Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (109)

Search Parameters:
Keywords = total leakage response

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3707 KiB  
Article
Saussurea involucrata CML6 Enhances Freezing Tolerance by Activating Antioxidant Defense and the CBF-COR Pathway in Plants
by Mengjuan Hou, Hui Kong, Jin Li, Wenwen Xia and Jianbo Zhu
Plants 2025, 14(15), 2360; https://doi.org/10.3390/plants14152360 - 1 Aug 2025
Abstract
Low-temperature stress severely limits plant growth and reduces agricultural productivity. Calmodulin-like (CML) proteins are crucial calcium sensors in plant cold responses. Transcriptome analysis of cold-stressed Saussurea involucrata identified seven differentially expressed CML genes. qRT-PCR confirmed that SiCML6 was strongly induced at 4 °C [...] Read more.
Low-temperature stress severely limits plant growth and reduces agricultural productivity. Calmodulin-like (CML) proteins are crucial calcium sensors in plant cold responses. Transcriptome analysis of cold-stressed Saussurea involucrata identified seven differentially expressed CML genes. qRT-PCR confirmed that SiCML6 was strongly induced at 4 °C and −2 °C. Bioinformatics analysis showed that SiCML6 encodes a transmembrane protein containing an EF-hand domain. This protein carries a signal peptide and shows the closest phylogenetic relationship to Helianthus annuus CML3. Its promoter contains ABA, methyl jasmonate (MeJA), and cold-response elements. Arabidopsis plants overexpressing SiCML6 showed significantly higher survival rates at −2 °C than wild-type plants. Under freezing stress, SiCML6-overexpressing lines exhibited reduced malondialdehyde content, relative electrolyte leakage, and ROS accumulation (H2O2 and O2), along with increased proline, soluble sugars, soluble proteins, and total antioxidant capacity (T-AOC). SiCML6 elevated the expression of cold-responsive genes CBF3 and COR15a under normal conditions and further upregulated CBF1/2/3 and COR15a at 4 °C. Thus, low temperatures induced SiCML6 expression, which was potentially regulated by ABA/MeJA. SiCML6 enhances freezing tolerance by mitigating oxidative damage through boosted T-AOC and osmoprotectant accumulation while activating the CBF-COR signaling pathway. This gene is a novel target for improving crop cold resistance. Full article
Show Figures

Figure 1

24 pages, 8730 KiB  
Article
Hazardous Chemical Accident Evacuation Simulation and Analysis of Results
by Yijie Song, Beibei Wang, Xiaolu Wang, Yichen Zhang, Jiquan Zhang and Yilin Wang
Sustainability 2025, 17(14), 6415; https://doi.org/10.3390/su17146415 - 13 Jul 2025
Viewed by 433
Abstract
Chemical leakage accidents in chemical industrial parks pose significant threats to personnel safety, particularly during evacuation processes, where individual behavior and evacuation strategies have a considerable impact on overall efficiency. This study takes a leakage incident at an alkylation unit as a case [...] Read more.
Chemical leakage accidents in chemical industrial parks pose significant threats to personnel safety, particularly during evacuation processes, where individual behavior and evacuation strategies have a considerable impact on overall efficiency. This study takes a leakage incident at an alkylation unit as a case study. First, ALOHA5.4.7 software was used to simulate the influence of meteorological conditions across different seasons on the dispersion range of toxic gases, thereby generating an annual comprehensive risk zone distribution map. Subsequently, different evacuation scenarios were constructed in Pathfinder2024.1.0605, with the integration of trigger mechanisms to simulate individual behaviors during evacuation, such as variations in risk perception and peer influence. Furthermore, this study expanded the conventional application scope of Pathfinder—typically limited to small-scale building evacuations—by successfully adapting it for large-scale evacuation simulations in chemical industrial parks. The feasibility of such simulations was thereby demonstrated, highlighting the software’s potential. According to the simulation results, exit configuration, shelter placement, and individual behavior modeling significantly affect the total evacuation time. This study provides both theoretical insights and practical guidance for emergency response planning in chemical industrial parks. Full article
Show Figures

Figure 1

15 pages, 1741 KiB  
Article
Evaluation of Figleaf Gourd and White-Seeded Pumpkin Genotypes as Promising Rootstocks for Cucumber Grafting
by Gengyun Li, Jiamei Zou, Tianrui Gong, Xuejiao Li, Jing Meng, Jie Zhang, Bin Xu and Shuilian He
Horticulturae 2025, 11(7), 778; https://doi.org/10.3390/horticulturae11070778 - 3 Jul 2025
Viewed by 287
Abstract
Rootstocks are vital in cucumber production. Although figleaf gourd (Cucurbita ficifolia) is among the species used, its application remains limited due to the perception that white-seeded pumpkin (C. maxima × C. moschata) offers superior commercial traits. This perception is [...] Read more.
Rootstocks are vital in cucumber production. Although figleaf gourd (Cucurbita ficifolia) is among the species used, its application remains limited due to the perception that white-seeded pumpkin (C. maxima × C. moschata) offers superior commercial traits. This perception is partly due to the insufficient collection and evaluation of local figleaf gourd germplasm, which has obscured its potential as a rootstock. Based on prior screening, four wild figleaf gourd genotypes from Yunnan Province were selected and compared with seven commercial white-seeded pumpkin rootstocks. Scions grafted onto figleaf gourd exhibited vegetative growth (stem diameter, plant height, and leaf area) and fruit morphology (length, diameter, biomass, and surface bloom) comparable to the top-performing white-seeded pumpkin genotypes. Fruits from figleaf gourd rootstocks also displayed comparable or significantly higher nutritional quality, including vitamin C, total soluble solids, soluble sugars, and proteins. Notably, figleaf gourd itself showed significantly greater intrinsic resistance to Fusarium wilt than white-seeded pumpkin. When used as a rootstock, it protected the scion from pathogen stress by triggering a stronger antioxidant response (higher SOD and POD activity) and mitigating cellular damage (lower MDA levels and electrolyte leakage). These results provide evidence that these figleaf gourd genotypes are not merely viable alternatives but are high-performing rootstocks, particularly in enhancing nutritional value and providing elite disease resistance. Full article
(This article belongs to the Special Issue Genomics and Genetic Diversity in Vegetable Crops)
Show Figures

Figure 1

22 pages, 4298 KiB  
Article
Transcriptome and Metabolome Analyses of the Salt Stress Response Mechanism in Lonicera caerulea
by Dandan Zang, Yadong Duan, Hengtian Zhao, Ning Wang, Yiming Zhang, Yanmin Wang and Huizi Liu
Biology 2025, 14(6), 641; https://doi.org/10.3390/biology14060641 - 31 May 2025
Viewed by 462
Abstract
Lonicera caerulea is a wild fruit species with high edible and medicinal value. However, the molecular regulation and metabolic mechanisms of L. caerulea under salt stress are still unclear. Salt stress causes damage to the cell membrane of L. caerulea and induces changes [...] Read more.
Lonicera caerulea is a wild fruit species with high edible and medicinal value. However, the molecular regulation and metabolic mechanisms of L. caerulea under salt stress are still unclear. Salt stress causes damage to the cell membrane of L. caerulea and induces changes in malondialdehyde content, relative electrolyte leakage, leaves’ stomatal opening, and the water loss rate. It also increases the activity of antioxidant enzymes and the content of soluble sugars. A comprehensive transcriptomic and metabolomic analysis of L. caerulea exposed to salt stress at four different (treatment) time intervals yielded a total of 99,574 unigenes and 1375 metabolites. Among these, 4081, 4042, and 4403 differentially expressed genes (DEGs) were identified in 12 transcriptomes, while 776, 832, and 793 differentially accumulated metabolites (DAMs) were detected in 12 metabolomes. The DEGs play important roles in several signaling pathways, including MAPK signaling, fatty acid metabolism, starch and sucrose metabolism, phenylpropanoid biosynthesis, and plant hormone signal transduction. KEGG pathway enrichment analysis revealed that these DEGs and DAMs are associated with flavonoid and lipid biosynthesis pathways. The combined transcriptomic and metabolomic analyses suggest that flavonoid and fatty acid compounds may be involved in regulating plant responses to salt stress. These findings will lay the foundation for the selection of L. caerulea germplasm resources and the expansion of its cultivation area. These research findings will lay the foundation for the cultivation of salt-tolerant new varieties of L. caerulea and their planting in saline–alkali soils. Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
Show Figures

Figure 1

17 pages, 4918 KiB  
Article
Cultivar-Specific Responses of Spinach to Root-Zone Cooling in Hydroponic Systems in a Greenhouse Under Warm Climates
by Md Noor E Azam Khan, Joseph Masabni and Genhua Niu
Sustainability 2025, 17(9), 3925; https://doi.org/10.3390/su17093925 - 27 Apr 2025
Viewed by 690
Abstract
Growing spinach year-round via greenhouse hydroponics in warm climates can be challenging because of the intolerance of many spinach cultivars to heat. Root-zone cooling in hydroponic systems in warm climates may be a promising cooling method to alleviate heat stress; however, its effectiveness [...] Read more.
Growing spinach year-round via greenhouse hydroponics in warm climates can be challenging because of the intolerance of many spinach cultivars to heat. Root-zone cooling in hydroponic systems in warm climates may be a promising cooling method to alleviate heat stress; however, its effectiveness is still unknown in spinach plants. This study aimed to investigate the impact of root-zone cooling on the growth and physiological responses of four spinach cultivars (‘Lakeside’, ‘Hammerhead’, ‘Mandolin’, and ‘SV2157’) grown in deep water culture hydroponic systems in a greenhouse during the summer season in two growing cycles. The experiment consisted of the following three root-zone temperatures (RZTs): Control (ambient water temperature), RZT24 (24 °C), and RZT21 (21 °C). Among the four cultivars, ‘SV2157’ performed equally regardless of the treatment, demonstrating superior heat tolerance versus the other three cultivars. ‘Mandolin’ exhibited the greatest benefit from root-zone cooling, with increases in shoot dry weights of 87% and 94% under RZT24 and RZT21, respectively, compared to those under control treatment. Additionally, total leaf areas significantly increased under the two root-zone cooling treatments. ‘Lakeside’ and ‘Hammerhead’ generally benefited from root-zone cooling, although the magnitude of growth increases was small or statistically insignificant. However, ‘Lakeside’ and ‘Hammerhead’ were highly responsive to lower ambient air temperatures, as evidenced by increases of 121% and 90%, respectively, in shoot fresh weights across the treatments in Cycle 2 (average air temperature of 24.7 °C) compared to those in Cycle 1 (29.3 °C). Physiological responses to root-zone cooling varied among cultivars, with ‘SV2157’ exhibiting the highest chlorophyll, carotenoid, and anthocyanin levels. Higher total phenolic contents under control treatment in Cycle 1 in all three cultivars except for ‘SV2157’ suggested greater reactive oxygen species production, indicating oxidative stress. Root-zone cooling reduced oxidative stress indicators, including mortality (%), hydrogen peroxide content, and malondialdehyde content, and minimized cell leakage. Based on plant growth, physiological and biochemical traits, and electricity consumption, cooling the root zone to 24 °C rather than 21 °C is recommended for hot summers with high air temperatures. Full article
Show Figures

Figure 1

25 pages, 899 KiB  
Article
Comparison of Ultraviolet A, B and C Treatments in Preserving the Quality and Nutritional Integrity of Fresh-Cut Spinach
by Hakan Kibar and Beyhan Kibar
Foods 2025, 14(8), 1374; https://doi.org/10.3390/foods14081374 - 16 Apr 2025
Cited by 1 | Viewed by 660
Abstract
This study evaluates the effects of ultraviolet (UV) radiation (UVA, UVB, and UVC) on the postharvest quality and nutritional stability of fresh-cut spinach during cold storage. Spinach samples were exposed to UV treatments for 0, 5, or 10 min and stored at 4 [...] Read more.
This study evaluates the effects of ultraviolet (UV) radiation (UVA, UVB, and UVC) on the postharvest quality and nutritional stability of fresh-cut spinach during cold storage. Spinach samples were exposed to UV treatments for 0, 5, or 10 min and stored at 4 ± 1 °C with 85 ± 5% relative humidity for up to 10 days. Weight loss, dry matter content, total soluble solids, electrical conductivity, pH, respiration rate, color parameters, ash content, and mineral composition were assessed. The results showed that UVB-treated spinach had the lowest weight loss (0.52%), compared to UVC-treated (0.75%) and control (0.82%) samples. The dry matter content was highest in UVB-treated samples (9.56%) and lowest in UVC-treated samples (8.62%). UVC exposure increased electrical conductivity (112 µS cm−1), indicating greater ion leakage. UVA and UVB treatments preserved the chlorophyll content (SPAD values of 34.5 and 37.0, respectively) and reduced the respiration rates. These physiological responses are indicative of delayed senescence and improved storage potential. UVB-treated samples retained higher potassium (4040 mg 100 g−1), calcium (1445 mg 100 g−1), and phosphorus (375 mg 100 g−1), while UVC-treated samples showed greater mineral loss. Hierarchical clustering analysis revealed distinct metabolic responses among UV treatments. This study provides a novel comparative assessment of UVA, UVB, and UVC effects on fresh-cut spinach, demonstrating UVB as the most effective non-chemical method for enhancing shelf life while preserving nutritional quality. Full article
Show Figures

Figure 1

13 pages, 2853 KiB  
Article
Sustainable Recycling of TiO2 Nanoparticles with High Photocatalytic Performance from Spent Selective Catalytic Reduction Catalysts
by Zhaoming Lu, Xiaojing Xi, Yanling Yang, Wenjie Tian, Bin Xu and Hua-Jun Chen
Sustainability 2025, 17(7), 3003; https://doi.org/10.3390/su17073003 - 27 Mar 2025
Cited by 1 | Viewed by 548
Abstract
In this work, a sustainable approach to reclaiming high-value anatase/rutile TiO2 nanoparticles from deactivated or used selective catalytic reduction (SCR) catalysts is demonstrated using a composite flux (NaOH/Na2CO3) through an efficient sintering and subsequent leaching methodology. This method [...] Read more.
In this work, a sustainable approach to reclaiming high-value anatase/rutile TiO2 nanoparticles from deactivated or used selective catalytic reduction (SCR) catalysts is demonstrated using a composite flux (NaOH/Na2CO3) through an efficient sintering and subsequent leaching methodology. This method directly addresses the urgent need for circular economy strategies in industrial waste management. Sintering experiments revealed that while NaOH enhanced the separation efficiency of V2O5 and SiO2, it led to agglomerated products, hindering TiO2 recovery. In contrast, Na2CO3 enabled the production of powdery sintered residues, facilitating the complete separation of anatase/rutile TiO2 nanoparticles, as confirmed by XRD. By optimizing the sintering-leaching conditions, this method achieves near-total recovery of TiO2 with retained photocatalytic performance, ensuring its suitability for reuse in applications such as air/water purification or renewable energy systems. This study advances sustainability by repurposing industrial waste into high-performance materials, reducing the energy and resource demands associated with conventional TiO2 synthesis, and preventing hazardous material leakage into ecosystems. The scalable, low-complexity process aligns with global sustainability goals, including responsible consumption (SDG 12), climate action (SDG 13), and industrial innovation (SDG 9), offering a blueprint for transforming waste streams into valuable resources for a greener economy. Full article
Show Figures

Figure 1

13 pages, 3451 KiB  
Article
Performance Degradation of Ga2O3-Based X-Ray Detector Under Gamma-Ray Irradiation
by Xiao Ouyang, Silong Zhang, Tao Bai, Zhuo Chen, Yuxin Deng, Leidang Zhou, Xiaojing Song, Hao Chen, Yuru Lai, Xing Lu, Liang Chen, Liangliang Miao and Xiaoping Ouyang
Micromachines 2025, 16(3), 339; https://doi.org/10.3390/mi16030339 - 14 Mar 2025
Viewed by 743
Abstract
X-ray response performances of a p-NiO/β-Ga2O3 hetero-junction diode (HJD) X-ray detector were studied before and after γ-ray irradiation at −200 V, with a total dose of 13.5 kGy(Si). The response performances of the HJD X-ray detector were influenced [...] Read more.
X-ray response performances of a p-NiO/β-Ga2O3 hetero-junction diode (HJD) X-ray detector were studied before and after γ-ray irradiation at −200 V, with a total dose of 13.5 kGy(Si). The response performances of the HJD X-ray detector were influenced by the trap-assistant conductive process of the HJD under reverse bias, which exhibited an increasing net (response) current, nonlinearity, and a long response time. After irradiation, the Poole–Frenkel emission (PFE) dominated the leakage current of HJDs due to the higher electric field caused by the increased net carrier concentration of β-Ga2O3. This conductive process weakened the performance of the HJD X-ray detector in terms of sensitivity, output linearity, and response speed. This study provided valuable insights into the radiation damage and performance degradation mechanisms of Ga2O3-based radiation detectors and offered guidance on improving the reliability and stability of these radiation detectors. Full article
Show Figures

Figure 1

17 pages, 4437 KiB  
Article
A Positioning System Design Based on Tunnel Magnetoresistance Sensors for Rapid Zoom Optical Lens
by Junqiang Gong, Dameng Liu and Jianbin Luo
Sensors 2025, 25(6), 1820; https://doi.org/10.3390/s25061820 - 14 Mar 2025
Cited by 1 | Viewed by 732
Abstract
In response to the accurate positioning issue for high-speed moving lens groups in rapid zoom optical lenses with voice coil motors (VCMs), we demonstrate a positioning system design based on tunnel magnetoresistance sensors. The equivalent magnetic charge method and finite element method (FEM) [...] Read more.
In response to the accurate positioning issue for high-speed moving lens groups in rapid zoom optical lenses with voice coil motors (VCMs), we demonstrate a positioning system design based on tunnel magnetoresistance sensors. The equivalent magnetic charge method and finite element method (FEM) simulations were utilized to compute the magnetic field distribution of the magnetic grating encoder. Based on analytical computation, the optimal air gap δS between the sensor and magnetic grating is determined to be δS = 0.15 mm, which balances magnetic flux density amplitude and total harmonic distortion. In addition, a simplified fitting model is proposed to reduce computational complexity. We quantify the magnetic interference of VCM through three-dimensional flux leakage mapping by FEM analysis, deriving an optimal sensor position OS, with a 24 mm y-offset and 20 mm z-offset relative to the VCM’s origin OV. The position error caused by interference remains below 5 μm with maximum deviations at trajectory endpoints of the moving group. The original signal output is processed and corrected, and eventually, the measured displacement exhibits a linear relationship with actual displacement. Our study provides a comprehensive framework for the design and optimization of magnetic positioning systems in optical applications with electromagnetic motors. Full article
Show Figures

Figure 1

9 pages, 218 KiB  
Article
Prognostic Nutritional Index as a Predictor of Surgical Morbidity in Total Neoadjuvant Therapy for Locally Advanced Rectal Cancer
by Cem Batuhan Ofluoğlu, Fırat Mülküt, İsa Caner Aydın, Mustafa Kağan Başdoğan and İbrahim Aydın
J. Clin. Med. 2025, 14(6), 1937; https://doi.org/10.3390/jcm14061937 - 13 Mar 2025
Cited by 1 | Viewed by 680
Abstract
Background: The management of locally advanced rectal cancer (LARC) has seen the emergence of total neoadjuvant therapy (TNT) as a promising approach. TNT has shown potential in enhancing tumor regression, increasing pathological complete response (pCR) rates, and improving the control of systemic disease. [...] Read more.
Background: The management of locally advanced rectal cancer (LARC) has seen the emergence of total neoadjuvant therapy (TNT) as a promising approach. TNT has shown potential in enhancing tumor regression, increasing pathological complete response (pCR) rates, and improving the control of systemic disease. However, the impact of TNT on complications during and after surgery remains uncertain. This research aimed to assess surgical complications linked to TNT in comparison with conventional neoadjuvant chemoradiotherapy (nCRT). Additionally, this study explored the potential of the Prognostic Nutritional Index (PNI) as a predictor of surgical outcomes. Methods: A retrospective cohort study was conducted at Sancaktepe Şehit Prof. Dr. İlhan Varank Training and Research Hospital, including patients with LARC who underwent either TNT or nCRT followed by curative excision (TME). Demographic data, perioperative complications, and tumor-related variables were also analyzed. The prognostic value of the PNI in predicting surgical complications was assessed using multivariate logistic regression analysis. Statistical significance was set at p < 0.05. Results: A total of 103 patients with LARC were included, of whom 38 (36.9%) received TNT and 65 (63.1%) underwent nCRT. TNT was associated with significantly higher rates of anastomotic leakage (13.2% vs. 6.2%, p = 0.04) and wound infections (23.7% vs. 9.2%, p = 0.02). The mean tumor size was significantly smaller in the TNT group (3.22 ± 1.10 cm) than in the nCRT group (3.65 ± 1.26 cm, p = 0.02). The PNI was significantly lower in the TNT group (38.96 ± 5.54) than in the nCRT group (41.31 ± 4.65, p = 0.03). Multivariate logistic regression analysis demonstrated that a lower PNI was independently associated with increased surgical complications (β = −1.09, p = 0.028, 95% CI: −2.06–−0.12). Conclusions: Although TNT demonstrates clear oncological benefits in LARC, it is associated with increased perioperative morbidity. Our findings suggest that the PNI is a valuable predictive biomarker of surgical complications in patients treated with TNT. Preoperative nutritional assessment and optimization may improve perioperative outcomes and mitigate the risks associated with TNT. Future prospective studies should explore targeted interventions to enhance the safety profile of TNT while preserving its oncological advantages. Full article
(This article belongs to the Section Oncology)
18 pages, 2510 KiB  
Article
The Effect of Silicon–Melatonin Nanoparticles on Improving Germination Parameters and Reducing Salinity Toxicity by Maintaining Ion Homeostasis in Cyamopsis tetragonoloba L. Seedlings
by Mozhgan Alinia, Seyed Abdolreza Kazemeini, Samad Sabbaghi, Shima Sayahi, Alireza Abolghasemi and Behnam Asgari Lajayer
Agronomy 2025, 15(2), 427; https://doi.org/10.3390/agronomy15020427 - 8 Feb 2025
Cited by 2 | Viewed by 1083
Abstract
The salinity of water and soil is a constraint that has an extreme effect on germination and the establishment of crops. Therefore, it is pivotal to boost crop salt tolerance in global semi-arid regions. By mixing Si in an ME medium, a new [...] Read more.
The salinity of water and soil is a constraint that has an extreme effect on germination and the establishment of crops. Therefore, it is pivotal to boost crop salt tolerance in global semi-arid regions. By mixing Si in an ME medium, a new complex of nanoparticles (Si-CTS-HPC-ME NPs) was synthesized, and we investigated the role of Si-CTS-HPC-ME NPs on Cyamopsis tetragonoloba germination and tolerance against salinity stress. Thus, this study examined the influence of Si-CTS-HPC-ME NPs at different concentrations (N1: 0, N2: 40 and N3: 80 mg L−1) on some germination and seedling growth parameters and the ion homeostasis of Cyamopsis tetragonoloba L. (cluster bean) seedlings under three salinity levels (S1: 0, S2: 6 and S3: 12 dS m−1). With increasing salinity, the energy of germination (GE), index of germination (GI), index of vitality (VI), seedling vigor index (SVI), fresh weight (SFW) and dry (SDW) weight of seedlings, plumule length (PL), and radicle length (RL) parameters gradually decreased, while the mean germination time (MGT) and coefficient of velocity of germination (CVG) increased in salt-stressed cluster bean seedlings in comparison to the control. However, the usage of Si-CTS-HPC-ME NPs was effective in enhancing cluster bean tolerance to salinity by enhancing total phenols and flavonoids and improving K+, Si, and Ca2+ uptake, thus reducing lipid peroxidation, decreasing sodium ion uptake and potassium leakage, and promoting germination parameters compared with non-NP-treated seedlings. Meanwhile, 40 mg L−1 Si-CTS-HPC-ME NPs exhibited an effective response in saline conditions compared with the other NP treatments. Consequently, the application of Si-CTS-HPC-ME NPs in salt-stressed cluster bean seedlings can serve as an effective technique to enhance salinity tolerance in saline conditions under arid and semi-arid climatic conditions. Full article
(This article belongs to the Special Issue Plant Ecophysiology Under Anthropogenic and Natural Stresses)
Show Figures

Figure 1

24 pages, 9631 KiB  
Article
Development of Hollow Fiber Membranes Suitable for Outside-In Filtration of Human Blood Plasma
by David Ramada, Bente Adema, Mohamed Labib, Odyl ter Beek and Dimitrios Stamatialis
Membranes 2025, 15(1), 16; https://doi.org/10.3390/membranes15010016 - 9 Jan 2025
Viewed by 1622
Abstract
Hemodialysis (HD) is a critical treatment for patients with end-stage kidney disease (ESKD). The effectiveness of conventional dialyzers used there could be compromised during extended use due to limited blood compatibility of synthetic polymeric membranes and sub-optimal dialyzer design. In fact, blood flow [...] Read more.
Hemodialysis (HD) is a critical treatment for patients with end-stage kidney disease (ESKD). The effectiveness of conventional dialyzers used there could be compromised during extended use due to limited blood compatibility of synthetic polymeric membranes and sub-optimal dialyzer design. In fact, blood flow in the hollow fiber (HF) membrane could trigger inflammatory responses and thrombus formation, leading to reduced filtration efficiency and limiting therapy duration, a consequence of flowing the patients’ blood through the lumen of each fiber while the dialysate passes along the inter-fiber space (IOF, inside-out filtration). This study investigates the development of HF membranes for “outside-in filtration” (OIF) in HD. In OIF, blood flows through the inter-fiber space while dialysate flows within the fiber lumens, reducing the risk of fiber clogging and potentially extending treatment duration. For the OIF mode, the membrane should have a blood-compatible outer selective layer in contact with the patient’s blood. We develop HFs for OIF via liquid-induced phase separation using PES/PVP (polyethersulphone/polyvinylpyrrolidone) blends. The fibers’ surface morphology (SEM, scanning electron microscopy), chemistry (ATR-FTIR—attenuated total reflection-Fourier transform infrared spectroscopy, XPS—X-ray photoelectron spectroscopy), transport properties, and uremic toxin removal from human plasma are evaluated and compared to commercial HFs. These membranes feature a smooth, hydrophilic outer layer, porous lumen, ultrafiltration coefficient of 13–34 mL m2 h−1 mmHg−1, adequate mechanical properties, low albumin leakage, and toxin removal performance on par with commercial membranes in IOF and OIF. They offer potential for more efficient long-term HD by reducing clogging and systemic anticoagulation needs and enhancing treatment time and toxin clearance. Full article
(This article belongs to the Section Membrane Applications for Other Areas)
Show Figures

Graphical abstract

26 pages, 10234 KiB  
Article
Salinity Stress Responses and Adaptation Mechanisms of Zygophyllum propinquum: A Comprehensive Study on Growth, Water Relations, Ion Balance, Photosynthesis, and Antioxidant Defense
by Bilquees Gul, Sumaira Manzoor, Aysha Rasheed, Abdul Hameed, Muhammad Zaheer Ahmed and Hans-Werner Koyro
Plants 2024, 13(23), 3332; https://doi.org/10.3390/plants13233332 - 28 Nov 2024
Viewed by 1127
Abstract
Zygophyllum propinquum (Decne.) is a leaf succulent C4 perennial found in arid saline areas of southern Pakistan and neighboring countries, where it is utilized as herbal medicine. This study investigated how growth, water relations, ion content, chlorophyll fluorescence, and antioxidant system of [...] Read more.
Zygophyllum propinquum (Decne.) is a leaf succulent C4 perennial found in arid saline areas of southern Pakistan and neighboring countries, where it is utilized as herbal medicine. This study investigated how growth, water relations, ion content, chlorophyll fluorescence, and antioxidant system of Z. propinquum change as salinity levels increase (0, 150, 300, 600, and 900 mM NaCl). Salinity increments inhibited total plant fresh weight, whereas dry weight remained constant at moderate salinity and decreased at high salinity. Leaf area, succulence, and relative water content decreased as salinity increased. Similarly, the sap osmotic potential of both roots and shoots declined as NaCl concentrations increased. Except for a transitory increase in roots at 300 mM NaCl, sodium concentrations in roots and shoots increased constitutively to more than five times higher under saline conditions than in non-saline controls. Root potassium increased briefly at 300 mM NaCl but did not respond to NaCl treatments in the leaf. Photosynthetic pigments increased with 300 and 600 mM NaCl compared to non-saline treatments, although carotenoids appeared unaffected by NaCl treatments. Except for very high NaCl concentration (900 mM), salinity showed no significant effect on the maximum efficiency of photosystem II photochemistry (Fv/Fm). Light response curves demonstrated reduced absolute (ETR*) and maximum electron transport rates (ETRmax) for the 600 and 900 mM NaCl treatments. The alpha (α), which indicates the maximum yield of photosynthesis, decreased with increasing NaCl concentrations, reaching its lowest at 900 mM NaCl. Non-photochemical quenching (NPQ) values were significantly higher under 150 and 300 mM NaCl treatments than under non-saline and higher NaCl treatments. Electrolyte leakage, malondialdehyde (MDA), and hydrogen peroxide (H2O2) peaked only at 900 mM NaCl. Superoxide dismutase and glutathione reductase activities and glutathione content in both roots and shoots increased progressively with increasing salinity. Hence, growth reduction under low to moderate (150–600 mM NaCl) salinity appeared to be an induced response, while high (900 mM NaCl) salinity was injurious. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

30 pages, 11592 KiB  
Article
Analyzing the Impacts of Inter-Provincial Trade on the Quantitative and Spatial Characteristics of Six Embodied Air Pollutants in China Through Multi-Scenario Simulation
by Tianfeng Zhou, Cong Chen, Cong Dong and Qinghua Li
Sustainability 2024, 16(22), 9915; https://doi.org/10.3390/su16229915 - 14 Nov 2024
Viewed by 1146
Abstract
Inter-provincial trade is accompanied by the transfer of embodied pollution emissions, leading to emissions leakage, thereby hindering the sustainable development of society. Therefore, it is imperative to analyze the characteristics of embodied pollutant emission and spatial transfer driven by inter-provincial trade. In this [...] Read more.
Inter-provincial trade is accompanied by the transfer of embodied pollution emissions, leading to emissions leakage, thereby hindering the sustainable development of society. Therefore, it is imperative to analyze the characteristics of embodied pollutant emission and spatial transfer driven by inter-provincial trade. In this study, the quantitative and spatial characteristics of the six main embodied pollutants (i.e., SO2, NOX, CO, VOC, PM2.5, and PM10) were analyzed by a hypothetical extraction method (HEM) and complex network analysis (CNA) under an input–output analysis (IOA) framework. Then, the row arrange series (RAS) method was employed to simulate the impacts of varying levels of trade intensity, economic growth rate, and technological progress on embodied pollutants and spatial-transfer characteristics. The major findings are as follows: (i) the increase in inter-provincial trade led to a corresponding rise in embodied pollutant emissions due to the relocation of production activities towards provinces with higher emission intensity. Excessive responsibility was assumed by provinces such as Shanxi and Hebei, engaging in production outsourcing for reducing pollutants. (ii) The macro direction of pollutant transfer paths was from the resource-rich northern and central provinces towards the trade-developed southern provinces. Sectors in the transfer path, such as the industry sectors of Shanxi, Guangdong, Henan, and the transport sector of Henan, exhibited high centrality and dominated pollutant transfer activities in the network. (iii) The industry sector, characterized by substantial energy consumption, was the predominant emitter of all pollutant production-based emissions, accounting for more than 40% of total emissions. This study is conducive to analyzing the impacts of inter-provincial trade on embodied pollutant emissions and developing emissions reduction policies considering equitable allocation of emissions responsibilities from both production and consumption perspectives. Full article
(This article belongs to the Section Air, Climate Change and Sustainability)
Show Figures

Figure 1

12 pages, 5739 KiB  
Article
Characteristics of Volatile Organic Compounds Emissions and Odor Impact in the Pharmaceutical Industry
by Hongchao Zhao, Ying Cheng, Yanling Liu, Xiuyan Wang, Yuyan Wang, Shuai Wang and Taosheng Jin
Atmosphere 2024, 15(11), 1338; https://doi.org/10.3390/atmos15111338 - 7 Nov 2024
Cited by 2 | Viewed by 1631
Abstract
Volatile Organic Compounds (VOCs) are not only essential precursors for the formation of ozone and PM2.5, but also hazardous to human health and responsible for unpleasant odors. The pharmaceutical industry has become an important industrial source of VOCs due to China’s [...] Read more.
Volatile Organic Compounds (VOCs) are not only essential precursors for the formation of ozone and PM2.5, but also hazardous to human health and responsible for unpleasant odors. The pharmaceutical industry has become an important industrial source of VOCs due to China’s large emissions and complex emission chains. In total, 245 VOCs samples were collected and analyzed from 11 typical pharmaceutical companies in Zibo City of the North China Plain, in order to investigate the VOCs emission characteristics and odor impacts. The emission factor for the pharmaceutical industry was 7.97 ± 8.21 g/kg pharmaceuticals, while the main emission links were chimney emissions, equipment sealing leakage, and so on. Finally, considering both purifying efficiency and economic benefits, the multistage absorption (AB) method is most effective for VOCs concentrations below 100 mg/m3, while UV photo-oxygenation combined with adsorption (UVA) is more suitable for concentrations below 300 mg/m3. The Regenerative Thermal Oxidizer (RTO), Catalytic Oxidizer (CO), and Condensation + Adsorption (CA) technologies demonstrated greater stability and efficiency, particularly in the treatment of complex organic pollutants, highlighting their advantages in both VOCs and odor removal at higher concentrations. Full article
(This article belongs to the Special Issue Environmental Odour (2nd Edition))
Show Figures

Figure 1

Back to TopTop