Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = thiamine catalysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1402 KiB  
Article
Posttranslational Acylations of the Rat Brain Transketolase Discriminate the Enzyme Responses to Inhibitors of ThDP-Dependent Enzymes or Thiamine Transport
by Vasily A. Aleshin, Thilo Kaehne, Maria V. Maslova, Anastasia V. Graf and Victoria I. Bunik
Int. J. Mol. Sci. 2024, 25(2), 917; https://doi.org/10.3390/ijms25020917 - 11 Jan 2024
Cited by 5 | Viewed by 2177
Abstract
Transketolase (TKT) is an essential thiamine diphosphate (ThDP)-dependent enzyme of the non-oxidative branch of the pentose phosphate pathway, with the glucose-6P flux through the pathway regulated in various medically important conditions. Here, we characterize the brain TKT regulation by acylation in rats with [...] Read more.
Transketolase (TKT) is an essential thiamine diphosphate (ThDP)-dependent enzyme of the non-oxidative branch of the pentose phosphate pathway, with the glucose-6P flux through the pathway regulated in various medically important conditions. Here, we characterize the brain TKT regulation by acylation in rats with perturbed thiamine-dependent metabolism, known to occur in neurodegenerative diseases. The perturbations are modeled by the administration of oxythiamine inhibiting ThDP-dependent enzymes in vivo or by reduced thiamine availability in the presence of metformin and amprolium, inhibiting intracellular thiamine transporters. Compared to control rats, chronic administration of oxythiamine does not significantly change the modification level of the two detected TKT acetylation sites (K6 and K102) but doubles malonylation of TKT K499, concomitantly decreasing 1.7-fold the level of demalonylase sirtuin 5. The inhibitors of thiamine transporters do not change average levels of TKT acylation or sirtuin 5. TKT structures indicate that the acylated residues are distant from the active sites. The acylations-perturbed electrostatic interactions may be involved in conformational shifts and/or the formation of TKT complexes with other proteins or nucleic acids. Acetylation of K102 may affect the active site entrance/exit and subunit interactions. Correlation analysis reveals that the action of oxythiamine is characterized by significant negative correlations of K499 malonylation or K6 acetylation with TKT activity, not observed upon the action of the inhibitors of thiamine transport. However, the transport inhibitors induce significant negative correlations between the TKT activity and K102 acetylation or TKT expression, absent in the oxythiamine group. Thus, perturbations in the ThDP-dependent catalysis or thiamine transport manifest in the insult-specific patterns of the brain TKT malonylation and acetylations. Full article
(This article belongs to the Special Issue The Mechanism and Emerging Materials in Thiamine Catalysis)
Show Figures

Figure 1

15 pages, 3219 KiB  
Article
Biochemical and Structural Insights into a Thiamine Diphosphate-Dependent α-Ketoglutarate Decarboxylase from Cyanobacterium Microcystis aeruginosa NIES-843
by Zhi-Min Li, Ziwei Hu, Xiaoqin Wang, Suhang Chen, Weiyan Yu, Jianping Liu and Zhimin Li
Int. J. Mol. Sci. 2023, 24(15), 12198; https://doi.org/10.3390/ijms241512198 - 30 Jul 2023
Cited by 3 | Viewed by 2402
Abstract
α-Ketoglutarate decarboxylase is a crucial enzyme in the tricarboxylic acid cycle of cyanobacteria, catalyzing the non-oxidative decarboxylation of α-ketoglutarate to produce succinate semialdehyde and CO2. The decarboxylation process is reliant on the cofactor of thiamine diphosphate. However, this enzyme’s biochemical and [...] Read more.
α-Ketoglutarate decarboxylase is a crucial enzyme in the tricarboxylic acid cycle of cyanobacteria, catalyzing the non-oxidative decarboxylation of α-ketoglutarate to produce succinate semialdehyde and CO2. The decarboxylation process is reliant on the cofactor of thiamine diphosphate. However, this enzyme’s biochemical and structural properties have not been well characterized. In this work, two α-ketoglutarate decarboxylases encoded by MAE_06010 and MiAbw_01735 genes from Microcystis aeruginosa NIES-843 (MaKGD) and NIES-4325 (MiKGD), respectively, were overexpressed and purified by using an Escherichia coli expression system. It was found that MaKGD exhibited 9.2-fold higher catalytic efficiency than MiKGD, which may be attributed to the absence of glutamate decarboxylase in Microcystis aeruginosa NIES-843. Further biochemical investigation of MaKGD demonstrated that it displayed optimum activity at pH 6.5–7.0 and was most activated by Mg2+. Additionally, MaKGD showed substrate specificity towards α-ketoglutarate. Structural modeling and autodocking results revealed that the active site of MaKGD contained a distinct binding pocket where α-ketoglutarate and thiamine diphosphate interacted with specific amino acid residues via hydrophobic interactions, hydrogen bonds and salt bridges. Furthermore, the mutagenesis study provided strong evidence supporting the importance of certain residues in the catalysis of MaKGD. These findings provide new insights into the structure-function relationships of α-ketoglutarate decarboxylases from cyanobacteria. Full article
Show Figures

Figure 1

16 pages, 7539 KiB  
Article
New Role of Water in Transketolase Catalysis
by Olga N. Solovjeva
Int. J. Mol. Sci. 2023, 24(3), 2068; https://doi.org/10.3390/ijms24032068 - 20 Jan 2023
Cited by 3 | Viewed by 2122
Abstract
Transketolase catalyzes the interconversion of keto and aldo sugars. Its coenzyme is thiamine diphosphate. The binding of keto sugar with thiamine diphosphate is possible only after C2 deprotonation of its thiazole ring. It is believed that deprotonation occurs due to the direct transfer [...] Read more.
Transketolase catalyzes the interconversion of keto and aldo sugars. Its coenzyme is thiamine diphosphate. The binding of keto sugar with thiamine diphosphate is possible only after C2 deprotonation of its thiazole ring. It is believed that deprotonation occurs due to the direct transfer of a proton to the amino group of its aminopyrimidine ring. Using mass spectrometry, it is shown that a water molecule is directly involved in the deprotonation process. After the binding of thiamine diphosphate with transketolase and its subsequent cleavage, a thiamine diphosphate molecule is formed with a mass increased by one oxygen molecule. After fragmentation, a thiamine diphosphate molecule is formed with a mass reduced by one and two hydrogen atoms, that is, HO and H2O are split off. Based on these data, it is assumed that after the formation of holotransketolase, water is covalently bound to thiamine diphosphate, and carbanion is formed as a result of its elimination. This may be a common mechanism for other thiamine enzymes. The participation of a water molecule in the catalysis of the one-substrate transketolase reaction and a possible reason for the effect of the acceptor substrate on the affinity of the donor substrate for active sites are also shown. Full article
(This article belongs to the Special Issue The Mechanism and Emerging Materials in Thiamine Catalysis)
Show Figures

Figure 1

21 pages, 3839 KiB  
Review
Engineering the 2-Oxoglutarate Dehydrogenase Complex to Understand Catalysis and Alter Substrate Recognition
by Joydeep Chakraborty, Natalia Nemeria, Yujeong Shim, Xu Zhang, Elena L. Guevara, Hetal Patel, Edgardo T. Farinas and Frank Jordan
Reactions 2022, 3(1), 139-159; https://doi.org/10.3390/reactions3010011 - 1 Feb 2022
Cited by 3 | Viewed by 4461
Abstract
The E. coli 2-oxoglutarate dehydrogenase complex (OGDHc) is a multienzyme complex in the tricarboxylic acid cycle, consisting of multiple copies of three components, 2-oxoglutarate dehydrogenase (E1o), dihydrolipoamide succinyltransferase (E2o) and dihydrolipoamide dehydrogenase (E3), which catalyze the formation of succinyl-CoA and NADH (+H+ [...] Read more.
The E. coli 2-oxoglutarate dehydrogenase complex (OGDHc) is a multienzyme complex in the tricarboxylic acid cycle, consisting of multiple copies of three components, 2-oxoglutarate dehydrogenase (E1o), dihydrolipoamide succinyltransferase (E2o) and dihydrolipoamide dehydrogenase (E3), which catalyze the formation of succinyl-CoA and NADH (+H+) from 2-oxoglutarate. This review summarizes applications of the site saturation mutagenesis (SSM) to engineer E. coli OGDHc with mechanistic and chemoenzymatic synthetic goals. First, E1o was engineered by creating SSM libraries at positions His260 and His298.Variants were identified that: (a) lead to acceptance of substrate analogues lacking the 5-carboxyl group and (b) performed carboligation reactions producing acetoin-like compounds with good enantioselectivity. Engineering the E2o catalytic (core) domain enabled (a) assignment of roles for pivotal residues involved in catalysis, (b) re-construction of the substrate-binding pocket to accept substrates other than succinyllysyldihydrolipoamide and (c) elucidation of the mechanism of trans-thioesterification to involve stabilization of a tetrahedral oxyanionic intermediate with hydrogen bonds by His375 and Asp374, rather than general acid–base catalysis which has been misunderstood for decades. The E. coli OGDHc is the first example of a 2-oxo acid dehydrogenase complex which was evolved to a 2-oxo aliphatic acid dehydrogenase complex by engineering two consecutive E1o and E2o components. Full article
(This article belongs to the Special Issue Feature Papers in Reactions in 2021)
Show Figures

Figure 1

31 pages, 1081 KiB  
Review
Nuclear Magnetic Resonance Approaches in the Study of 2-Oxo Acid Dehydrogenase Multienzyme Complexes—A Literature Review
by Sowmini Kumaran, Mulchand S. Patel and Frank Jordan
Molecules 2013, 18(10), 11873-11903; https://doi.org/10.3390/molecules181011873 - 26 Sep 2013
Cited by 12 | Viewed by 8356
Abstract
The 2-oxoacid dehydrogenase complexes (ODHc) consist of multiple copies of three enzyme components: E1, a 2-oxoacid decarboxylase; E2, dihydrolipoyl acyl-transferase; and E3, dihydrolipoyl dehydrogenase, that together catalyze the oxidative decarboxylation of 2-oxoacids, in the presence of thiamin diphosphate (ThDP), coenzyme A (CoA), Mg [...] Read more.
The 2-oxoacid dehydrogenase complexes (ODHc) consist of multiple copies of three enzyme components: E1, a 2-oxoacid decarboxylase; E2, dihydrolipoyl acyl-transferase; and E3, dihydrolipoyl dehydrogenase, that together catalyze the oxidative decarboxylation of 2-oxoacids, in the presence of thiamin diphosphate (ThDP), coenzyme A (CoA), Mg2+ and NAD+, to generate CO2, NADH and the corresponding acyl-CoA. The structural scaffold of the complex is provided by E2, with E1 and E3 bound around the periphery. The three principal members of the family are pyruvate dehydrogenase (PDHc), 2-oxoglutarate dehydrogenase (OGDHc) and branched-chain 2-oxo acid dehydrogenase (BCKDHc). In this review, we report application of NMR-based approaches to both mechanistic and structural issues concerning these complexes. These studies revealed the nature and reactivity of transient intermediates on the enzymatic pathway and provided site-specific information on the architecture and binding specificity of the domain interfaces using solubilized truncated domain constructs of the multi-domain E2 component in its interactions with the E1 and E3 components. Where studied, NMR has also provided information about mobile loops and the possible relationship of mobility and catalysis. Full article
(This article belongs to the Special Issue NMR of Proteins and Small Biomolecules)
Show Figures

Graphical abstract

19 pages, 344 KiB  
Review
Decarboxylation of Pyruvate to Acetaldehyde for Ethanol Production by Hyperthermophiles
by Mohammad S. Eram and Kesen Ma
Biomolecules 2013, 3(3), 578-596; https://doi.org/10.3390/biom3030578 - 21 Aug 2013
Cited by 50 | Viewed by 20507
Abstract
Pyruvate decarboxylase (PDC encoded by pdc) is a thiamine pyrophosphate (TPP)-containing enzyme responsible for the conversion of pyruvate to acetaldehyde in many mesophilic organisms. However, no pdc/PDC homolog has yet been found in fully sequenced genomes and proteomes of hyper/thermophiles. The [...] Read more.
Pyruvate decarboxylase (PDC encoded by pdc) is a thiamine pyrophosphate (TPP)-containing enzyme responsible for the conversion of pyruvate to acetaldehyde in many mesophilic organisms. However, no pdc/PDC homolog has yet been found in fully sequenced genomes and proteomes of hyper/thermophiles. The only PDC activity reported in hyperthermophiles was a bifunctional, TPP- and CoA-dependent pyruvate ferredoxin oxidoreductase (POR)/PDC enzyme from the hyperthermophilic archaeon Pyrococcus furiosus. Another enzyme known to be involved in catalysis of acetaldehyde production from pyruvate is CoA-acetylating acetaldehyde dehydrogenase (AcDH encoded by mhpF and adhE). Pyruvate is oxidized into acetyl-CoA by either POR or pyruvate formate lyase (PFL), and AcDH catalyzes the reduction of acetyl-CoA to acetaldehyde in mesophilic organisms. AcDH is present in some mesophilic (such as clostridia) and thermophilic bacteria (e.g., Geobacillus and Thermoanaerobacter). However, no AcDH gene or protein homologs could be found in the released genomes and proteomes of hyperthermophiles. Moreover, no such activity was detectable from the cell-free extracts of different hyperthermophiles under different assay conditions. In conclusion, no commonly-known PDCs was found in hyperthermophiles. Instead of the commonly-known PDC, it appears that at least one multifunctional enzyme is responsible for catalyzing the non-oxidative decarboxylation of pyruvate to acetaldehyde in hyperthermophiles. Full article
(This article belongs to the Special Issue Enzymes and Their Biotechnological Applications)
Show Figures

Figure 1

Back to TopTop