Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = tideglusib

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2240 KiB  
Article
Therapeutic Targeting of the GSK3β-CUGBP1 Pathway in Myotonic Dystrophy
by Maggie Lutz, Miranda Levanti, Rebekah Karns, Genevieve Gourdon, Diana Lindquist, Nikolai A. Timchenko and Lubov Timchenko
Int. J. Mol. Sci. 2023, 24(13), 10650; https://doi.org/10.3390/ijms241310650 - 26 Jun 2023
Cited by 3 | Viewed by 2656
Abstract
Myotonic Dystrophy type 1 (DM1) is a neuromuscular disease associated with toxic RNA containing expanded CUG repeats. The developing therapeutic approaches to DM1 target mutant RNA or correct early toxic events downstream of the mutant RNA. We have previously described the benefits of [...] Read more.
Myotonic Dystrophy type 1 (DM1) is a neuromuscular disease associated with toxic RNA containing expanded CUG repeats. The developing therapeutic approaches to DM1 target mutant RNA or correct early toxic events downstream of the mutant RNA. We have previously described the benefits of the correction of the GSK3β-CUGBP1 pathway in DM1 mice (HSALR model) expressing 250 CUG repeats using the GSK3 inhibitor tideglusib (TG). Here, we show that TG treatments corrected the expression of ~17% of genes misregulated in DM1 mice, including genes involved in cell transport, development and differentiation. The expression of chloride channel 1 (Clcn1), the key trigger of myotonia in DM1, was also corrected by TG. We found that correction of the GSK3β-CUGBP1 pathway in mice expressing long CUG repeats (DMSXL model) is beneficial not only at the prenatal and postnatal stages, but also during adulthood. Using a mouse model with dysregulated CUGBP1, which mimics alterations in DM1, we showed that the dysregulated CUGBP1 contributes to the toxicity of expanded CUG repeats by changing gene expression and causing CNS abnormalities. These data show the critical role of the GSK3β-CUGBP1 pathway in DM1 muscle and in CNS pathologies, suggesting the benefits of GSK3 inhibitors in patients with different forms of DM1. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

14 pages, 2626 KiB  
Article
Small Molecule GSK-3 Inhibitors Safely Promote the Proliferation and Viability of Human Dental Pulp Stem Cells—In Vitro
by Samer Hanna, Riham Aly, Ghada Nour Eldeen, Alberto Adanero Velasco and Ruth Pérez Alfayate
Biomedicines 2023, 11(2), 542; https://doi.org/10.3390/biomedicines11020542 - 13 Feb 2023
Cited by 12 | Viewed by 2972
Abstract
Small molecules have demonstrated promising results as successful alternatives to growth factors. In this study, focus was drawn to CHIR99021 and tideglusib as GSK-3 inhibitors known for their anti-inflammatory and regenerative potential. The effect of both tideglusib and CHIR99021 on the proliferation, viability, [...] Read more.
Small molecules have demonstrated promising results as successful alternatives to growth factors. In this study, focus was drawn to CHIR99021 and tideglusib as GSK-3 inhibitors known for their anti-inflammatory and regenerative potential. The effect of both tideglusib and CHIR99021 on the proliferation, viability, and stemness of human dental pulp stem cells (hDPSCs) was investigated to assess their possible role in regenerative dentistry. Briefly, hDPSCs were isolated from sound premolars extracted for orthodontic purposes. Cytotoxicity and proliferation assessment were performed via cell counting kit-8 followed by flow cytometric analysis of apoptotic marker ANNEXIN V. The effect of both small molecules on the stemness of hDPSCs was analyzed by qRT-PCR. Both tideglusib and CHIR99021 were proven to be safe on hDPSCs. The tideglusib concentration that resulted in higher viable cells was 100 nM, while the concentration for CHIR99021 was 5 nM. Both small molecules successfully induced cellular proliferation and demonstrated minimal expression of ANNEXIN V, indicative of the absence of cellular apoptosis and further confirming their positive effect on proliferation. Finally, both small molecules enhanced stemness markers expression as evidenced by qRT-PCR, which, again, highlighted the positive effect of both tideglusib and CHIR99021 on safely promoting the proliferation of hDPSCs while maintaining their stemness. Full article
(This article belongs to the Special Issue Cell Biology in Dentistry)
Show Figures

Figure 1

17 pages, 4348 KiB  
Article
Aggregatibacter actinomycetemcomitans Cytolethal Distending Toxin-Induces Cell Cycle Arrest in a Glycogen Synthase Kinase (GSK)-3-Dependent Manner in Oral Keratinocytes
by Bruce J. Shenker, Lisa P. Walker, Ali Zekavat, Jonathon Korostoff and Kathleen Boesze-Battaglia
Int. J. Mol. Sci. 2022, 23(19), 11831; https://doi.org/10.3390/ijms231911831 - 5 Oct 2022
Cited by 8 | Viewed by 2308
Abstract
Cytolethal distending toxins (Cdt) are produced by a diverse group of pathogens. One Cdt-producing organism, Aggregatibacter actinomycetemcomitans, plays a critical role in the pathogenesis of a unique form of periodontitis, formerly referred to as localized aggressive periodontitis. The active Cdt subunit, CdtB, [...] Read more.
Cytolethal distending toxins (Cdt) are produced by a diverse group of pathogens. One Cdt-producing organism, Aggregatibacter actinomycetemcomitans, plays a critical role in the pathogenesis of a unique form of periodontitis, formerly referred to as localized aggressive periodontitis. The active Cdt subunit, CdtB, is a potent phosphatidylinositol (PI) 3,4,5-triphosphate phosphatase capable of inducing PI-3-kinase signaling blockade, a requisite for Cdt-induced toxicity in lymphocytes. In this study, we extended our observations to include the oral keratinocyte response to AaCdt using cell lines and primary gingival keratinocytes. All three exhibited G2/M arrest when exposed to AaCdt toxin within 24 h. Toxin-treated cells exhibited reduced levels of pAkt and pGSK3β within 6 h. Pre-treatment with GSK3β kinase inhibitors, LY2090314, CHIR99021 and Tideglusib, abrogated Cdt-induced G2/M arrest. None of the oral epithelial cells exhibited evidence of apoptosis. Cells remained arrested in the G2/M phase for at least 72 h without evidence of DNA damage response activation (H2AX phosphorylation). Cdt-treated cells displayed increased phosphorylation of the cyclin dependent kinase 1 (CDK1); moreover, the GSK3 inhibitors blocked this increase and reduced total CDK1 levels. This study further clarifies the potential mechanism(s) contributing to Cdt toxicity and toxin-mediated pathogenesis. Full article
(This article belongs to the Special Issue GSK3 as a Master Regulator of Cellular Processes)
Show Figures

Figure 1

15 pages, 3170 KiB  
Article
Evaluating the Effect of Tideglusib-Loaded Bioactive Glass Nanoparticles as a Potential Dentine Regenerative Material
by Akhil C. Rao, K. Vijay Venkatesh, Vidyashree Nandini, Dhanasekaran Sihivahanan, Ahmed Alamoudi, Hammam Ahmed Bahammam, Sarah Ahmed Bahammam, Bassam Zidane, Maha A. Bahammam, Hitesh Chohan, Nassreen H. Albar, Pradeep Kumar Yadalam and Shankargouda Patil
Materials 2022, 15(13), 4567; https://doi.org/10.3390/ma15134567 - 29 Jun 2022
Cited by 7 | Viewed by 3083
Abstract
Dental pulp treatment is the least intrusive procedure currently available for preserving the vitality of the pulp. Several studies are underway to improve the bioactivity of pulp capping materials. Tideglusib isa potent anti-inflammatory, antioxidant, and a regenerative drug developed against Alzheimer’s disease and [...] Read more.
Dental pulp treatment is the least intrusive procedure currently available for preserving the vitality of the pulp. Several studies are underway to improve the bioactivity of pulp capping materials. Tideglusib isa potent anti-inflammatory, antioxidant, and a regenerative drug developed against Alzheimer’s disease and has been shown to be effective in the treatment of dental cavities. However, its bioactive properties encapsulated within the nanoparticles as a component of pulp capping material are largely unknown. In this study, tideglusib-loaded bioactive glass nanoparticles were synthesized (tideglusib-BgNPs) and mixed at various concentrations into the calcium silicate cement to testits physiomechanical and bioactivitiescompared with biodentine (control). The calcium silicate cement with 10wgt% tideglusib-BgNPs showed comparable physiomechanical properties to that of biodentine. Additionally, the assessment of cytotoxicity and bioactivity (cell proliferation, wound healing, and cell migration assays) showed increased bioactivity in terms of better wound healing, increased proliferation, and better migration of human dental pulp stem cells than biodentine. These findings suggest new opportunities to use tideglusib-BgNPs in pulp therapy. Full article
(This article belongs to the Special Issue Nano Particles and Fiber Reinforced Materials in Dentistry)
Show Figures

Figure 1

14 pages, 2347 KiB  
Article
Tideglusib, a Non-ATP Competitive Inhibitor of GSK-3β as a Drug Candidate for the Treatment of Amyotrophic Lateral Sclerosis
by Loreto Martínez-González, Claudia Gonzalo-Consuegra, Marta Gómez-Almería, Gracia Porras, Eva de Lago, Ángeles Martín-Requero and Ana Martínez
Int. J. Mol. Sci. 2021, 22(16), 8975; https://doi.org/10.3390/ijms22168975 - 20 Aug 2021
Cited by 43 | Viewed by 5413
Abstract
Amyotrophic Lateral Sclerosis (ALS) is the most common degenerative motor neuron disease in adults. About 97% of ALS patients present TDP-43 aggregates with post-translational modifications, such as hyperphosphorylation, in the cytoplasm of affected cells. GSK-3β is one of the protein kinases involved in [...] Read more.
Amyotrophic Lateral Sclerosis (ALS) is the most common degenerative motor neuron disease in adults. About 97% of ALS patients present TDP-43 aggregates with post-translational modifications, such as hyperphosphorylation, in the cytoplasm of affected cells. GSK-3β is one of the protein kinases involved in TDP-43 phosphorylation. Up-regulation of its expression and activity is reported on spinal cord and cortex tissues of ALS patients. Here, we propose the repurposing of Tideglusib, an in-house non-ATP competitive GSK-3β inhibitor that is currently in clinical trials for autism and myotonic dystrophy, as a promising therapeutic strategy for ALS. With this aim we have evaluated the efficacy of Tideglusib in different experimental ALS models both in vitro and in vivo. Moreover, we observed that GSK-3β activity is increased in lymphoblasts from sporadic ALS patients, with a simultaneous increase in TDP-43 phosphorylation and cytosolic TDP-43 accumulation. Treatment with Tideglusib decreased not only phospho-TDP-43 levels but also recovered its nuclear localization in ALS lymphoblasts and in a human TDP-43 neuroblastoma model. Additionally, we found that chronic oral treatment with Tideglusib is able to reduce the increased TDP-43 phosphorylation in the spinal cord of Prp-hTDP-43A315T mouse model. Therefore, we consider Tideglusib as a promising drug candidate for ALS, being proposed to start a clinical trial phase II by the end of the year. Full article
(This article belongs to the Special Issue Protein Kinases and Their Inhibitors in CNS Diseases)
Show Figures

Figure 1

18 pages, 23383 KiB  
Article
Allosteric Modulation of GSK-3β as a New Therapeutic Approach in Limb Girdle Muscular Dystrophy R1 Calpain 3-Related
by Anabel Rico, Garazi Guembelzu, Valle Palomo, Ana Martínez, Ana Aiastui, Leire Casas-Fraile, Andrea Valls, Adolfo López de Munain and Amets Sáenz
Int. J. Mol. Sci. 2021, 22(14), 7367; https://doi.org/10.3390/ijms22147367 - 8 Jul 2021
Cited by 9 | Viewed by 3861
Abstract
Limb-girdle muscular dystrophy R1 calpain 3-related (LGMDR1) is an autosomal recessive muscular dystrophy produced by mutations in the CAPN3 gene. It is a rare disease and there is no cure or treatment for the disease while the pathophysiological mechanism by which the absence [...] Read more.
Limb-girdle muscular dystrophy R1 calpain 3-related (LGMDR1) is an autosomal recessive muscular dystrophy produced by mutations in the CAPN3 gene. It is a rare disease and there is no cure or treatment for the disease while the pathophysiological mechanism by which the absence of calpain 3 provokes the dystrophy in muscles is not clear. However, key proteins implicated in Wnt and mTOR signaling pathways, which regulate muscle homeostasis, showed a considerable reduction in their expression and in their phosphorylation in LGMDR1 patients’ muscles. Finally, the administration of tideglusib and VP0.7, ATP non-competitive inhibitors of glycogen synthase kinase 3β (GSK-3β), restore the expression and phosphorylation of these proteins in LGMDR1 cells, opening the possibility of their use as therapeutic options. Full article
(This article belongs to the Special Issue New Pharmacological Approaches for Rare Diseases)
Show Figures

Figure 1

18 pages, 1418 KiB  
Review
Correction of RNA-Binding Protein CUGBP1 and GSK3β Signaling as Therapeutic Approach for Congenital and Adult Myotonic Dystrophy Type 1
by Lubov Timchenko
Int. J. Mol. Sci. 2020, 21(1), 94; https://doi.org/10.3390/ijms21010094 - 21 Dec 2019
Cited by 14 | Viewed by 4766
Abstract
Myotonic dystrophy type 1 (DM1) is a complex genetic disease affecting many tissues. DM1 is caused by an expansion of CTG repeats in the 3′-UTR of the DMPK gene. The mechanistic studies of DM1 suggested that DMPK mRNA, containing expanded CUG repeats, is [...] Read more.
Myotonic dystrophy type 1 (DM1) is a complex genetic disease affecting many tissues. DM1 is caused by an expansion of CTG repeats in the 3′-UTR of the DMPK gene. The mechanistic studies of DM1 suggested that DMPK mRNA, containing expanded CUG repeats, is a major therapeutic target in DM1. Therefore, the removal of the toxic RNA became a primary focus of the therapeutic development in DM1 during the last decade. However, a cure for this devastating disease has not been found. Whereas the degradation of toxic RNA remains a preferential approach for the reduction of DM1 pathology, other approaches targeting early toxic events downstream of the mutant RNA could be also considered. In this review, we discuss the beneficial role of the restoring of the RNA-binding protein, CUGBP1/CELF1, in the correction of DM1 pathology. It has been recently found that the normalization of CUGBP1 activity with the inhibitors of GSK3 has a positive effect on the reduction of skeletal muscle and CNS pathologies in DM1 mouse models. Surprisingly, the inhibitor of GSK3, tideglusib also reduced the toxic CUG-containing RNA. Thus, the development of the therapeutics, based on the correction of the GSK3β-CUGBP1 pathway, is a promising option for this complex disease. Full article
(This article belongs to the Special Issue Myotonic Dystrophy: From Molecular Pathogenesis to Therapeutics)
Show Figures

Figure 1

20 pages, 2932 KiB  
Article
Regulation of the Nrf2 Pathway by Glycogen Synthase Kinase-3β in MPP+-Induced Cell Damage
by Güliz Armagan, Elvin Sevgili, Fulya Tuzcu Gürkan, Fadime Aydın Köse, Tuğçe Bilgiç, Taner Dagcı and Luciano Saso
Molecules 2019, 24(7), 1377; https://doi.org/10.3390/molecules24071377 - 8 Apr 2019
Cited by 41 | Viewed by 4432
Abstract
Recently, nuclear translocation and stability of nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2) have gained increasing attention in the prevention of oxidative stress. The present study was aimed to evaluate the regulatory role of glycogen synthase kinase-3β (GSK-3β) inhibition by tideglusib through [...] Read more.
Recently, nuclear translocation and stability of nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2) have gained increasing attention in the prevention of oxidative stress. The present study was aimed to evaluate the regulatory role of glycogen synthase kinase-3β (GSK-3β) inhibition by tideglusib through the Nrf2 pathway in a cellular damage model. Gene silencing (siRNA-mediated) was performed to examine the responses of Nrf2-target genes (i.e., heme oxygenase-1, NAD(P)H:quinone oxidoreductase1) to siRNA depletion of Nrf2 in MPP+-induced dopaminergic cell death. Nrf2 and its downstream regulated genes/proteins were analyzed using Real-time PCR and Western Blotting techniques, respectively. Moreover, free radical production, the changes in mitochondrial membrane potential, total glutathione, and glutathione-S-transferase were examined. The possible contribution of peroxisome proliferator-activated receptor gamma (PPARγ) to tideglusib-mediated neuroprotection was evaluated. The number of viable cells and mitochondrial membrane potential were increased following GSK-3β enzyme inhibition against MPP+. HO-1, NQO1 mRNA/protein expressions and Nrf2 nuclear translocation significantly triggered by tideglusib. Moreover, the neuroprotection by tideglusib was not observed in the presence of siRNA Nrf2. Our study supports the idea that GSK-3β enzyme inhibition may modulate the Nrf2/ARE pathway in cellular damage and the inhibitory role of tideglusib on GSK-3β along with PPARγ activation may be responsible for neuroprotection. Full article
(This article belongs to the Special Issue Chemistry and Pharmacology of Modulators of Oxidative Stress 2018)
Show Figures

Graphical abstract

Back to TopTop