Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (43)

Search Parameters:
Keywords = tin halide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 5112 KiB  
Article
Mixed Halide Isothiocyanate Tin(II) Compounds, SnHal(NCS): Signs of Tetrel Bonds as Bifurcated Extensions of Long-Range Asymmetric 3c-4e Bonds
by Hans Reuter
Molecules 2025, 30(13), 2700; https://doi.org/10.3390/molecules30132700 - 23 Jun 2025
Viewed by 398
Abstract
As part of a systematic study on the structures of the mixed halide isothiocyanates, SnIIHal(NCS), their single crystals were grown and structurally characterized. For Hal = F (1), the SnClF structure type was confirmed, while with Hal = Cl [...] Read more.
As part of a systematic study on the structures of the mixed halide isothiocyanates, SnIIHal(NCS), their single crystals were grown and structurally characterized. For Hal = F (1), the SnClF structure type was confirmed, while with Hal = Cl (2), Br (3), and I (4), there are three isostructural compounds of a new structure type, and for Hal = Cl (5), there is a second modification of a third structure type. These structure types have been described with respect to the composition and coordination geometry of the first, second, and van der Waals crust coordination spheres and their dependence on the halogen size and thiocyanate binding modes. With respect to the first coordination spheres, all three structure types constitute one-dimensional coordination polymers. In 1, “ladder”-type double chains result from μ3-bridging fluorine atoms, and in 24, single-chains built up from μ2-halogen atoms are pairwise “zipper”-like interconnected via κ2NS-bridging NCS ligands, which manage the halogen-linked chain assembly in the double chains of 5. Based on the octet rule, short atom distances are interpreted in terms of 2c-2e and various (symmetrical, quasi-symmetrical, and asymmetrical) kinds of 3c-4e bonds. Weak contacts, the topology of which suggests the extension of the latter bonding concept, are identified as electron-deficient, bifurcated tetrel bonds. Full article
Show Figures

Graphical abstract

15 pages, 2466 KiB  
Article
Gram-Scale Synthesis and Optical Properties of Self-Trapped-Exciton-Emitting Two-Dimensional Tin Halide Perovskites
by Yifeng Xing, Jialin Yin, Yifei Qiao, Jie Zhao, Haiyang He, Danyang Zhao, Wanlu Zhang, Shiliang Mei and Ruiqian Guo
Nanomaterials 2025, 15(11), 818; https://doi.org/10.3390/nano15110818 - 28 May 2025
Viewed by 361
Abstract
Lead halide perovskites (LHPs) have superior luminescent properties, but their toxicity hinders their commercialization, arousing interests in tin halide perovskites as environmentally friendly substitutes for LHPs. Herein, we synthesized a series of two-dimensional tin halide perovskite ODASnBr4-xIx (ODA denotes 1,8-octanediammonium, [...] Read more.
Lead halide perovskites (LHPs) have superior luminescent properties, but their toxicity hinders their commercialization, arousing interests in tin halide perovskites as environmentally friendly substitutes for LHPs. Herein, we synthesized a series of two-dimensional tin halide perovskite ODASnBr4-xIx (ODA denotes 1,8-octanediammonium, X = 0, 1, 2, 3, 4) microcrystals via an aqueous-phase method. The differences between ODASnI4 and ODASnBr4 in luminescent properties and morphological characteristics were systematically discussed for the first time and attributed to light-driven ligand-to-metal charge transfer. The prepared ODASnBr4 has a PL peak at 567 nm and a PL QY of 99%, and the white light-emitting diodes fabricated with ODASnBr4 and commercial blue phosphors realized a luminous efficacy of up to 96.27 lm/W, which demonstrated the remarkable potential of ODASnBr4 microcrystals for high-efficiency white light-emitting diode applications. Full article
Show Figures

Figure 1

13 pages, 2153 KiB  
Article
Dielectric Tailoring of Perovskite-Polymer Composites for High-Performance Triboelectric Nanogenerators
by Venkatraju Jella, Swathi Ippili and Soon-Gil Yoon
Polymers 2025, 17(7), 969; https://doi.org/10.3390/polym17070969 - 2 Apr 2025
Viewed by 588
Abstract
The rapid advancement of wearable electronics and the Internet of Things (IoT) has driven the demand for sustainable power sources to replace conventional batteries. In this study, we developed a high-performance, lead-free triboelectric nanogenerator (TENG) using methylammonium tin chloride (MASnCl3) perovskite–poly(methyl [...] Read more.
The rapid advancement of wearable electronics and the Internet of Things (IoT) has driven the demand for sustainable power sources to replace conventional batteries. In this study, we developed a high-performance, lead-free triboelectric nanogenerator (TENG) using methylammonium tin chloride (MASnCl3) perovskite–poly(methyl methacrylate) (PMMA) composite films. MASnCl3 was synthesized via an anti-solvent-assisted collision technique and incorporated into a flexible PMMA matrix to enhance dielectric properties, thereby improving triboelectric output. The optimized 10 wt% MASnCl3–PMMA composite-based TENG exhibited a maximum output voltage of 525 V, a current of 13.6 µA, and of power of 2.5 mW, significantly outperforming the many halide perovskite-based TENGs. The device demonstrated excellent pressure sensitivity, achieving 7.72 V/kPa in voltage detection mode and 0.2 μA/kPa in current detection mode. The device demonstrated excellent mechanical stability and was successfully used to power a small electronic device. The findings highlight the potential of halide perovskite–polymer composites in developing eco-friendly, efficient mechanical energy harvesters for next-generation self-powered electronics and sensor applications. Full article
(This article belongs to the Special Issue Advances in Polymer Composites for Nanogenerator Applications)
Show Figures

Figure 1

12 pages, 1742 KiB  
Article
Simulation of Lead-Free Perovskite Solar Cells with Improved Performance
by Saood Ali, Praveen Kumar, Khursheed Ahmad and Rais Ahmad Khan
Crystals 2025, 15(2), 171; https://doi.org/10.3390/cryst15020171 - 10 Feb 2025
Cited by 5 | Viewed by 1104
Abstract
At present, lead halide PVSKSCs are promising photovoltaic cells but have some limitations, including their low stability in ambient conditions and the toxicity of lead. Thus, it will be of great significance to explore lead-free perovskite materials as an alternative absorber layer. In [...] Read more.
At present, lead halide PVSKSCs are promising photovoltaic cells but have some limitations, including their low stability in ambient conditions and the toxicity of lead. Thus, it will be of great significance to explore lead-free perovskite materials as an alternative absorber layer. In recent years, the numerical simulation of perovskite solar cells (PVSKSCs) via the solar cell capacitance simulation (SCAPS) method has attracted the attention of the scientific community. In this work, we adopted SCAPS for the theoretical study of lead (Pb)-free PVSKSCs. A cesium bismuth iodide (CsBi3I10; CBI) perovskite-like material was used as an absorber layer. The thickness of the CBI layer was optimized. In addition, different electron transport layers (ETLs), such as titanium dioxide (TiO2), tin oxide (SnO2), zinc oxide (ZnO), and zinc selenide (ZnSe), and different hole transport layers, such as spiro-OMeTAD (2,2,7,7-tetrakis(N,N-di(4-methoxyphenylamine)-9,9′-spirobifluorene), poly(3-hexylthiophene-2,5-diyl) (P3HT), poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine (PTAA), and copper oxide (Cu2O), were explored for the simulation of CBI-based PVSKSCs. A device structure of FTO/ETL/CBI/HTL/Au was adopted for simulation studies. The simulation studies showed the improved photovoltaic performance of CBI-based PVSKSCs using spiro-OMeTAD and TiO2 as the HTL and ETL, respectively. An acceptable PCE of 11.98% with a photocurrent density (Jsc) of 17.360258 mA/cm2, a fill factor (FF) of 67.10%, and an open-circuit voltage (Voc) of 1.0282 V were achieved under the optimized conditions. It is expected that the present study will be beneficial for researchers working towards the development of CBI-based PVSKSCs. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Figure 1

12 pages, 3506 KiB  
Article
Photoluminescence and Stability of Dion–Jacobson Tin-Based Halide Perovskites with Different Spacer Cation Chain Length
by Muhammad Umair Ali, Wen Ting Sun, Aleksandr A. Sergeev, Atta Ur Rehman, Kam Sing Wong, Aleksandra B. Djurišić and Jasminka Popović
Molecules 2025, 30(3), 703; https://doi.org/10.3390/molecules30030703 - 5 Feb 2025
Viewed by 911
Abstract
Two-dimensional tin halide perovskites are of significant interest for light emitting applications. Here, we investigate the effect of organic cation A on the stability of different Dion–Jacobson tin-based halide perovskites. The ASnBr4 materials using diammonium cation A with shorter alkyl chains are [...] Read more.
Two-dimensional tin halide perovskites are of significant interest for light emitting applications. Here, we investigate the effect of organic cation A on the stability of different Dion–Jacobson tin-based halide perovskites. The ASnBr4 materials using diammonium cation A with shorter alkyl chains are found to exhibit improved stability, exhibiting dramatic stability difference between the most stable HDASnBr4, where HDA denotes 1,6-hexanediammonium, and two materials with 8- and 10-carbon alkyl chain ammonium cations. The HDASnBr4 powders were thermally stable at 100 °C in an argon environment but exhibited decreasing photoluminescence with time in ambient air at 100 °C. The sample degradation at 100 °C is accelerated compared to room temperature, but it proceeds along similar pathways, namely phase transformation followed by perovskite decomposition. Light emission from HDASnBr4 thin films could be further enhanced by methanol vapor treatment, and warm white emission with Commission Internationale de l’Eclairage (CIE) coordinates (0.37, 0.34) could be obtained by combining HDASnBr4 with a blue-emitting polymer film, while direct mixing of blue phosphor and HDASnBr4 powder yields white emission with CIE coordinates of (0.34, 0.32). Full article
Show Figures

Figure 1

12 pages, 2584 KiB  
Article
Bandgap Engineering via Doping Strategies for Narrowing the Bandgap below 1.2 eV in Sn/Pb Binary Perovskites: Unveiling the Role of Bi3+ Incorporation on Different A-Site Compositions
by Jeong-Yeon Lee, Seojun Lee, Jun Ryu and Dong-Won Kang
Nanomaterials 2024, 14(19), 1554; https://doi.org/10.3390/nano14191554 - 26 Sep 2024
Cited by 4 | Viewed by 1850
Abstract
The integration of perovskite materials in solar cells has garnered significant attention due to their exceptional photovoltaic properties. However, achieving a bandgap energy below 1.2 eV remains challenging, particularly for applications requiring infrared absorption, such as sub-cells in tandem solar cells and single-junction [...] Read more.
The integration of perovskite materials in solar cells has garnered significant attention due to their exceptional photovoltaic properties. However, achieving a bandgap energy below 1.2 eV remains challenging, particularly for applications requiring infrared absorption, such as sub-cells in tandem solar cells and single-junction perovskite solar cells. In this study, we employed a doping strategy to engineer the bandgap and observed that the doping effects varied depending on the A-site cation. Specifically, we investigated the impact of bismuth (Bi3+) incorporation into perovskites with different A-site cations, such as cesium (Cs) and methylammonium (MA). Remarkably, Bi3+ doping in MA-based tin-lead perovskites enabled the fabrication of ultra-narrow bandgap films (~1 eV). Comprehensive characterization, including structural, optical, and electronic analyses, was conducted to elucidate the effects of Bi doping. Notably, 8% Bi-doped Sn-Pb perovskites demonstrated infrared absorption extending up to 1360 nm, an unprecedented range for ABX3-type single halide perovskites. This work provides valuable insights into further narrowing the bandgap of halide perovskite materials, which is essential for their effective use in multi-junction tandem solar cell architectures. Full article
(This article belongs to the Special Issue Nanostructured Materials for Electric Applications)
Show Figures

Figure 1

13 pages, 14616 KiB  
Article
Impedance Spectroscopy Study of Charge Transfer in the Bulk and Across the Interface in Networked SnO2/Ga2O3 Core–Shell Nanobelts in Ambient Air
by Maciej Krawczyk, Ryszard Korbutowicz and Patrycja Suchorska-Woźniak
Sensors 2024, 24(19), 6173; https://doi.org/10.3390/s24196173 - 24 Sep 2024
Viewed by 1137
Abstract
Metal oxide core–shell fibrous nanostructures are promising gas-sensitive materials for the detection of a wide variety of both reducing and oxidizing gases. In these structures, two dissimilar materials with different work functions are brought into contact to form a coaxial heterojunction. The influence [...] Read more.
Metal oxide core–shell fibrous nanostructures are promising gas-sensitive materials for the detection of a wide variety of both reducing and oxidizing gases. In these structures, two dissimilar materials with different work functions are brought into contact to form a coaxial heterojunction. The influence of the shell material on the transportation of the electric charge carriers along these structures is still not very well understood. This is due to homo-, hetero- and metal/semiconductor junctions, which make it difficult to investigate the electric charge transfer using direct current methods. However, in order to improve the gas-sensing properties of these complex structures, it is necessary to first establish a good understanding of the electric charge transfer in ambient air. In this article, we present an impedance spectroscopy study of networked SnO2/Ga2O3 core–shell nanobelts in ambient air. Tin dioxide nanobelts were grown directly on interdigitated gold electrodes, using the thermal sublimation method, via the vapor–liquid–solid (VLS) mechanism. Two forms of a gallium oxide shell of varying thickness were prepared via halide vapor-phase epitaxy (HVPE), and the impedance spectra were measured at 189–768 °C. The bulk resistance of the core–shell nanobelts was found to be reduced due to the formation of an electron accumulation layer in the SnO2 core. At temperatures above 530 °C, the thermal reduction of SnO2 and the associated decrease in its work function caused electrons to flow from the accumulation layer into the Ga2O3 shell, which resulted in an increase in bulk resistance. The junction resistance of said core–shell nanostructures was comparable to that of SnO2 nanobelts, as both structures are likely connected through existing SnO2/SnO2 homojunctions comprising thin amorphous layers. Full article
Show Figures

Figure 1

10 pages, 3826 KiB  
Article
Influence of Ce3+ Doping on Photoluminescence Properties and Stability of Cs4SnBr6 Zero-Dimensional Perovskite
by Xinye Lu, Haixia Wu, Jisheng Xu, Jianni Chen, Yaqian Huang, Hongliang Li, Jie Song and Rui Huang
Coatings 2024, 14(8), 945; https://doi.org/10.3390/coatings14080945 - 27 Jul 2024
Cited by 1 | Viewed by 1539
Abstract
Zero-dimensional tin-based halide perovskites have garnered considerable interest owing to their remarkable optical properties, including broad-band emission, high photoluminescence (PL) efficiency, and low self-absorption. Nevertheless, enhancing the PL efficiency and stability of these materials remains a pressing challenge. In this study, the enhancement [...] Read more.
Zero-dimensional tin-based halide perovskites have garnered considerable interest owing to their remarkable optical properties, including broad-band emission, high photoluminescence (PL) efficiency, and low self-absorption. Nevertheless, enhancing the PL efficiency and stability of these materials remains a pressing challenge. In this study, the enhancement of PL and stability in Cs4SnBr6 zero-dimensional perovskite was investigated through Ce3+ doping. Our experimental results demonstrate that the incorporation of Ce3+ can significantly boost the light emission intensity from self-trapped excitons (STEs) in Cs4SnBr6, achieving over a 150% increase compared to the undoped sample, with a PL quantum yield of approximately 64.7%. Moreover, the thermal stability of the corresponding doped sample is markedly enhanced. Through comprehensive analyses, including X-ray diffraction, energy-dispersive spectroscopy, time-resolved PL, and temperature-dependent PL measurements, we elucidate that the enhanced light emission is attributed to the distortion of the [SnBr6]4− octahedral structure induced by Ce3+ doping, which strengthens electron–phonon coupling and elevates the binding energy of STEs. Full article
Show Figures

Figure 1

15 pages, 3920 KiB  
Article
Employing the Interpretable Ensemble Learning Approach to Predict the Bandgaps of the Halide Perovskites
by Chao Ren, Yiyuan Wu, Jijun Zou and Bowen Cai
Materials 2024, 17(11), 2686; https://doi.org/10.3390/ma17112686 - 2 Jun 2024
Cited by 3 | Viewed by 1343
Abstract
Halide perovskite materials have broad prospects for applications in various fields such as solar cells, LED devices, photodetectors, fluorescence labeling, bioimaging, and photocatalysis due to their bandgap characteristics. This study compiled experimental data from the published literature and utilized the excellent predictive capabilities, [...] Read more.
Halide perovskite materials have broad prospects for applications in various fields such as solar cells, LED devices, photodetectors, fluorescence labeling, bioimaging, and photocatalysis due to their bandgap characteristics. This study compiled experimental data from the published literature and utilized the excellent predictive capabilities, low overfitting risk, and strong robustness of ensemble learning models to analyze the bandgaps of halide perovskite compounds. The results demonstrate the effectiveness of ensemble learning decision tree models, especially the gradient boosting decision tree model, with a root mean square error of 0.090 eV, a mean absolute error of 0.053 eV, and a determination coefficient of 93.11%. Research on data related to ratios calculated through element molar quantity normalization indicates significant influences of ions at the X and B positions on the bandgap. Additionally, doping with iodine atoms can effectively reduce the intrinsic bandgap, while hybridization of the s and p orbitals of tin atoms can also decrease the bandgap. The accuracy of the model is validated by predicting the bandgap of the photovoltaic material MASn1−xPbxI3. In conclusion, this study emphasizes the positive impact of machine learning on material development, especially in predicting the bandgaps of halide perovskite compounds, where ensemble learning methods demonstrate significant advantages. Full article
Show Figures

Figure 1

14 pages, 2937 KiB  
Article
Simultaneous Li-Doping and Formation of SnO2-Based Composites with TiO2: Applications for Perovskite Solar Cells
by Nagisa Hattori, Kazuhiro Manseki, Yuto Hibi, Naohide Nagaya, Norimitsu Yoshida, Takashi Sugiura and Saeid Vafaei
Materials 2024, 17(10), 2339; https://doi.org/10.3390/ma17102339 - 14 May 2024
Cited by 3 | Viewed by 2301
Abstract
Tin oxide (SnO2) has been recognized as one of the beneficial components in the electron transport layer (ETL) of lead–halide perovskite solar cells (PSCs) due to its high electron mobility. The SnO2-based thin film serves for electron extraction and [...] Read more.
Tin oxide (SnO2) has been recognized as one of the beneficial components in the electron transport layer (ETL) of lead–halide perovskite solar cells (PSCs) due to its high electron mobility. The SnO2-based thin film serves for electron extraction and transport in the device, induced by light absorption at the perovskite layer. The focus of this paper is on the heat treatment of a nanoaggregate layer of single-nanometer-scale SnO2 particles in combination with another metal-dopant precursor to develop a new process for ETL in PSCs. The combined precursor solution of Li chloride and titanium(IV) isopropoxide (TTIP) was deposited onto the SnO2 layer. We varied the heat treatment conditions of the spin-coated films comprising double layers, i.e., an Li/TTIP precursor layer and SnO2 nanoparticle layer, to understand the effects of nanoparticle interconnection via sintering and the mixing ratio of the Li-dopant on the photovoltaic performance. X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HR-TEM) measurements of the sintered nanoparticles suggested that an Li-doped solid solution of SnO2 with a small amount of TiO2 nanoparticles formed via heating. Interestingly, the bandgap of the Li-doped ETL samples was estimated to be 3.45 eV, indicating a narrower bandgap as compared to that of pure SnO2. This observation also supported the formation of an SnO2/TiO2 solid solution in the ETL. The utilization of such a nanoparticulate SnO2 film in combination with an Li/TTIP precursor could offer a new approach as an alternative to conventional SnO2 electron transport layers for optimizing the performance of lead–halide perovskite solar cells. Full article
Show Figures

Figure 1

16 pages, 7914 KiB  
Article
Growth and Dispersion Control of SnO2 Nanocrystals Employing an Amino Acid Ester Hydrochloride in Solution Synthesis: Microstructures and Photovoltaic Applications
by Nagisa Hattori, Saeid Vafaei, Ryoki Narita, Naohide Nagaya, Norimitsu Yoshida, Takashi Sugiura and Kazuhiro Manseki
Materials 2023, 16(24), 7649; https://doi.org/10.3390/ma16247649 - 14 Dec 2023
Cited by 3 | Viewed by 2078
Abstract
Tin oxide (SnO2) is a technologically important semiconductor with versatile applications. In particular, attention is being paid to nanostructured SnO2 materials for use as a part of the constituents in perovskite solar cells (PSCs), an emerging renewable energy technology. This [...] Read more.
Tin oxide (SnO2) is a technologically important semiconductor with versatile applications. In particular, attention is being paid to nanostructured SnO2 materials for use as a part of the constituents in perovskite solar cells (PSCs), an emerging renewable energy technology. This is mainly because SnO2 has high electron mobility, making it favorable for use in the electron transport layer (ETL) in these devices, in which SnO2 thin films play a role in extracting electrons from the adjacent light-absorber, i.e., lead halide perovskite compounds. Investigation of SnO2 solution synthesis under diverse reaction conditions is crucial in order to lay the foundation for the cost-effective production of PSCs. This research focuses on the facile catalyst-free synthesis of single-nanometer-scale SnO2 nanocrystals employing an aromatic organic ligand (as the structure-directing agent) and Sn(IV) salt in an aqueous solution. Most notably, the use of an aromatic amino acid ester hydrochloride salt—i.e., phenylalanine methyl ester hydrochloride (denoted as L hereafter)—allowed us to obtain an aqueous precursor solution containing a higher concentration of ligand L, in addition to facilitating the growth of SnO2 nanoparticles as small as 3 nm with a narrow size distribution, which were analyzed by means of high-resolution transmission electron microscopy (HR-TEM). Moreover, the nanoparticles were proved to be crystallized and uniformly dispersed in the reaction mixture. The environmentally benign, ethanol-based SnO2 nanofluids stabilized with the capping agent L for the Sn(IV) ions were also successfully obtained and spin-coated to produce a SnO2 nanoparticle film to serve as an ETL for PSCs. Several SnO2 ETLs that were created by varying the temperature of nanoparticle synthesis were examined to gain insight into the performance of PSCs. It is thought that reaction conditions that utilize high concentrations of ligand L to control the growth and dispersion of SnO2 nanoparticles could serve as useful criteria for designing SnO2 ETLs, since hydrochloride salt L can offer significant potential as a functional compound by controlling the microstructures of individual SnO2 nanoparticles and the self-assembly process to form nanostructured SnO2 thin films. Full article
Show Figures

Figure 1

13 pages, 1985 KiB  
Article
Deep-Ultraviolet Transparent Electrode Design for High-Performance and Self-Powered Perovskite Photodetector
by Thi My Huyen Nguyen, Manh Hoang Tran and Chung Wung Bark
Nanomaterials 2023, 13(22), 2979; https://doi.org/10.3390/nano13222979 - 20 Nov 2023
Cited by 8 | Viewed by 1977
Abstract
In this study, a highly crystalline and transparent indium-tin-oxide (ITO) thin film was prepared on a quartz substrate via RF sputtering to fabricate an efficient bottom-to-top illuminated electrode for an ultraviolet C (UVC) photodetector. Accordingly, the 26.6 nm thick ITO thin film, which [...] Read more.
In this study, a highly crystalline and transparent indium-tin-oxide (ITO) thin film was prepared on a quartz substrate via RF sputtering to fabricate an efficient bottom-to-top illuminated electrode for an ultraviolet C (UVC) photodetector. Accordingly, the 26.6 nm thick ITO thin film, which was deposited using the sputtering method followed by post-annealing treatment, exhibited good transparency to deep-UV spectra (67% at a wavelength of 254 nm), along with high electrical conductivity (11.3 S/cm). Under 254 nm UVC illumination, the lead-halide-perovskite-based photodetector developed on the prepared ITO electrode in a vertical structure exhibited an excellent on/off ratio of 1.05 × 104, a superb responsivity of 250.98 mA/W, and a high specific detectivity of 4.71 × 1012 Jones without external energy consumption. This study indicates that post-annealed ITO ultrathin films can be used as electrodes that satisfy both the electrical conductivity and deep-UV transparency requirements for high-performance bottom-illuminated optoelectronic devices, particularly for use in UVC photodetectors. Full article
Show Figures

Figure 1

29 pages, 45407 KiB  
Review
Lead-Free Halide Perovskite Nanocrystals for Light-Emitting Diodes
by Do-Young Kim, Jae-Geun Jung, Ye-Ji Lee and Min-Ho Park
Materials 2023, 16(18), 6317; https://doi.org/10.3390/ma16186317 - 20 Sep 2023
Cited by 6 | Viewed by 3940
Abstract
Lead-based halide perovskite nanocrystals (PeNCs) have demonstrated remarkable potential for use in light-emitting diodes (LEDs). This is because of their high photoluminescence quantum yield, defect tolerance, tunable emission wavelength, color purity, and high device efficiency. However, the environmental toxicity of Pb has impeded [...] Read more.
Lead-based halide perovskite nanocrystals (PeNCs) have demonstrated remarkable potential for use in light-emitting diodes (LEDs). This is because of their high photoluminescence quantum yield, defect tolerance, tunable emission wavelength, color purity, and high device efficiency. However, the environmental toxicity of Pb has impeded their commercial viability owing to the restriction of hazardous substances directive. Therefore, Pb-free PeNCs have emerged as a promising solution for the development of eco-friendly LEDs. This review article presents a detailed analysis of the various compositions of Pb-free PeNCs, including tin-, bismuth-, antimony-, and copper-based perovskites and double perovskites, focusing on their stability, optoelectronic properties, and device performance in LEDs. Furthermore, we address the challenges encountered in using Pb-free PeNC-LEDs and discuss the prospects and potential of these Pb-free PeNCs as sustainable alternatives to lead-based PeLEDs. In this review, we aim to shed light on the current state of Pb-free PeNC LEDs and highlight their significance in driving the development of eco-friendly LED technologies. Full article
Show Figures

Figure 1

11 pages, 5190 KiB  
Article
Effect of CrF3 Addition on Photoluminescence Properties of Lead-Free Cs4SnBr6−xFx Zero-Dimensional Perovskite
by Jianni Chen, Haixia Wu, Yaqian Huang, Jisheng Xu, Xinye Lu, Wendi Zhou, Jie Song and Rui Huang
Materials 2023, 16(18), 6309; https://doi.org/10.3390/ma16186309 - 20 Sep 2023
Viewed by 1599
Abstract
Zero-dimensional (0D) tin halide perovskites, characterized by their broadband and adjustable emissions, high photoluminescence quantum yield, and absence of self-absorption, are crucial for the fabrication of high-efficiency optoelectronic devices, such as LEDs, solar cells, and sensors. Despite these attributes, boosting their emission efficiency [...] Read more.
Zero-dimensional (0D) tin halide perovskites, characterized by their broadband and adjustable emissions, high photoluminescence quantum yield, and absence of self-absorption, are crucial for the fabrication of high-efficiency optoelectronic devices, such as LEDs, solar cells, and sensors. Despite these attributes, boosting their emission efficiency and stability poses a significant challenge. In this work, Cr3+-doped Cs4SnBr6−xFx perovskites were synthesized using a water-assisted wet ball-milling method. The effect of CrF3 addition on photoluminescence properties of Cs4SnBr6−xFx Perovskites was investigated. We found that Cr3+-doped Cs4SnBr6−xFx Perovskites exhibit a broad emission band, a substantial Stokes shift, and an efficient green light emission centered at about 525 nm at ambient temperature. The derived photoluminescence quantum yield amounted to as high as 56.3%. In addition, these Cr3+-doped Cs4SnBr6−xFx perovskites outperform their undoped counterparts in terms of thermal stability. Through a comprehensive analysis of photoluminescence measurements, our findings suggested that the elevated photoluminescence quantum yield can be attributed to the enhanced exciton binding energy of self-trapped excitons (STEs) and the suitable electron−phonon coupling resulting from the substantial distortion of [SnBr6]4− octahedra instigated by the addition of CrF3. Full article
Show Figures

Figure 1

10 pages, 1627 KiB  
Article
The Defect Passivation of Tin Halide Perovskites Using a Cesium Iodide Modification
by Linfeng He, Jin Cheng, Longjiang Zhao, Xinyao Chen, Xiaoping Zou, Chunqian Zhang and Junming Li
Molecules 2023, 28(17), 6414; https://doi.org/10.3390/molecules28176414 - 3 Sep 2023
Cited by 5 | Viewed by 2491
Abstract
Tin-based perovskites are promising for realizing lead-free perovskite solar cells; however, there remains a significant challenge to achieving high-performance tin-based perovskite solar cells. In particular, the device fill factor was much lower than that of other photovoltaic cells. Therefore, understanding how the fill [...] Read more.
Tin-based perovskites are promising for realizing lead-free perovskite solar cells; however, there remains a significant challenge to achieving high-performance tin-based perovskite solar cells. In particular, the device fill factor was much lower than that of other photovoltaic cells. Therefore, understanding how the fill factor was influenced by device physical mechanisms is meaningful. In this study, we reported a method to improve the device fill factor using a thin cesium iodide layer modification in tin-based perovskite cells. With the thin passivation layer, a high-quality perovskite film with larger crystals and lower charge carrier densities was obtained. As a result, the series resistance of devices was decreased; the shunt resistance of devices was increased; and the non-radiative recombination of devices was suppressed. Consequently, the fill factor, and the device efficiency and stability were greatly enhanced. The champion tin-based perovskite cells showed a fill factor of 63%, an efficiency of 6.1% and excellent stability. Our study reveals that, with a moderate thin layer modification strategy, the long-term stability of tin-based PSCs can be developed. Full article
Show Figures

Graphical abstract

Back to TopTop