Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = thin-film thermoelectric couple

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 13756 KiB  
Article
A Study on the Effect of Cutting Temperature on CFRP Hole Wall Damage in Continuous Drilling Process
by Chong Zhang, Feiyu Chen, Dongxue Song, Jiale Liu, Qingsong Xu, Qunli Zhou and Haoyu Wang
Machines 2024, 12(11), 809; https://doi.org/10.3390/machines12110809 - 14 Nov 2024
Cited by 2 | Viewed by 974
Abstract
In the assembly process of aerospace parts, drilling is essential for carbon fiber-reinforced materials. However, due to the extreme thermal sensitivity of these composites, continuous drilling often leads to irreparable defects such as hole wall burns and exit delamination caused by concentrated cutting [...] Read more.
In the assembly process of aerospace parts, drilling is essential for carbon fiber-reinforced materials. However, due to the extreme thermal sensitivity of these composites, continuous drilling often leads to irreparable defects such as hole wall burns and exit delamination caused by concentrated cutting heat, resulting in the scrapping of parts. To address this issue, this paper explores the impact of temperature characteristics on drilling quality, providing guidance for optimizing the composite drilling process. A simulation model for single and continuous drilling was established to analyze the temperature distribution on the tool surface during drilling. A drilling temperature measurement system based on thin-film thermocouple technology was developed, enabling real-time online temperature monitoring. Continuous drilling experiments were conducted, analyzing the correlation between maximum drilling temperature and hole quality. Results show that temperatures from −25.75 °C to −9.75 °C and from 182 °C to 200.75 °C cause significant exit damage, while optimal hole quality is achieved between −1.25 °C and 168 °C. Full article
(This article belongs to the Special Issue Composite Machining in Manufacturing)
Show Figures

Figure 1

11 pages, 695 KiB  
Article
Thickness-Dependent Terahertz Permittivity of Epitaxially Grown PbTe Thin Films
by Nicolas M. Kawahala, Daniel A. Matos, Paulo H. O. Rappl, Eduardo Abramof, Andrey Baydin, Junichiro Kono and Felix G. G. Hernandez
Coatings 2023, 13(11), 1855; https://doi.org/10.3390/coatings13111855 - 28 Oct 2023
Cited by 2 | Viewed by 2107
Abstract
The exceptional thermoelectric properties of PbTe are believed to be associated with the incipient ferroelectricity of this material, which is caused by strong electron–phonon coupling that connects phononic and electronic dynamics. Here, we have used terahertz time-domain spectroscopy measurements to generate complex permittivity [...] Read more.
The exceptional thermoelectric properties of PbTe are believed to be associated with the incipient ferroelectricity of this material, which is caused by strong electron–phonon coupling that connects phononic and electronic dynamics. Here, we have used terahertz time-domain spectroscopy measurements to generate complex permittivity spectra for a set of epitaxially grown PbTe thin films with thicknesses between 100 nm and 500 nm at temperatures from 10 K to 300 K. Using a Drude–Lorentz model, we retrieved the physical parameters of both the phononic and electronic contributions to the THz permittivity. We observed a strong decrease, or softening, of the transverse optical phonon mode frequency with decreasing temperature, determining a thickness-independent negative ferroelectric-transition critical temperature, while we found a thickness-dependent anharmonic phonon decay lifetime. The electronic contribution to the permittivity was larger in thinner films, and both the carrier density and mobility increased with decreasing temperature in all films. Finally, we detected a thickness-dependent longitudinal optical phonon mode frequency, indicating the presence of plasmon–phonon coupling. Full article
Show Figures

Figure 1

13 pages, 490 KiB  
Article
Thermophase Seebeck Coefficient in Hybridized Superconductor-Quantum-Dot-Superconductor Josephson Junction Side-Coupled to Majorana Nanowire
by Yumei Gao, Xiaoyan Zhang, Zichuan Yi, Liming Liu and Feng Chi
Nanomaterials 2023, 13(17), 2489; https://doi.org/10.3390/nano13172489 - 4 Sep 2023
Cited by 3 | Viewed by 1584
Abstract
The dc Josephson current is generated from phase difference between two superconductors separated by a mesoscopic thin film (Josephson junction) without external bias voltage. In the presence of a temperature gradient across the superconductors, a thermal phase is induced under the condition of [...] Read more.
The dc Josephson current is generated from phase difference between two superconductors separated by a mesoscopic thin film (Josephson junction) without external bias voltage. In the presence of a temperature gradient across the superconductors, a thermal phase is induced under the condition of open circuit. This is very similar to the Seebeck effect in the usual thermoelectric effect, and the thermal phase is thus named as thermophase Seebeck coefficient (TPSC). Here we find obvious enhancement and sign change of the TPSC unique to the Josephson junction composing of two superconductors connected to a semiconductor quantum dot (QD), which is additionally side-coupled to a nanowire hosting Majorana bound states (MBSs), the system denoted by S-MQD-S. These result arise from the newly developed states near the Fermi level of the superconductors due to the QD-MBS hybridization when the dot level is within the superconducting gap. The sign change of the TPSC provides a strong evidence of the existence of MBSs, and is absent if the QD is coupled to regular fermion, such as another QD (system denoted by S-DQD-S). We show that the magnitude and sign of the TPSC are sensitive to the physical quantities including interaction strength between the QD and MBSs, direct overlap between the MBSs, system equilibrium temperature, as well as hopping amplitude between the QD and the superconductors. The obtained results are explained with the help of the current-carrying density of the states (CCDOS), and may be useful in interdisciplinary research areas of Josephson and Majorana physics. Full article
(This article belongs to the Special Issue 2D and Carbon Nanomaterials for Energy Conversion and Storage)
Show Figures

Figure 1

23 pages, 1542 KiB  
Review
Review of Si-Based Thin Films and Materials for Thermoelectric Energy Harvesting and Their Integration into Electronic Devices for Energy Management Systems
by Carlos Roberto Ascencio-Hurtado, Roberto C. Ambrosio Lázaro, Johan Jair Estrada-López and Alfonso Torres Jacome
Eng 2023, 4(2), 1409-1431; https://doi.org/10.3390/eng4020082 - 15 May 2023
Cited by 5 | Viewed by 2680
Abstract
Energy harvesters are autonomous systems capable of capturing, processing, storing, and utilizing small amounts of free energy from the surrounding environment. Such energy harvesters typically involve three fundamental stages: a micro-generator or energy transducer, a voltage booster or power converter, and an energy [...] Read more.
Energy harvesters are autonomous systems capable of capturing, processing, storing, and utilizing small amounts of free energy from the surrounding environment. Such energy harvesters typically involve three fundamental stages: a micro-generator or energy transducer, a voltage booster or power converter, and an energy storage component. In the case of harvesting mechanical vibrations from the environment, piezoelectric materials have been used as a transducer. For instance, PZT (lead zirconate titanate) is a widely used piezoelectric ceramic due to its high electromechanical coupling factor. However, the integration of PZT into silicon poses certain limitations, not only in the harvesting stage but also in embedding a power management electronics circuit. On the other hand, in thermoelectric (TE) energy harvesting, a recent approach involves using abundant, eco-friendly, and low-cost materials that are compatible with CMOS technology, such as silicon-based compound nanostructures for TE thin film devices. Thus, this review aims to present the current advancements in the fabrication and integration of Si-based thin-film devices for TE energy harvesting applications. Moreover, this paper also highlights some recent developments in electronic architectures that aim to enhance the overall efficiency of the complete energy harvesting system. Full article
(This article belongs to the Section Electrical and Electronic Engineering)
Show Figures

Figure 1

16 pages, 6774 KiB  
Article
Analysis, Modeling, and Simulation of Thin-Film Cells-Based Photovoltaic Generator Combined with Multilayer Thermoelectric Generator
by Yasir Musa Dakwar, Simon Lineykin and Moshe Sitbon
Micromachines 2021, 12(11), 1342; https://doi.org/10.3390/mi12111342 - 31 Oct 2021
Cited by 2 | Viewed by 2563
Abstract
A new model for a multi-stage thermoelectric generator (TEG) is developed. An electrical and thermal model is built and simulated for different configurations of photovoltaic (PV) stand-alone hybrid systems, combining different stages of a TEG. The approach is evaluated with and without cooling [...] Read more.
A new model for a multi-stage thermoelectric generator (TEG) is developed. An electrical and thermal model is built and simulated for different configurations of photovoltaic (PV) stand-alone hybrid systems, combining different stages of a TEG. The approach is evaluated with and without cooling by coupling a cold plate to a multi-stage hybrid PVTEG system. The model can be adjusted by sizing and specifying the influence of stage number on the overall produced power. Amorphous silicon thin-film (a-Si) is less affected by rising temperature compared to other technology. Hence, it was chosen for evaluating the lower limit gain in a hybrid system under various ambient temperatures and irradiances. The dynamics of the PVTEG system are presented under different coolant water flow rates. Finally, comparative electrical efficiency in reference to PV stand-alone was found to be 99.2% for PVTEG without cooling, 113.5% for PVTEG, and 117.3% for multi-stage PVTEG, accordingly installing multi-stage PVTEG at Israel in a typical year with an average PV yield of 1750 kWh/kW/year generates an extra 24 kWh/year per module hence avoiding fossil energy and equivalent CO2 emissions. Full article
(This article belongs to the Special Issue Miniaturized Generators, Volume II)
Show Figures

Figure 1

Back to TopTop