplish lane change trajectory planning and tracking in curves and
increase the active safety of vehicles. The trajectory tracking controller’s closed-loop control
structure is constructed, and Lyapunov theory is used to assess the stability of the suggested
trajectory tracking controller. In order to solve the vehicle’s robust path-following control
problem and satisfy the requirements for lateral stability, Chen et al. [29] proposed a H∞
robust control scheme. Their proposal was made in response to the phenomenon that the
delay and packet loss brought on by the network would adversely affect the stability and
performance of the system. Finally, a comparison with the scenario of no delay and packet
loss is used to demonstrate the usefulness of the suggested strategy. For model uncertainty
and measurement noise, Li et al. [30] suggested a robust control rule to inhibit these two
matching variables, built an adaptive robust controller to maximize path tracking accuracy,
and demonstrated its effectiveness employing MATLAB/Simulink-Trucksim co-simulation.

In order to realize the path tracking capability under complicated road scenarios such
as low friction coefficient and road disturbance, people have made unremitting efforts. A
multi-point pre-view trajectory tracking technique for autonomous vehicles was proposed
by Luo et al. [31]. This tracking algorithm takes into account the complexity of the sweeper’s
practical application background and employs a way of combining feedforward and feed-
back control to regulate the vehicle’s lateral movement. The feedforward control section
calculates the needed angle using the road information gained from the target trajectory’s
curvature detection component, while the feedback control is corrected using the lateral
deviation obtained from the trajectory deviation detection. Both the computer experiment
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and the real-world vehicle test produce positive findings. Chen et al. [32] suggested a path
tracking method using an untraced Kalman filter to maintain path tracking performance
and increase stability when driving at high speeds on low friction coefficient roads by
calculating the vehicle’s critical state and road adhesion coefficient. The path tracking
control is then realized using a predictive controller based on a linear time-varying model.

Most of the current research focuses on the control method, and few of them incorpo-
rate the vehicle’s dynamic mechanism model when designing lane-changing controllers.
The design of the control method must consider the physical structure of the vehicle to
have practical significance, which is often ignored. This paper develops a lane-changing
controller based on the vehicle dynamics model and sliding mode control algorithm, allow-
ing the controlled vehicle to achieve good lane-changing action and preset path tracking in
complex traffic scenarios.

3. Vehicle Dynamics Model

In the process of lane-changing, in addition to maintaining the original longitudinal
movement, the vehicle also needs to make appropriate lateral movement according to the
road conditions. A schematic diagram of vehicle kinematic model is shown in Figure 2.
The motion of the two dimensions is not simply superimposed. Considering generality,
the dynamics model of vehicle in lane change process is modeled. In order to facilitate the
problem analysis and the realization of control objectives, in the inertial coordinate system
OXY, the 2-DOF vehicle dynamic equation of the vehicle is established as follows:


ẏ
ÿ
δ̇
δ̈

 =


0 1 0 0

0 − 2·k f +2·kb
mv

2·k f +2·kb
m

2·k f ·l f−2·kb ·lb
mv

0 0 0 1

0
2·k f ·l f +2·kb ·lb

Izv
2·k f ·l f−2·kb ·lb

Iz
−

2·k f ·l2
f +2·kb ·l2

b
Izv




y
ẏ
δ
δ̇

+


0

2·k f
m
0

2·k f ·l f
Iz

u (1)

where y and δ denote the lateral offset and the yaw angle of the vehicle, respectively. m is
the quality of the vehicle. Iz represents the moment of inertia around the vertical-axis of
the vehicle. k f and kb stand for the front and rear tire cornering stiffness, respectively. l f
and lb are the distance between the front and rear axles and the center of the vehicle mass,
respectively. v is the longitudinal speed. y is the distances from the center of mass P of the
vehicle to the x-axis. v is the front wheel angle of the vehicle which is described using the
controller input variable u.
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Figure 2. Schematic diagram of the Vehicle Kinematic Model.

The vehicle dynamic Equation (1) can be simplified by taking into account the system’s
internal parameter inaccuracy and external interference. The model can be shortened to:
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[
ÿ
δ̈

]
=

[
k11 k12
k21 k22

][
ẏ
δ̇

]
+

[
0 1
0 1

][
y
δ

]
+

[
`1
`2

]
u + ∆ f (2)

where
[

k11 k12
k21 k22

]
= K,

[
0 1
0 1

]
= F,

[
`1
`2

]
= =. Simplify the definition of two of the

key variables to form the expression θ =

[
y
δ

]
.

θ̈ = Kθ̇ + Fθ +=u + ∆ f

= f +=u + ∆ f (3)

where ∆ f represents the lumped error of the system.
According to the state equation of the system, the lateral displacement, lateral velocity,

yaw angle, and yaw velocity of the vehicle can be analyzed under the given input of the
front wheel angle. The purpose of lateral lane change control is to reduce the deviation
of the trajectory designed for tracking. It is required that the controller can analyze the
deviation of the vehicle tracking at a given front wheel angle through the state equation.

4. Control System and Problem Statement
4.1. Path Planning

The cosine function is utilized to build lane-changing trajectory planning in this study:

y(t) = 0.5lw

[
1− cos

(
π · t

ls

)]
(4)

According to China’s standard lane width standards, lw is the lane width, which
is usually set to lw = 3.75 m. ls represents the vehicle’s longitudinal displacement dur-
ing lane shift. The cosine lane change trajectory of the vehicle, assuming it completes
a lane-changing in five seconds, is illustrated in Figure 3. The cosine function’s lane-
changing strategy is simple to calculate, and the lane-changing trajectory is smooth. In
addition, the lane-changing trajectory’s lateral acceleration is more gentle, and the vehicle is
more comfortable.
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Figure 3. Diagram of a cosine lane change trajectory.

4.2. SMC-Based Controller Design

To accomplish the lane change process, the vehicle control system will restrain the
vehicle’s movement and force it to follow the intended trajectory strategy. By regulating
the steering wheel angle, the lane change process allows the vehicle to follow the intended
lane change trajectory.

The ultimate goal of a lane change controller is to manage the steering wheel angle of
the vehicle so that it follows the proper lane change trajectory. The vehicle’s tracking error
and its derivative are defined as follows:

e = θ − θd (5)
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ė = θ̇ − θ̇d (6)

ë = θ̈ − θ̈d (7)

If the traditional terminal sliding surface s = ė + 1
β e

p
q , 1 < p

q < 2, β > 0 is adopted, the
controller design will have a singularity problem when the system converges on the sliding
surface. Singularity issues will cause system instability, and the traditional terminal sliding
mode function’s convergence rate is slow when the mistake is distant from the phase plane.

The non-singular fast terminal sliding mode surface is proposed in this study to
address the slow convergence speed and singularity difficulties of standard terminal
sliding mode, as indicated in Equation (8):

s = e + 1
α |eγ|sign(e) + 1

β

∣∣∣e p
q
∣∣∣sign(ė) (8)

= e +
1
α

sigγ(e) +
1
β

sig
p
q (ė)

where |eγ|sign(e) = sigγ(e),
∣∣∣e p

q
∣∣∣sign(ė) = sig

p
q (ė), α, β > 0, 1 < p

q < 2 and γ > p
q .

The improved non-singular fast terminal sliding mode control introduces a linear
sliding mode and a fast terminal attractor, allowing the system state to swiftly and precisely
settle to equilibrium.

Assuming the time from state s 6= 0 to state s = 0 is tr, and the time from state e(tr) 6= 0
to state e(tr + ts) = 0 is ts. ts denotes the time to reach equilibrium state. Along the sliding
mode (8), the time from any initial condition e 6= 0 to equilibrium state e = 0 is:

ts = −
(

1
β

) q
p ·
∫ 0

e(tr)
1

(u− 1
α uγ)

q
p

du (9)

The system’s control rate is made up of two components: equivalent control rate ueq
and switching control rate us:

ueq = =−1 ·
[

θ̈d − f − β
q
p

sig2− p
q (ė)− γ

α
sigγ−1(e) · β

q
p

sig2− p
q (ė)

]
(10)

us = =−1(Bdu + h̄)sgn(s) (11)

where h̄ > 0; therefore, the system’s control rate can be determined as follows:
u = ueq + us (12)

= =−1 ·
[
θ̈d − f − β

q
p sig2− p

q (ė)− γ
α sigγ−1(e) · β q

p sig2− p
q (ė) + (Bdu + h̄)sgn(s)

]
The Lyapunov function is chosen as:

V =
1
2

s2 (13)

Differentiating the Lyapunov function from (13), we have

V̇ = sṡ (14)

Theorem 1. Assume that the upper bound of lumped interference is F. Let ∆ f satisfy the hypothesis
of ∆ f ≤ F, and α, β > 0, 1 < p

q < 2 and γ > p
q , where p and q are both positive numbers. Then,

for nonlinear system model (7), the stability of the closed-loop system can be guaranteed by adopting
the sliding mode surface function (8) and the control law (12), and the tracking error can converge
to 0 asymptotically in a finite time.
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Proof of Theorem 1. Lyapunov’s theorem is used to prove stability. We can deduce the
following from Equation (13):

V̇ = s
[
ė + γ

α sigγ−1(e)ė + 1
β ·

p
q sig

p
q−1

(ė)ë
]

= s
[
ė + γ

α sigγ−1(e)ė + 1
β ·

p
q sig

p
q−1

(ė)
(
θ̈ − θ̈d

)]
= s
[
ė + γ

α sigγ−1(e)ė + 1
β ·

p
q sig

p
q−1

(ė)
(

f +=u + ∆ f − θ̈d
)]

= s
{

ė + γ
α sigγ−1(e)ė + 1

β ·
p
q sig

p
q−1

(ė)[(Bdu + h̄)sgn(s)

+∆ f − β
q
p sig2− p

q (ė)− γ
α sigγ−1(e) · β q

p sig2− p
q (ė)

}

= s
{
[ė− sig(ė)]

[
1 + γ

α sigγ−1(e)
]
− 1

β ·
p
q sig

p
q−1

(ė)[(Bdu + h̄)sgn(s) + ∆ f ]
}

= − 1
β ·

p
q sig

p
q−1

((Bdu + h̄) · |s|+ ∆ f · s)

≤ − 1
β ·

p
q sig

p
q−1|s|(Bdu + h̄ + ∆ f ) ≤ 0

The above finishes the proof.

The system is stable, according to Lyapunov’s second technique. Due to the un-
known value of the interference upper bound, a huge interference upper bound must be
intentionally imposed, resulting in poor robustness and severe control chattering.

4.3. Enhanced SMC-Based Controller Design

Estimating the upper bound of system lumped disturbance with RBF neural network
is a crucial challenge for the enhanced SMC-Based Controller. The upper bound of system
lumped interference is estimated using a neural network. Due to the uncertainty of
system parameters and external disturbances, robust terms are designed to compensate
for the influence caused by disturbances. However, if the robust items are too large,
serious chattering will occur in the system. Therefore, this study uses a neural network to
estimate the upper bound of system lumped interference. The new proposed self-learning
framework is named as NNTSMC, which means a neural network modified version of
TSMC (non-singular fast terminal sliding mode control).

Assume that the estimation value of the interference upper bound is set, as the neural
network is used to approximate the estimation value of interference upper bound, which
can be expressed as: Assuming that the estimation value of the upper bound of interference
is set to k̂, the neural network is used to approximate the estimation value of the upper
bound of interference, which may be expressed as:

k̂ = ϕ̂Tφ (15)

where ϕ is the weight vector of neural network, and n represents the number of nodes
of hidden layer. φ = [φ1 φ2 . . . φn]

T denotes the output vector of the hidden layer, the
Gaussian basis function is used as the membership function, and the output of the i-th
node in the hidden layer is:

φi(x) = exp(−‖x−Hi‖2

o2
i

) (16)
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where Hi is the center vector of the i-th node in the hidden layer, and o2
i is the base width

of the i-th node in the hidden layer, i = 1, . . . , n.
When the neural network is employed to approach the interference upper bound k̂,

it is assumed that an ideal weight ϕ∗ exists, satisfying condition ϕ∗Tφ− ∆ f = ε, and ε is
the difference between the ideal and real output, satisfying condition k̂− ∆ f ≥ ε ≥ 0. The
weight error of the upper bound of interference estimation by neural network is defined as:

ϕ̃ = ϕ∗ − ϕ̂ > 0 (17)

Based on the above discussion, the improved driving control law can be deduced
as follows:

u = ueq + us = =−1 ·
[

θ̈d − f + β
q
p

sig2− p
q (ė) +

γ

α
sigγ−1(e) · β q

p
sig2− p

q (ė)
]
−=−1k̂sgn(s) (18)

Theorem 2. For the vehicle model under consideration, after the adaptive neural network was
added into the original sliding mode control strategy, the designed vehicle lateral control rate was
(18), which could still ensure the stability of the controlled system.

The Lyapunov function is designed as:

V =
1
2

s2 +
1
2ς

ϕ̃T ϕ̃ (19)

where ς > 0. Differentiating the Lyapunov function from (19), we have

V̇ = sṡ +
1
ς
˙̃ϕT

ϕ̃ (20)

Proof of Theorem 2. Lyapunov’s theorem is used to prove stability. We can conclude the
following from Equation (19).

V̇ = s
[
ė + γ

α sigγ−1(e)ė + 1
β ·

p
q sig

p
q−1

(ė)
(

f +=u + ∆ f − θ̈d
)]

+ 1
ς
˙̃ϕT

ϕ̃

= s
[
ė + γ

α sigγ−1(e)ė + 1
β ·

p
q sig

p
q−1

(ė)
(

f + θ̈d − f + β
q
p sig2− p

q (ė) + γ
α sigγ−1(e) · β q

p sig2− p
q (ė)− k̂sgn(s) + ∆ f − θ̈d

)]
+ 1

ς
˙̃ϕT

ϕ̃

= s
[
ė + γ

α sigγ−1(e)ė + 1
β ·

p
q sig

p
q−1

(ė)
(

β
q
p sig2− p

q (ė) + γ
α sigγ−1(e) · β q

p sig2− p
q (ė)− k̂sgn(s) + ∆ f

)]
+ 1

ς
˙̃ϕT

ϕ̃

= s
(

1
β ·

p
q sig

p
q−1

(ė)
(
−k̂sgn(s) + ∆ f

))
+ 1

ς
˙̃ϕT

ϕ̃

= 1
β ·

p
q sig

p
q−1

(ė)
(
−ϕ̂Tφsgn(s) + ∆ f

)
s + 1

ς
˙̃ϕT

ϕ̃

= − 1
β ·

p
q sig

p
q−1

(ė)
(

ϕ̂Tφ|s| − ∆ f · s
)
+ 1

ς
˙̃ϕT

ϕ̃

(21)

The weight adaptive law of the neural network is built as follows since the optimal
weight ϕ∗ is a constant value:

˙̃ϕ = −˙̂ϕ = −ςφs (22)

Substitute Equation (22) into Equation (20) to obtain:

V̇ = − 1
β
· p

q
sig

p
q−1

(ė)
(

ϕ̂Tφ|s| − ∆ f · s
)
− 1

ς
ςφs(ϕ∗ − ϕ̂) (23)

= − 1
β ·

p
q sig

p
q−1

(ė)
(

ϕ̂Tφ|s| − ∆ f · s
)
− sφ(ϕ∗ − ϕ̂)

≤ − 1
β ·

p
q sig

p
q−1

(ė)|s|
(

ϕ∗Tφ− ∆ f
)

= − 1
β ·

p
q sig

p
q−1

(ė)|s|ε ≤ 0

The above finishes the proof.
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The Lyapunov function is negative semidefinite, according to the second method
of Lyapunov, and the control rate proposed in this study can ensure system stability. It
can be seen from the above proof process that the disturbance upper bound is estimated,
and the disturbance compensation is carried out by using an adaptive neural network,
which ensures the stability of the system and solves the chattering phenomenon caused by
excessive robust gain.

Through the above analysis, it can be seen that, based on the vehicle dynamics model
and road condition information, the lane changing control strategy oriented to the desired
lane-changing trajectory can be designed. The framework overview of vehicle lateral
and longitudinal integrated controller is shown in Figure 4. The lane change control
method integrates the sliding mode control method and neural network, which has certain
anti-disturbance ability. Lane-changing control is the core of the lateral controller. The
lateral controller and longitudinal controller work together to complete the lane change
driving process.
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Figure 4. The framework overview of vehicle lateral and longitudinal integrated controllers.

5. Experiments and Discussion

In order to verify the performance of the lane-changing controller based on the
proposed control strategy, several experiments were designed. The above-mentioned
lane-changing trajectory planning and control methods are simulated and evaluated, and
the simulation data are reviewed to confirm the correctness and efficacy of the chosen
control approach.

MATLAB and CarSim software are chosen for co-simulation. First of all, the vehicle
model is constructed in the CarSim software. Then, combined with the control module in
MATLAB/Simulink-CarSim co-simulation environments, we can execute the test of the
control strategy introduced above. Finally, the driving process of the vehicle is simulated,
and the test result can be observed.
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5.1. Experimental Parameter Configuration

In this paper, the C-class vehicle was selected for the simulation experiment, and the
experimental parameter of the whole vehicle was established in CarSim software. Figure 5
demonstrates the main interface of the CarSim simulation software.

Figure 5. Main interface of the CarSim simulation software.

The CPU is Intel(R) i9-10900K@3.7 Ghz, and the RAM is 64 GB, in addition to the
hardware and software environment setup employed in the simulation experiment. The
main parameters of the vehicle are shown in Table 1.

Table 1. Main parameters configuration of the vehicle model.

Parameter Numerical Value

Vehicle sprung mass 1723 kg
Internal engine power 125 N·m
Peak engine torque 267.3 kW
Vehicle length 2578 mm
Vehicle width 1739 mm
Vehicle heigth 1478 mm
Distance between mass center and front axle 1232 mm
Roll inertia 1243.1 kg·m2

Pitch inertia 4331.6 kg·m2

Yaw inertia 4175 kg·m2

Frontal area 1.6 m2

Road friction coefficient 0.65

Other parameters, such as the power system coefficient, brake system coefficient, and
body air resistance coefficient, all adopt the default specifications of the vehicle in the
software. Road parameter settings are modified based on the Road model in “Road: 3D
Surface” in CarSim software 2019.0. This software is provided by Mechanical Simulation
Corporation, Mountain View, CA, USA.The road model is a two-way four-lane freeway, and
the double solid lines in the middle are road dividers in different directions. The track of the
experimental road is straight. The length and the width of the lane are 1000 m and 3.75 m, re-
spectively. The road friction coefficient is 0.65, while the other parameters of the road model
remain unchanged.
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5.2. Scenario Study

This study verifies the performance of the proposed lane-changing strategy in the
MATLAB/Simulink-CarSim co-simulation environments. CarSim provides vehicle dynam-
ics model and vehicle-related parameter information. The algorithm of the lane change
controller is built in Simulink. In the co-simulation, the steering wheel angle is input into
the vehicle dynamics model, and the relative position information, lateral and longitudinal
velocity, yaw angle and other related parameters of the vehicle are output variables, and
these state variables are input into the lane change controller. The steering wheel angle can
be output to the vehicle dynamics model for vehicle attitude control, and the lane change
controller can obtain the new control law value based on the input vehicle-related parame-
ter information. The mission of trajectory tracking control is ultimately accomplished by
the vehicle dynamics model, which circulates the process and outputs the vehicle state
information at the subsequent instant.

In order to verify the effectiveness of the lane-changing control strategy proposed in
this paper, two typical lane-changing test scenarios are constructed in the following experiment.

Scenario A tested the scenario in which the ego vehicle changed lanes from the current
lane and continued driving in another lane. This scenario primarily validates the proposed
framework for dealing with emergency obstacles in front of the current lane or being forced
to change lanes because the front vehicle is driving at a low speed. In this scenario, the lane
change operation only needs to be performed once.

Experimental scenario B, namely overtaking, tested the scenario in which a vehicle
changed lanes from the current lane and then changed lanes again into the original lane to
continue driving. This scenario primarily validates the performance of the proposed frame-
work in a similar environment where overtaking is required. The process of overtaking is a
combination of two lane-change processes. Finally, the vehicle completed the lane change
process while remaining in the original lane.

Figure 6 is an animated screenshot of scenario B. As can be seen from the animation
screenshot, before lane change, the ego vehicle runs in the original lane with a good distance.
Due to the slow speed of the vehicle in front in the original lane, the distance between
vehicles gradually decreases. After the lane-changing demand is generated and the lane-
changing decision is formed and executed after the lane-changing condition judgment,
the target vehicle gradually moves from the original lane to the target lane along the
planned lane-changing trajectory with a small driving error. At the end of the lane change,
the target vehicle runs smoothly in the target lane. The screenshot consists of eight sub-
images. Figure 6a shows the vehicle perceiving the vehicle ahead in the current lane.
Figure 6b shows that the test vehicle has moved close to the front vehicle along the current
lane because the speed of the front car is low, and it needs to be forced to change lanes.
Figure 6c,d represent the first lane change process, and Figure 6e represents the completion
of the first lane change. Figure 6f,g show the second lane-change process. Figure 6h shows
the completion of the second lane change. Traffic continued in the same lane.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6. Simulation animation screenshot of Scenario B.

5.3. Verification and Results Discussion

Classical SMC, TSMC, and the method proposed in this study were used for compari-
son. Two scenario tests were conducted using a MATLAB/Simulink-CarSim co-simulation
experimental platform for self-driving vehicles. These tests were carried out on two-way
four lane roads with a width of 3.75 m, and the ego vehicle speed is 10 m/s.

This paper takes the low-speed lane-changing scenario as an example, and the results
of the two lane change scenarios are shown in Figure 7 and Figure 8, respectively. In this
paper, the results of different control methods are plotted in the same picture. Figure 7
shows four diagrams with important state information about the vehicle. As can be seen
from the figure, the start time of the lane changing process is the time point of 8 s, and the
lane-changing duration is 4 s. As can be seen from Figure 7a, among the three methods,
the lane change effect of the controller designed by the SMC method is the most unstable.
The SMC has a maximum wheel angle of more than 100 degrees, which is a very drastic
lane change operation and even dangerous on the actual road. TSMC performed much
better than SMC. Using TSMC method, it can be seen that the maximum peak angle of the
commutator wheel is more than 40 degrees. The best performance is NNTSMC, which
not only has the best performance in the peak angle of the steering wheel, but also has a
stable performance in the whole lane change process. In the whole lane change process,
the NNTSMC’s curve is the smoothest from the result. In comparison, SMC and TSMC
methods are much less stable.

Lateral acceleration is an important parameter in the process of lane change. As can
be seen from Figure 7b, the maximum peak value of SMC’s lateral acceleration reaches
3.065 m/s2, indicating a large overshoot of vehicle state at the instant of lane change.
In addition, in the process of switching, the curve of SMC method switches frequently,
which is very unstable. The performance of TSMC has been improved, but the maximum
peak value is still 1.925 m/s2, and there is occasional instability in the process of lane
change. The change of the acceleration of NNTSMC is the smoothest, and the peak value is
1.269 m/s2. From the perspective of lane changing process, the proposed method has the
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most stable manifestation. Therefore, NNTSMC still has the best performance among the
three methods in terms of lateral acceleration.
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Figure 7. The experimental results of Scenario A.
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Figure 8. The experimental results of Scenario B.
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A similar conclusion can be drawn from Figure 7c. NNTSMC has the best performance
in the angle index of yaw, and the local magnification effect of the original image can be
seen from the enlarged small block diagram. We can find that the controller designed by
the proposed method has the quickest transition process, the fastest control, and the highest
precision. Yaw can get back to zero at the end of the lane change very accurately.

In this paper, lateral distance is also a very important measurement index. The
accuracy of lateral displacement reflects the accuracy of the vehicle controller. The smaller
the error between the measured distance value and the desired value, the better the control
effect of the method. From Figure 7d, we can see the lateral distance results of multiple
methods. Although all methods finally stabilized at the value of about 1.875 m after lane
change, only NNTSMC showed the best performance in the transition process as shown in
the enlarged figure. High control precision and rapid control process are the abilities that
an excellent control algorithm needs at the same time.

Scenario B is an upgraded version of Scenario A. The common point of the two
experiments is that the start time of the lane changing process is 8 s. The difference is
that the lane change in scenario B lasts eight seconds. Therefore, the first four seconds of
Figure 8a–d is the same process as Figure 7. The difference is, in the second lane change
process, the four seconds it takes to switch back into the original lane in Scenario B. From
these four subgraphs in Figure 8, it can be seen that the overall performance of NNTSMC
maintains outstanding results in the continuous lane change scenario. In terms of wheel
angle stability, safety, and comfort reflected by lateral acceleration, and further lateral
distance accuracy, the proposed method has the best performance. In comparison, both
SMC and TSMC failed to show better accuracy and stability.

Specific experimental results of the MATLAB/Simulink-CarSim co-simulation, in-
cluding the maximum lateral acceleration and maximum lateral error, are summarized
in Table 2. We can make a comparative analysis of the three methods participating in
the comparative experiment from the vertical and horizontal dimensions in Table 2. The
two variables listed are very relevant to the process of lane change. The maximum lateral
acceleration and maximum lateral error can reflect the driving comfort and the accuracy of
trajectory tracking during the process of lane-changing, respectively. All test data of the
proposed method are shown in bold in Table 2. As can be seen from Table 2, when the
vehicle with the lane-changing controller proposed in this paper tracks the corresponding
trajectory under different scenarios, the lateral acceleration changes stably without sharp
points, and meets the requirements of the vehicle when performing lane-changing actions.

Taking the maximum lateral acceleration as an example, the maximum values of the
proposed method in the two scenarios are 1.269 and 1.272, respectively. Compared with
SMC and TSMC, the new method achieves significant improvement of 58.6% and 34.1% in
scenario A, respectively. Furthermore, in scenario B, the new method achieves a significant
improvement of 58.5% and 35.3% over SMC and TSMC, respectively. A similar effect can
be seen from the maximum lateral error. In scenario A and scenario B, the new method
achieves results of 0.118 and 0.137, respectively, which is significantly better than the other
two representative methods. Compared with SMC and TSMC, the new method achieves
significant improvement of 58.0% and 53.2% in scenario A, respectively. In scenario B, the
new method achieves a significant improvement of 63.7% and 58.6%.

Regardless of the scenario, the vehicle using the proposed method can adjust its state
in a short amount of time, and the lateral error is always kept within the smallest range,
demonstrating that the vehicle has good handling stability for the lane change trajectory
described in the paper. In conclusion, compared with SMC, the proposed method has a
performance improvement of at least 58.0% and a performance improvement of at least
34.1% compared with TSMC.
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Table 2. Experimental results of the co-simulation.

Method Name Vx = 10 (m/s)

Scenario A

Maximum lateral acceleration (m/s2)
SMC 3.065
TSMC 1.925
Proposed 1.269

Maximum lateral error (m)
SMC 0.281
TSMC 0.252
Proposed 0.118

Scenario B

Maximum lateral acceleration (m/s2)
SMC 3.065
TSMC 1.965
Proposed 1.272

Maximum lateral error (m)
SMC 0.377
TSMC 0.331
Proposed 0.137

In conclusion, the results of the above two experimental scenarios show that the lane
changing controller designed by the method proposed in this paper achieves ideal effects
and is competent for complex lane changing scenarios. The results show that the designed
lane change control method meets the requirements of lane change maneuver and has
pretty good handling and stability, which verifies the effectiveness of the lane change
control strategy. Ensure that the vehicle can meet the passenger’s requirements for speed
and comfort in the actual lane change.

6. Conclusions

This paper proposes a novel lane-changing control strategy based on the NNTSMC
method aiming at improving lane-changing reliability and driving comfort. Lane-changing
control strategy integrates a non-singular fast terminal sliding mode control method and
neural networks, which possess certain anti-disturbance ability.

As the key technology of vehicle intelligent driving, lane-changing control has great
research significance. Based on the established vehicle dynamics model and lane-changing
controller, the results are verified in MATLAB/Simulink-CarSim co-simulation environ-
ments. CarSim provides a vehicle dynamics model and vehicle related parameter informa-
tion. The lane-changing controller is constructed in Simulink.

In order to verify the function of the lane-changing controller based on the proposed
control strategy, several experiments are also designed in this paper. Simulation exper-
iments with two scenario tests performed on the co-simulation platform confirmed the
effectiveness and superiority of the proposed control scheme over the traditional SMC ap-
proach and TSMC. The lane-changing trajectory planning model and lane-changing control
model established above are simulated and tested. Through the analysis of simulation data,
the superiority and effectiveness of the control strategy are verified. The proposed method,
in comparison to SMC, has a performance improvement of at least 58.0%, and compared to
TSMC, it has a performance improvement of at least 34.1%. Simulation results show that
the proposed method can make the vehicle track the lane center with a small error and
maintain good driving quality.

Although the test results are ideal, compared with the actual lane-changing scene, there
are inevitably some problems that have not been considered comprehensively. In the future,
we will attempt to conduct the verification experiment using a physical vehicle. In practical
applications, when modeling the vehicle dynamics, the uncertainty of its parameters and
the uncertainty of the external environment, such as the friction of mechanical components,
wheel skids, etc., will affect the accuracy of trajectory tracking. Therefore, when designing
a higher standard lane change controller, it is essential to establish a dynamic model with
richer information and base the control algorithm on it.
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