A Novel Moderately Thermophilic Type Ib Methanotroph Isolated from an Alkaline Thermal Spring in the Ethiopian Rift Valley
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection, Enrichments and Growth Conditions
2.2. Isolation and Purification of Strain LS7-MC
2.3. Naphthalene Assay, Acetylene Inhibition Test and Electron Microscopy
2.4. Growth Conditions, Carbon and Nitrogen Sources
2.5. Fatty Acid Analysis
2.6. PCR Amplification and Southern Blot Hybridization of Functional Genes
2.7. Phylogenetic Analysis and Nucleotide Sequence Accession Numbers
3. Results
3.1. Isolation of a Moderately Thermophilic Methylococcus-Like Methanotroph
3.2. Growth and Physiological Characteristics of LS7-MC
3.3. Microscopic Observations
3.4. Phospholipids Fatty Acids (PLFA) Composition
3.5. Detection of Functional Genes
3.6. Phylogenetic Analysis of 16S rRNA and Functional Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change:The Physical Science Basis, Contribution of Working Group I to the Fith Assessment Report of the IPCC.; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Etiope, G.; Lassey, K.R.; Klusman, R.W.; Boschi, E. Reappraisal of the fossil methane budget and related emission from geologic sources. Geophy. Res. Lett. 2008, 35, L09307. [Google Scholar] [CrossRef]
- Nazaries, L.; Murrell, J.C.; Millard, P.; Baggs, L.; Singh, B.K. Methane, microbes and models: Fundamental understanding of the soil methane cycle for future predictions. Environ. Microbiol. 2013, 15, 2395–2417. [Google Scholar] [CrossRef] [PubMed]
- Tikhonova, E.N.; Kravchenko, I.K. Activity and Diversity of Aerobic Methanotrophs in Thermal Springs of the Russian Far East. In New and Future Developments in Microbial Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–30. [Google Scholar]
- Hanson, R.S.; Hanson, T.E. Methanotrophic bacteria. Microbiol. Rev. 1996, 60, 439–471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDonald, I.R.; Bodrossy, L.; Chen, Y.; Murrell, J.C. Molecular ecology techniques for the study of aerobic methanotrophs. Appl. Environ. Microbiol. 2008, 74, 1305–1315. [Google Scholar] [CrossRef] [Green Version]
- Semrau, J.D.; Dispirito, A.A.; Murrell, J.C. Life in the extreme: Thermoacidophilic methanotrophy. Trends Microbiol. 2008, 16, 190–193. [Google Scholar] [CrossRef]
- Saidi-Mehrabad, A.; He, Z.; Tamas, I.; Sharp, C.E.; Brady, A.L.; Rochman, F.F.; Bodrossy, L.; Abell, G.C.; Penner, T.; Dong, X.; et al. Methanotrophic bacteria in oilsands tailings ponds of northern Alberta. ISME J. 2013, 7, 908–921. [Google Scholar] [CrossRef] [Green Version]
- Bowman, J. The Methanotrophs—The Families Methylococcaceae and Methylocystaceae, 3rd ed.; Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.H., Eds.; Springer: New York, NY, USA, 2006; pp. 266–289. [Google Scholar]
- Trotsenko, Y.A.; Murrell, J.C. Metabolic Aspects of Aerobic Obligate Methanotrophy. Adv. Appl. Microbiol. 2008, 63, 183–229. [Google Scholar]
- Knief, C. Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker. Front. Microbiol. 2015, 6, 1346. [Google Scholar] [CrossRef] [Green Version]
- Orata, F.D.; Meier-Kolthoff, J.P.; Sauvageau, D.; Stein, L.Y. Phylogenomic analysis of the gammaproteobacterial methanotrophs (Order Methylococcales) calls for the reclassification of members at the genus and species levels. Front. Microbiol. 2018, 9, 3162. [Google Scholar] [CrossRef] [Green Version]
- Houghton, K.M.; Carere, C.R.; Stott, M.B.; McDonald, I.R. Thermophilic methanotrophs: In hot pursuit. FEMS Microbiol. Ecol. 2019, 95, fiz125. [Google Scholar] [CrossRef]
- Op den Camp, H.J.; Islam, T.; Stott, M.B.; Harhangi, H.R.; Hynes, A.; Schouten, S.; Jetten, M.S.; Birkeland, N.K.; Pol, A.; Dunfield, P.F. Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environ. Microbiol. Rep. 2009, 1, 293–306. [Google Scholar] [CrossRef] [PubMed]
- Sharp, C.E.; Smirnova, A.V.; Graham, J.M.; Stott, M.B.; Khadka, R.; Moore, T.R.; Grasby, S.E.; Strack, M.; Dunfield, P.F. Distribution and diversity of Verrucomicrobia methanotrophs in geothermal and acidic environments. Environ. Microbiol. 2014, 16, 1867–1878. [Google Scholar] [CrossRef] [PubMed]
- Van Teeseling, M.C.; Pol, A.; Harhangi, H.R.; van der Zwart, S.; Jetten, M.S.; Op den Camp, H.J.; van Niftrik, L. Expanding the verrucomicrobial methanotrophic world: Description of three novel species of Methylacidimicrobium gen. nov. Appl. Environ. Microbiol. 2014, 80, 6782–6791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eshinimaev, B.T.; Medvedkova, K.A.; Khmelenina, V.N.; Suzina, N.E.; Osipov, G.A.; Lysenko, A.M.; Trotsenko, Y.A. New thermophilic methanotrophs of the genus Methylocaldum. Mikrobiologiia 2004, 73, 530–539. [Google Scholar] [CrossRef]
- Hirayama, H.; Suzuki, Y.; Abe, M.; Miyazaki, M.; Makita, H.; Inagaki, F.; Uematsu, K.; Takai, K. Methylothermus subterraneus sp. nov., a moderately thermophilic methanotroph isolated from a terrestrial subsurface hot aquifer. Int. J. Syst. Evol. Microbiol. 2011, 61, 2646–2653. [Google Scholar] [CrossRef]
- Bodrossy, L.; Holmes, E.M.; Holmes, A.J.; Kovacs, K.L.; Murrell, J.C. Analysis of 16 S rRNA and methane monooxygenase gene sequences reveals a novel group thermotolerant and thermophilic methanotrophs, Methylocaldum gen. nov. Arch. Microbiol. 1997, 168, 493–503. [Google Scholar] [CrossRef]
- Foster, J.W.; Davis, R.H. A methane-dependent coccus, with notes on classification and nomenclature of obligate, methane-utilizing bacteria. J Bacteriol. 1966, 91, 1924–1931. [Google Scholar] [CrossRef] [Green Version]
- Geymonat, E.; Ferrando, L.; Tarlera, S.E. Methylogaea oryzae gen. nov., sp. nov., a mesophilic methanotroph isolated from a rice paddy field. Int. J. Syst. Evol. Microbiol. 2011, 61, 2568–2572. [Google Scholar] [CrossRef]
- Hoefman, S.; van der Ha, D.; Iguchi, H.; Yurimoto, H.; Sakai, Y.; Boon, N.; Vandamme, P.; Heylen, K.; de Vos, P. Methyloparacoccus murrellii gen. nov., sp. nov., a methanotroph isolated from pond water. Int. J. Syst. Evol. Microbiol. 2014, 64, 2100–2107. [Google Scholar] [CrossRef]
- Khalifa, A.; Lee, C.G.; Ogiso, T.; Ueno, C.; Dianou, D.; Demachi, T.; Katayama, A.; Asakawa, S. Methylomagnum ishizawai gen. nov., sp. nov., a mesophilic type I methanotroph isolated from rice rhizosphere. Int. J. Syst. Evol. Microbiol. 2015, 65, 3527–3534. [Google Scholar] [CrossRef]
- Frindte, K.; Maarastawi, S.A.; Lipski, A.; Hamacher, J.; Knief, C. Characterization of the first rice paddy cluster I isolate, Methyloterricola oryzae gen. nov., sp. nov. and amended description of Methylomagnum ishizawai. Int. J. Syst. Evol. Microbiol. 2017, 67, 4507–4514. [Google Scholar] [CrossRef] [PubMed]
- Ghashghavi, M.; Belova, S.E.; Bodelier, P.L.; Dedysh, S.N.; Kox, M.A.; Speth, D.R.; Frenzel, P.; Jetten, M.S.M.; Lüker, S.; Lüke, C. Methylotetracoccus oryzae Strain C50 C1 Is a Novel Type Ib Gammaproteobacterial Methanotroph Adapted to Freshwater Environments. Msphere 2019, 4, e00631-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islam, T.; Torsvik, V.; Larsen, Ø.; Bodrossy, L.; Øvreås, L.; Birkeland, N.K. Acid-tolerant moderately thermophilic methanotrophs of the class Gammaproteobacteria isolated from tropical topsoil with methane seeps. Front. Microbiol. 2016, 7, 851. [Google Scholar] [CrossRef] [PubMed]
- Islam, T.; Larsen, Ø.; Torsvik, V.; Øvreås, L.; Panosyan, H.; Murrell, J.C.; Birkeland, N.K.; Bodrossy, L. Novel methanotrophs of the family Methylococcaceae from different geographical regions and habitats. Microorganisms 2015, 3, 484–499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whittenbury, R.; Phillips, K.C.; Wilkinson, J.F. Enrichment, isolation and some properties of methane-utilizing bacteria. J. Gen. Microbiol. 1970, 61, 205–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bodrossy, L.; Kovacs, K.L.; McDonald, I.R.; Murrell, J.C. A novel thermophilic methane-oxidising γ-Proteobacterium. FEMS Microbiol. Lett. 1999, 170, 335–341. [Google Scholar] [CrossRef]
- Kizilova, A.K.; Sukhacheva, M.V.; Pimenov, N.V.; Yurkov, A.M.; Kravchenko, I.K. Methane oxidation activity and diversity of aerobic methanotrophs in pH-neutral and semi-neutral thermal springs of the Kunashir Island, Russian Far East. Extremophiles 2014, 18, 207–218. [Google Scholar] [CrossRef]
- Lau, E.; Fisher, M.C.; Steudler, P.A.; Cavanaugh, C.M. The methanol dehydrogenase gene, mxaF, as a functional and phylogenetic marker for proteobacterial methanotrophs in natural environments. PLoS ONE 2013, 8, e56993. [Google Scholar] [CrossRef] [Green Version]
- Baxter, N.J.; Hirt, R.P.; Bodrossy, L.; Kovacs, K.L.; Embley, T.M.; Prosser, J.I.; Murrell, J.C. The ribulose-1,5-bisphosphate carboxylase/oxygenase gene cluster of Methylococcus capsulatus (Bath). Arch. Microbiol. 2002, 177, 279–289. [Google Scholar] [CrossRef]
- Tourova, T.P.; Kovaleva, O.L.; Sorokin, D.Y.; Muyzer, G. Ribulose-1, 5-bisphosphate carboxylase/oxygenase genes as a functional marker for chemolithoautotrophic halophilic sulfur-oxidizing bacteria in hypersaline habitats. Microbiology 2010, 156, 2016–2025. [Google Scholar] [CrossRef] [Green Version]
- Danilova, O.V.; Suzina, N.E.; Van De Kamp, J.; Svenning, M.M.; Bodrossy, L.; Dedysh, S.N. A new cell morphotype among methane oxidizers: A spiral-shaped obligately microaerophilic methanotroph from northern low-oxygen environments. ISME J. 2016, 10, 2734. [Google Scholar] [CrossRef] [Green Version]
- Lanzén, A.; Simmachew, A.; Gessesse, A.; Chmolowska, D.; Jonassen, I.; Øvreås, L. Surprising Prokaryotic and Eukaryotic diversity, community structure and biogeography of Ehiopian soda lakes. PLoS ONE 2013, 8, e72577. [Google Scholar] [CrossRef] [PubMed]
- Islam, T.; Jensen, S.; Reigstad, L.J.; Larsen, O.; Birkeland, N.K. Methane oxidation at 55 degrees C and pH 2 by a thermoacidophilic bacterium belonging to the Verrucomicrobia phylum. Proc. Natl. Acad. Sci. USA 2008, 105, 300–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graham, D.; Korich, D.; LeBlanc, R.; Sinclair, N.; Arnold, R. Applications of a colorimetric plate assay for soluble methane monooxygenase activity. Appl. Environ. Microbiol. 1992, 58, 2231–2236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prior, S.; Dalton, H. Acetylene as a suicide substrate and active site probe for methane monooxygenase from Methylococcus capsulatus (Bath). FEMS Microbiol. Lett. 1985, 29, 105–109. [Google Scholar] [CrossRef]
- Bédard, C.; Knowles, R. Physiology, biochemistry, and specific inhibitors of CH4, NH4+, and CO oxidation by methanotrophs and nitrifiers. Microbiol. Rev. 1989, 53, 68–84. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [Green Version]
- Takeuchi, M.; Kamagata, Y.; Oshima, K.; Hanada, S.; Tamaki, H.; Marumo, K.; Maeda, H.; Nedachi, M.; Hattori, M.; Iwasaki, W.; et al. Methylocaldum marinum sp. nov., a thermotolerant, methane-oxidizing bacterium isolated from marine sediments, and emended description of the genus Methylocaldum. Int. J. Syst. Evol. Microbiol. 2014, 64, 3240–3246. [Google Scholar] [CrossRef] [Green Version]
- Bowman, J.P.; Sly, L.I.; Nichols, P.D.; Hayward, A.C. Revised taxonomy of the methanotrophs: Description of Methylobacter gen. nov., emendation of Methylococcus, validation of Methylosinus and Methylocystis species, and a proposal that the family Methylococcaceae includes only the group I methanotrophs. Int. J. Syst. Bacteriol. 1993, 43, 735–753. [Google Scholar] [CrossRef]
- Deutzmann, J.S.; Hoppert, M.; Schink, B. Characterization and phylogeny of a novel methanotroph, Methyloglobulus morosus gen. nov., spec. nov. Syst. Appl. Microbiol. 2014, 37, 165–169. [Google Scholar] [CrossRef]
- Weidler, G.W.; Gerbl, F.W.; Stan-Lotter, H. Crenarchaeota and Their Role in the Nitrogen Cycle in a Subsurface Radioactive Thermal Spring in the Austrian Central Alps. Appl. Environ. Microbiol. 2008, 74, 5934–5942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rattanachomsri, U.; Kanokratana, P.; Eurwilaichitr, L.; Igarashi, Y.; Champreda, V. Culture-Independent Phylogenetic Analysis of the Microbial Community in Industrial Sugarcane Bagasse Feedstock Piles. Biosci. Biotechnol. Biochem. 2011, 75, 232–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weidler, G.W.; Dornmayr-Pfaffenhuemer, M.; Gerbl, F.W.; Heinen, W.; Stan-Lotter, H. Communities of archaea and bacteria in a subsurface radioactive thermal spring in the Austrian Central Alps, and evidence of ammonia-oxidizing Crenarchaeota. Appl. Environ. Microbiol. 2007, 73, 259–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDonald, I.R.; Murrell, J.C. The particulate methane monooxygenase gene pmoA and its use as a functional gene probe for methanotrophs. FEMS Microbiol. Lett. 1997, 156, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Osaka, T.; Ebie, Y.; Tsuneda, S.; Inamori, Y. Identification of the bacterial community involved in methane-dependent denitrification in activated sludge using DNA stable-isotope probing. FEMS Microbiol. Ecol. 2008, 64, 494–506. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, M.; Abraham, W.R.; Shrestha, P.M.; Noll, M.; Conrad, R. Activity and composition of methanotrophic bacterial communities in planted rice soil studied by flux measurements, analyses of pmoA gene and stable isotope probing of phospholipid fatty acids. Environ. Microbiol. 2008, 10, 400–412. [Google Scholar] [CrossRef] [PubMed]
- Dumont, M.G.; Pommerenke, B.; Casper, P. Using stable isotope probing to obtain a targeted metatranscriptome of aerobic methanotrophs in lake sediment. Environ. Microbiol. Rep. 2013, 5, 757–764. [Google Scholar] [CrossRef]
- Lau, E.; Iv, E.J.; Dillard, Z.W.; Dague, R.D.; Semple, A.L.; Wentzell, W.L. High Throughput Sequencing to Detect Differences in Methanotrophic Methylococcaceae and Methylocystaceae in Surface Peat, Forest Soil, and Sphagnum Moss in Cranesville Swamp Preserve, West Virginia, USA. Microorganisms 2015, 3, 113–136. [Google Scholar] [CrossRef]
- Knief, C.; Dunfield, P.F. Response and adaptation of different methanotrophic bacteria to low methane mixing ratios. Environ. Microbiol. 2005, 7, 1307–1317. [Google Scholar] [CrossRef]
- Kong, J.Y.; Su, Y.; Zhang, Q.Q.; Bai, Y.; Xia, F.F.; Fang, C.R.; He, R. Vertical profiles of community and activity of methanotrophs in landfill cover soils of different age. J. Appl. Microbiol. 2013, 115, 756–765. [Google Scholar] [CrossRef] [Green Version]
- Sengupta, A.; Dick, W.A. Methanotrophic bacterial diversity in two diverse soils under varying land-use practices as determined by high-throughput sequencing of the pmoA gene. Appl. Soil Ecol. 2017, 119, 35–45. [Google Scholar] [CrossRef]
- Ward, N.; Larsen, Ø.; Sakwa, J.; Bruseth, L.; Khouri, H.; Durkin, A.S.; Dimitrov, G.; Jiang, L.; Scanlan, D.; Kang, K.H.; et al. Genomic insights into methanotrophy: The complete genome sequence of Methylococcus capsulatus (Bath). PLoS Biol. 2004, 2, e303. [Google Scholar] [CrossRef] [PubMed]
- Kwon, M.; Ho, A.; Yoon, S. Novel approaches and reasons to isolate methanotrophic bateria with biotechnological potentials: Recent achievements and perspectives. Appl. Microbiol. Biotechnol. 2019, 103, 1–8. [Google Scholar] [CrossRef] [PubMed]
Characteristic | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
Cell morphology | Coccoids | Coccoids | Rods-pleomorphic | Coccoids | Coccoids | Curved rods | Coccoids | Rods | Coccus |
Temperature condition | Moderately | Thermotolerant | Thermophilic/ | Moderately | mesophilic | Mesophilic | Mesophilic | Mesophilic | Mesophilic |
thermophilic | thermotolerant | thermophilic | |||||||
Internal membranes | Type I | Type I | Type I | Type I | Type I | Type I | Type I | Type I | Type I |
Motility | − | − | +/− | − | − | + | − | + | + |
Pigmentation | White | Yellow | Brown/cream | White | white | White | White | White | White |
pMMO | + | + | + | + | + | + | + | + | + |
sMMO | − | + | −/+a | − | − | − | − | + | − |
mxaF | + | + | + | + | + | + | + | + | + |
cbbL (RuBisCo) | + | + | + | + | + | nd | nd | + | + |
nifH gene/N2-fixation | + | + | + | + | + | + | − | − | + |
Growth on N-free medium | − | + | nd | − | nd | − | − | − | + |
Range of temp. (optimal) | 30−60 (51−55) | 20−47 (42−45) | 20−61 (42−55) | 30−60 (51−55) | 4−30 (18−25) | 20–37 (30–35) | 20–37 (25–33) | 20–37 (31–33) | 15–45 (27–37) |
oC | 6.0−9.3 | 5.5−7.5 | 6.0−8.5 | 4.2−7.5 | 6−8 | 5–8 | 5.8–9.0 | 5.5–9.0 | 4.6–7.5 |
pH growth range (optimal) | (7.0−7.5) | (6.5) | (7.0−7.2) | (5.5−6.0) | (6.5– 6.8) | (6.3–6.8) | (6.8–7.4) | (7.0–7.5) | |
Growth on methanol (0.1%) | + | + | − | + | + | + | – | – | – |
Vitamin required | + | − | − | − | − | – | – | +/– | – |
Growth with C1 | |||||||||
compoundsb | − | + | − | − | + | nd | nd | nd | nd |
G+C content (mol%) | nd | 62.5 | 57−59 | 62.7 | 62.77 | 63.1 | 65.6 | 64.1 | 61.0 |
G+C content (mol%)c | 59.4 | 60.3 | 56.7d | 59.5 | nd | 57.5 | 57.8 | 61.4 | 55.1d |
Isolation source (pH) | Alkaline thermal spring (pH 8.82) | Hot spring (pH 6.0) | Manure, silage (pH 6.0) | Tropical topsoil (pH 5.0) | Rice field (pH 6.0) | Rice field (pH 5.8) | Pond water pH (7.1–8.4) | Rice field pH (6.3) | Rice plants pH (6.0–8.4) |
Fatty acids | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
C12:0 | 2.11 | ||||||||
C13:1 | 0.50 | 0.27 | |||||||
iC14:0 | 0.59 | ||||||||
C14:0 | 0.79 | 0.8−0.62 | 1.97 | 0.78 | 0.34 | 5.84 | 4.7 | 15.8 | |
C14:0 2-OH | |||||||||
C15:0 | 0.34 | 0−1.7 | 3.51 | 0.80 | 1.12 | 1.03 | 3.2 | 1.56 | |
C15:1ω8 c | 0.22 | ||||||||
C15:1ω6 c | 0.12 | ||||||||
C16:1ω11 c | 5.46 | ||||||||
C16:1ω7 c | 40.97 | 10.6−23.1 | 13.83 | 18.13 | 10.33 | 54.2 | 47.3 | 26.9 | |
C16:1ω6 c | 3.9−12.3 | 8.67 | 8.03 | 8.7 | |||||
C16:1ω5 c | 3.2−9.0 | 0.37 | 5.95 | 4.2 | 28.3 | ||||
C16:1ω5 t | 1.8−6.0 | 0.19 | |||||||
C16:1ω9 t | 3.91 | ||||||||
C16:0 | 47.75 | 33.5−56.0 | 63.67 | 54,38 | 17.73 | 62.05 | 23.7 | 19.6 | 30.9 |
C16:1ω9 c | 33.01 | 7.36 | 6.5 | ||||||
C16:1ω10 c | 2.4 | ||||||||
C16:1 | 11.90 | 0.80 | |||||||
iC16:0 3-OH | 3.96 | ||||||||
C16:0 3-OH | 1.64 | 0.64 | 0.28 | 2.93 | 2.6 | 1.78 | |||
9-ο-Me-C16:0 | 0−14.0 | 4.62 | |||||||
C17:0 cyc | 5.90 | 8.99 | 26.33 | ||||||
C17:0 | 0.68 | 0.46 | 0.26 | ||||||
C17:1 | 0.34 | ||||||||
C17:1ω6 c | 0−1.8 | 0.43 | 0.62 | ||||||
C17:1ω7 c | 0.26 | ||||||||
C17:1ω8 c | 0–16 | ||||||||
9-o-Me-C17:0 | 0.60 | ||||||||
11-0-Me-17:0 | 0−2.1 | 0.60 | |||||||
C18:0 | 0.64 | 0.26 | 0.53 | ||||||
C18:1 | 0−6.5 | 0.17 | 0.11 | ||||||
C18:1ω7 c | 1.49 | 0−2.9 | 0.71 | 0.93 | 1.7 | ||||
C18:1ω9 c | 0.6−1.8 | 0.62 | |||||||
C19:0 cyc | |||||||||
C19:1 cyc | 1.37 | ||||||||
C20:0 | 2.66 | ||||||||
Growth temp. (°C) | 55 | 40 | 40 | 55 | 25 | 30 | 30 | 30 | 30 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islam, T.; Gessesse, A.; Garcia-Moyano, A.; Murrell, J.C.; Øvreås, L. A Novel Moderately Thermophilic Type Ib Methanotroph Isolated from an Alkaline Thermal Spring in the Ethiopian Rift Valley. Microorganisms 2020, 8, 250. https://doi.org/10.3390/microorganisms8020250
Islam T, Gessesse A, Garcia-Moyano A, Murrell JC, Øvreås L. A Novel Moderately Thermophilic Type Ib Methanotroph Isolated from an Alkaline Thermal Spring in the Ethiopian Rift Valley. Microorganisms. 2020; 8(2):250. https://doi.org/10.3390/microorganisms8020250
Chicago/Turabian StyleIslam, Tajul, Amare Gessesse, Antonio Garcia-Moyano, J. Colin Murrell, and Lise Øvreås. 2020. "A Novel Moderately Thermophilic Type Ib Methanotroph Isolated from an Alkaline Thermal Spring in the Ethiopian Rift Valley" Microorganisms 8, no. 2: 250. https://doi.org/10.3390/microorganisms8020250
APA StyleIslam, T., Gessesse, A., Garcia-Moyano, A., Murrell, J. C., & Øvreås, L. (2020). A Novel Moderately Thermophilic Type Ib Methanotroph Isolated from an Alkaline Thermal Spring in the Ethiopian Rift Valley. Microorganisms, 8(2), 250. https://doi.org/10.3390/microorganisms8020250