Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = thermophilic methanotrophic bacteria

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2052 KiB  
Article
Genomic Insights into Moderately Thermophilic Methanotrophs of the Genus Methylocaldum
by Nathalie A. Delherbe, David Pearce, Sergey Y. But, J. Colin Murrell, Valentina N. Khmelenina and Marina G. Kalyuzhnaya
Microorganisms 2024, 12(3), 469; https://doi.org/10.3390/microorganisms12030469 - 26 Feb 2024
Cited by 3 | Viewed by 2365
Abstract
Considering the increasing interest in understanding the biotic component of methane removal from our atmosphere, it becomes essential to study the physiological characteristics and genomic potential of methanotroph isolates, especially their traits allowing them to adapt to elevated growth temperatures. The genetic signatures [...] Read more.
Considering the increasing interest in understanding the biotic component of methane removal from our atmosphere, it becomes essential to study the physiological characteristics and genomic potential of methanotroph isolates, especially their traits allowing them to adapt to elevated growth temperatures. The genetic signatures of Methylocaldum species have been detected in many terrestrial and aquatic ecosystems. A small set of representatives of this genus has been isolated and maintained in culture. The genus is commonly described as moderately thermophilic, with the growth optimum reaching 50 °C for some strains. Here, we present a comparative analysis of genomes of three Methylocaldum strains—two terrestrial M. szegediense strains (O-12 and Norfolk) and one marine strain, Methylocaldum marinum (S8). The examination of the core genome inventory of this genus uncovers significant redundancy in primary metabolic pathways, including the machinery for methane oxidation (numerous copies of pmo genes) and methanol oxidation (duplications of mxaF, xoxF1-5 genes), three pathways for one-carbon (C1) assimilation, and two methods of carbon storage (glycogen and polyhydroxyalkanoates). We also investigate the genetics of melanin production pathways as a key feature of the genus. Full article
(This article belongs to the Special Issue Aerobic Methane Synthesis Bacteria)
Show Figures

Figure 1

13 pages, 2067 KiB  
Article
Peat-Inhabiting Verrucomicrobia of the Order Methylacidiphilales Do Not Possess Methanotrophic Capabilities
by Svetlana N. Dedysh, Alexey V. Beletsky, Anastasia A. Ivanova, Olga V. Danilova, Shahjahon Begmatov, Irina S. Kulichevskaya, Andrey V. Mardanov and Nikolai V. Ravin
Microorganisms 2021, 9(12), 2566; https://doi.org/10.3390/microorganisms9122566 - 11 Dec 2021
Cited by 13 | Viewed by 3604
Abstract
Methanotrophic verrucomicrobia of the order Methylacidiphilales are known as extremely acidophilic, thermophilic or mesophilic bacteria that inhabit acidic geothermal ecosystems. The occurrence of verrucomicrobial methanotrophs in other types of acidic environments remains an open question. Notably, Methylacidiphilales-affiliated 16S rRNA gene sequences are [...] Read more.
Methanotrophic verrucomicrobia of the order Methylacidiphilales are known as extremely acidophilic, thermophilic or mesophilic bacteria that inhabit acidic geothermal ecosystems. The occurrence of verrucomicrobial methanotrophs in other types of acidic environments remains an open question. Notably, Methylacidiphilales-affiliated 16S rRNA gene sequences are commonly retrieved from acidic (pH 3.5–5.5) peatlands. In this study, we compared the patterns of verrucomicrobial diversity in four acidic raised bogs and six neutral fens located in European North Russia. Methylacidiphilales-like 16S rRNA gene reads displaying 83–86% similarity to 16S rRNA gene sequences of currently described verrucomicrobial methanotrophs were recovered exclusively from raised bogs. Laboratory incubation of peat samples with 10% methane for 3 weeks resulted in the pronounced increase of a relative abundance of alphaproteobacterial methanotrophs, while no response was detected for Methylacidiphilales-affiliated bacteria. Three metagenome-assembled genomes (MAGs) of peat-inhabiting Methylacidiphilales bacteria were reconstructed and examined for the presence of genes encoding methane monooxygenase enzymes and autotrophic carbon fixation pathways. None of these genomic determinants were detected in assembled MAGs. Metabolic reconstructions predicted a heterotrophic metabolism, with a potential to hydrolyze several plant-derived polysaccharides. As suggested by our analysis, peat-inhabiting representatives of the Methylacidiphilales are acidophilic aerobic heterotrophs, which comprise a sister family of the methanotrophic Methylacidiphilaceae. Full article
(This article belongs to the Special Issue Soil Microbiome: Biotic and Abiotic Interactions)
Show Figures

Figure 1

15 pages, 3653 KiB  
Article
A Novel Moderately Thermophilic Facultative Methylotroph within the Class Alphaproteobacteria
by Tajul Islam, Marcela Hernández, Amare Gessesse, J. Colin Murrell and Lise Øvreås
Microorganisms 2021, 9(3), 477; https://doi.org/10.3390/microorganisms9030477 - 25 Feb 2021
Cited by 14 | Viewed by 4416
Abstract
Methylotrophic bacteria (non-methanotrophic methanol oxidizers) consuming reduced carbon compounds containing no carbon–carbon bonds as their sole carbon and energy source have been found in a great variety of environments. Here, we report a unique moderately thermophilic methanol-oxidising bacterium (strain LS7-MT) that grows optimally [...] Read more.
Methylotrophic bacteria (non-methanotrophic methanol oxidizers) consuming reduced carbon compounds containing no carbon–carbon bonds as their sole carbon and energy source have been found in a great variety of environments. Here, we report a unique moderately thermophilic methanol-oxidising bacterium (strain LS7-MT) that grows optimally at 55 °C (with a growth range spanning 30 to 60 °C). The pure isolate was recovered from a methane-utilizing mixed culture enrichment from an alkaline thermal spring in the Ethiopia Rift Valley, and utilized methanol, methylamine, glucose and a variety of multi-carbon compounds. Phylogenetic analysis of the 16S rRNA gene sequences demonstrated that strain LS7-MT represented a new facultatively methylotrophic bacterium within the order Hyphomicrobiales of the class Alphaproteobacteria. This new strain showed 94 to 96% 16S rRNA gene identity to the two methylotroph genera, Methyloceanibacter and Methyloligella. Analysis of the draft genome of strain LS7-MT revealed genes for methanol dehydrogenase, essential for methanol oxidation. Functional and comparative genomics of this new isolate revealed genomic and physiological divergence from extant methylotrophs. Strain LS7-MT contained a complete mxaF gene cluster and xoxF1 encoding the lanthanide-dependent methanol dehydrogenase (XoxF). This is the first report of methanol oxidation at 55 °C by a moderately thermophilic bacterium within the class Alphaproteobacteria. These findings expand our knowledge of methylotrophy by the phylum Proteobacteria in thermal ecosystems and their contribution to global carbon and nitrogen cycles. Full article
(This article belongs to the Special Issue Microbial Cycling of Atmospheric Trace Gases)
Show Figures

Figure 1

16 pages, 1302 KiB  
Article
Sulfur and Methane-Oxidizing Microbial Community in a Terrestrial Mud Volcano Revealed by Metagenomics
by Andrey V. Mardanov, Vitaly V. Kadnikov, Alexey V. Beletsky and Nikolai V. Ravin
Microorganisms 2020, 8(9), 1333; https://doi.org/10.3390/microorganisms8091333 - 31 Aug 2020
Cited by 25 | Viewed by 5372
Abstract
Mud volcanoes are prominent geological structures where fluids and gases from the deep subsurface are discharged along a fracture network in tectonically active regions. Microbial communities responsible for sulfur and methane cycling and organic transformation in terrestrial mud volcanoes remain poorly characterized. Using [...] Read more.
Mud volcanoes are prominent geological structures where fluids and gases from the deep subsurface are discharged along a fracture network in tectonically active regions. Microbial communities responsible for sulfur and methane cycling and organic transformation in terrestrial mud volcanoes remain poorly characterized. Using a metagenomics approach, we analyzed the microbial community of bubbling fluids retrieved from an active mud volcano in eastern Crimea. The microbial community was dominated by chemolithoautotrophic Campylobacterota and Gammaproteobacteria, which are capable of sulfur oxidation coupled to aerobic and anaerobic respiration. Methane oxidation could be enabled by aerobic Methylococcales bacteria and anaerobic methanotrophic archaea (ANME), while methanogens were nearly absent. The ANME community was dominated by a novel species of Ca. Methanoperedenaceae that lacked nitrate reductase and probably couple methane oxidation to the reduction of metal oxides. Analysis of two Ca. Bathyarchaeota genomes revealed the lack of mcr genes and predicted that they could grow on fatty acids, sugars, and proteinaceous substrates performing fermentation. Thermophilic sulfate reducers indigenous to the deep subsurface, Thermodesulfovibrionales (Nitrospirae) and Ca. Desulforudis (Firmicutes), were found in minor amounts. Overall, the results obtained suggest that reduced compounds delivered from the deep subsurface support the development of autotrophic microorganisms using various electron acceptors for respiration. Full article
(This article belongs to the Special Issue Microbial Diversity in Extreme Environments)
Show Figures

Figure 1

18 pages, 2907 KiB  
Article
A Novel Moderately Thermophilic Type Ib Methanotroph Isolated from an Alkaline Thermal Spring in the Ethiopian Rift Valley
by Tajul Islam, Amare Gessesse, Antonio Garcia-Moyano, J. Colin Murrell and Lise Øvreås
Microorganisms 2020, 8(2), 250; https://doi.org/10.3390/microorganisms8020250 - 13 Feb 2020
Cited by 14 | Viewed by 4914
Abstract
Aerobic moderately thermophilic and thermophilic methane-oxidizing bacteria make a substantial contribution in the control of global warming through biological reduction of methane emissions and have a unique capability of utilizing methane as their sole carbon and energy source. Here, we report a novel [...] Read more.
Aerobic moderately thermophilic and thermophilic methane-oxidizing bacteria make a substantial contribution in the control of global warming through biological reduction of methane emissions and have a unique capability of utilizing methane as their sole carbon and energy source. Here, we report a novel moderately thermophilic Methylococcus-like Type Ib methanotroph recovered from an alkaline thermal spring (55.4 °C and pH 8.82) in the Ethiopian Rift Valley. The isolate, designated LS7-MC, most probably represents a novel species of a new genus in the family Methylococcaceae of the class Gammaproteobacteria. The 16S rRNA gene phylogeny indicated that strain LS7-MC is distantly related to the closest described relative, Methylococcus capsulatus (92.7% sequence identity). Growth was observed at temperatures of 30–60 °C (optimal, 51–55 °C), and the cells possessed Type I intracellular membrane (ICM). The comparison of the pmoA gene sequences showed that the strain was most closely related to M. capsulatus (87.8%). Soluble methane monooxygenase (sMMO) was not detected, signifying the biological oxidation process from methane to methanol by the particulate methane monooxygenase (pMMO). The other functional genes mxaF, cbbL and nifH were detected by PCR. To our knowledge, the new strain is the first isolated moderately thermophilic methanotroph from an alkaline thermal spring of the family Methylococcaceae. Furthermore, LS7-MC represents a previously unrecognized biological methane sink in thermal habitats, expanding our knowledge of its ecological role in methane cycling and aerobic methanotrophy. Full article
(This article belongs to the Special Issue Extremophiles and Extremozymes in Academia and Industries)
Show Figures

Figure 1

Back to TopTop