Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = the eastern segment of the northern margin of the North China Craton

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 14630 KiB  
Article
Tectonic Evolution of the Eastern Central Asian Orogenic Belt: Evidence from Magmatic Activity in the Faku Area, Northern Liaoning, China
by Shaoshan Shi, Yi Shi, Xiaofan Zhou, Nan Ju, Yanfei Zhang and Shan Jiang
Minerals 2025, 15(7), 736; https://doi.org/10.3390/min15070736 - 15 Jul 2025
Viewed by 271
Abstract
The Permian–Triassic magmatic record in the eastern Central Asian Orogenic Belt (CAOB) provides critical insights into the terminal stages of the Paleo-Asian Ocean (PAO) evolution, including collisional and post-collisional processes following its Late Permian closure. The northeastern China region, tectonically situated within the [...] Read more.
The Permian–Triassic magmatic record in the eastern Central Asian Orogenic Belt (CAOB) provides critical insights into the terminal stages of the Paleo-Asian Ocean (PAO) evolution, including collisional and post-collisional processes following its Late Permian closure. The northeastern China region, tectonically situated within the eastern segment of the CAOB, is traditionally known as the Xingmeng Orogenic Belt (XOR). This study integrates zircon U-Pb geochronology, whole-rock geochemistry, and zircon Hf isotopic analyses of intermediate-acid volcanic rocks and intrusive rocks from the former “Tongjiatun Formation” in the Faku area of northern Liaoning. The main objective is to explore the petrogenesis of these igneous rocks and their implications for the regional tectonic setting. Zircon U-Pb ages of these rocks range from 260.5 to 230.1 Ma, indicating Permian–Triassic magmatism. Specifically, the Gongzhuling rhyolite (260.5 ± 2.2 Ma) and Gongzhuling dacite (260.3 ± 2.4 Ma) formed during the Middle-Late Permian (270–256 Ma); the Wangjiadian dacite (243 ± 3.0 Ma) and Wafangxi rhyolite (243.9 ± 3.0 Ma) were formed in the late Permian-early Middle Triassic (256–242 Ma); the Haoguantun rhyolite (240.9 ± 2.2 Ma) and Sheshangou pluton (230.1 ± 1.7 Ma) were formed during the Late Middle-Late Triassic (241–215 Ma). Geochemical studies, integrated with the geochronological results, reveal distinct tectonic settings during successive stages: (1) Middle-Late Permian (270–256 Ma): Magmatism included peraluminous A-type rhyolite with in calc-alkaline series (e.g., Gongzhuling) formed in an extensional environment linked to a mantle plume, alongside metaluminous, calc-alkaline I-type dacite (e.g., Gongzhuling) associated with the subduction of the PAO plate. (2) Late Permian-Early Middle Triassic (256–242 Ma): Calc-alkaline I-type magmatism dominated, represented by dacite (e.g., Wangjiadian) and rhyolite (e.g., Wafangxi), indicative of a collisional uplift environment. (3) Late Middle-Late Triassic (241–215 Ma): Magmatism transitioned to high-K calc-alkaline with A-type rocks affinities, including rhyolite (e.g., Haoguantun) and plutons (e.g., Sheshangou), formed in a post-collisional extensional environment. This study suggests that the closure of the PAO along the northern margin of the North China Craton (NCC) occurred before the Late Triassic. Late Triassic magmatic rocks in this region record a post-orogenic extensional setting, reflecting tectonic processes following NCC-XOR collision rather than PAO subduction. Combined with previously reported age data, the tectonic evolution of the eastern segment of the CAOB during the Permian-Triassic can be divided into four stages: active continental margin (293–274 Ma), plate disintegration (270–256 Ma), final collision and closure (256–241 Ma), and post-orogenic extension (241–215 Ma). Full article
(This article belongs to the Special Issue Selected Papers from the 7th National Youth Geological Congress)
Show Figures

Figure 1

25 pages, 9142 KiB  
Article
Petrogenesis and Tectonic Significance of Middle Jurassic Mafic–Ultramafic Cumulate Rocks in Weiyuanpu, Northern Liaoning, China: Insights from Zircon Geochronology and Isotope Geochemistry
by Yifan Zhang, Xu Ma, Jiafu Chen, Yuqi Liu, Yi Zhang and Yongwei Ma
Minerals 2025, 15(6), 651; https://doi.org/10.3390/min15060651 - 17 Jun 2025
Viewed by 428
Abstract
The tectonic evolution of the Paleo-Pacific Ocean and the destruction mechanism of the North China Craton (NCC) are still controversial. In this study, we conducted zircon U-Pb dating, whole-rock geochemistry, and Sr-Nd-Hf isotope analyses on the Weiyuanpu mafic–ultramafic intrusions in the eastern segment [...] Read more.
The tectonic evolution of the Paleo-Pacific Ocean and the destruction mechanism of the North China Craton (NCC) are still controversial. In this study, we conducted zircon U-Pb dating, whole-rock geochemistry, and Sr-Nd-Hf isotope analyses on the Weiyuanpu mafic–ultramafic intrusions in the eastern segment of the northern margin of the NCC to discuss their petrogenesis and tectonic implications. The Weiyuanpu mafic–ultramafic intrusions consist of troctolite, hornblendite, hornblende gabbro, gabbro, and minor diorite, anorthosite, characterized by cumulate structure. The main crystallization sequence of minerals is olivine → pyroxene → magnetite → hornblende. The zircon U-Pb ages of hornblendite, hornblende grabbro, and diorite are ~170Ma. Geochemical characteristics exhibit low-K tholeiitic to calc-alkaline series, enriched in light rare-earth elements (LREE) and significant large-ion lithophile elements (LILE), and depleted in high-field-strength elements (HFSE). Sr-Nd isotopic compositions are ISr = 0.7043–0.7055, εNd(t) = −0.7 to +0.9, and zircon εHf (t) values range from +3.4 to +8.7. These results suggest that the source region was a phlogopite-bearing garnet lherzolite mantle metasomatized by subduction fluids. The study reveals that the northeastern margin of the NCC was in a back-arc extensional setting due to the subduction of the Paleo-Pacific Ocean during the Middle Jurassic, which caused lithosphere thinning and mantle melting in this region. Full article
(This article belongs to the Special Issue Selected Papers from the 7th National Youth Geological Congress)
Show Figures

Figure 1

31 pages, 54013 KiB  
Article
Ore-Forming Fluid Evolution and Ore Genesis of the Cuyu Gold Deposit in Central Jilin Province, NE China: Constraints from Geology, Fluid Inclusions, and H–O–S–Pb Isotope Studies
by Haozhe Li, Qun Yang, Leigang Zhang, Yunsheng Ren, Mingtao Li, Chan Li, Bin Wang, Sitong Chen and Xiaolei Peng
Minerals 2025, 15(5), 535; https://doi.org/10.3390/min15050535 - 17 May 2025
Cited by 1 | Viewed by 599
Abstract
The Cuyu gold deposit in central Jilin Province in Northeast China is located in the eastern segment of the northern margin of the North China Craton (NCC), as well as the eastern segment of the Xing’an–Mongolian Orogenic Belt (XMOB). Gold ore-bodies are controlled [...] Read more.
The Cuyu gold deposit in central Jilin Province in Northeast China is located in the eastern segment of the northern margin of the North China Craton (NCC), as well as the eastern segment of the Xing’an–Mongolian Orogenic Belt (XMOB). Gold ore-bodies are controlled by NW-trending faults and mainly occur in late Hercynian granodiorite. The mineralization process in the Cuyu deposit can be divided into three stages: quartz + coarse grained arsenopyrite + pyrite (stage I), quartz + sericite + pyrite + arsenopyrite + electrum + chalcopyrite + sphalerite (stage II), and quartz + calcite ± pyrite (stage III). Stage II is the most important for gold mineralization. We conducted analyses including petrography, microthermometry, laser Raman spectroscopy of fluid inclusions, and H–O–S–Pb isotopic analysis to elucidate the mineralization processes in the Cuyu deposit. Five types of primary fluid inclusions (FIs) are present in the hydrothermal quartz and calcite grains of the ore: liquid-rich two-phase aqueous fluid inclusions (L-type), vapor-rich two-phase aqueous fluid inclusions (V-type), CO2-bearing two- or three-phase inclusions (C1-type), CO2-rich two- or three-phase inclusions (C2-type), and pure CO2 mono-phase inclusions (C3-type). From stages I to III, the fluid inclusion assemblages changed from L-, C2-, and C3-types to L-, V-, C1-, C2-, and C3-types and, finally, to L-types only. The corresponding homogenization temperatures for stages I to III were 242–326 °C, 202–298 °C, and 106–188 °C, and the salinities were 4.69–9.73, 1.63–7.30, and 1.39–3.53 wt.% NaCl equiv., respectively. The ore-forming fluid system evolved from a NaCl-H2O-CO2 ± CH4 ± H2S fluid system in stage I and II with immiscible characteristics to a homogeneous NaC-H2O fluid system in stage III. Microthermometric data for stages I to III show a decreasing trend in homogenization temperatures and salinities. The mineral assemblages, fluid inclusions, and H–O–S–Pb isotopes indicate that the initial ore-forming fluids of stage I were exsolved from diorite porphyrite and characterized by a high temperature and low salinity. The addition of meteoric water in large quantities led to decreases in temperature and pressure, resulting in a NaCl-H2O-CO2 ± CH4 ± H2S fluid system with significant immiscibility in stage II, facilitating the deposition of gold and associated polymetallic sulfides. The Cuyu gold deposit has a similar ore genesis to those of gold deposits in the Jiapigou–Haigou gold belt (JHGB) of southeastern Jilin Province indicating potential for gold prospecting in the northwest-trending seam of the JHGB. Full article
Show Figures

Figure 1

26 pages, 20145 KiB  
Article
In Situ Compositional and Sulfur Isotopic Analysis of Sphalerite from the Erdaodianzi Gold Deposit in Southern Jilin Province, Northeast China
by Qingqing Shang, Fengdi Ren, Qun Yang and Bin Wang
Minerals 2025, 15(1), 57; https://doi.org/10.3390/min15010057 - 7 Jan 2025
Cited by 2 | Viewed by 817
Abstract
The newly discovered Erdaodianzi gold deposit in southern Jilin Province, Northeast China, is located in the eastern segment of the northern margin of the North China Craton (NCC). It is a large-scale gold deposit with reserves of 38.4 tons of gold. Gold mineralization [...] Read more.
The newly discovered Erdaodianzi gold deposit in southern Jilin Province, Northeast China, is located in the eastern segment of the northern margin of the North China Craton (NCC). It is a large-scale gold deposit with reserves of 38.4 tons of gold. Gold mineralization in the ore district primarily occurs in gold-bearing quartz–sulfide veins. The gold ore occurs mainly as vein, veinlet, crumby, and disseminated structures. The hydrothermal process can be divided into three stages: stage I, characterized by quartz, arsenopyrite, and pyrite; stage II, featuring quartz, arsenopyrite, pyrite, pyrrhotite, chalcopyrite, sphalerite, and native gold; and stage III, consisting of quartz, pyrite, sphalerite, galena, electrum (a naturally occurring Au–Ag alloy), and calcite. Electrum and native gold primarily occur within the fissures of the polymetallic sulfides. To determine the enrichment mechanism of the Au element and the genetic types of ore deposits in the Erdaodianzi deposit, sourcing in situ trace element data, element mapping and sulfur isotope analysis were carried out on sphalerites from different stages using LA-ICP-MS. Minor invisible gold, in the form of Au–Ag alloy inclusions, is present within sphalerites, as revealed by time-resolved depth profiles. The LA-ICP-MS trace element data and mapping results indicate that trivalent or quadrivalent cations, such as Sb3+ and Te4+, exhibit a strong correlation with Au. This correlation can be explained by a coupled substitution mechanism, where these cations (Sb3+ and Te4+) replace zinc ions within the mineral structure, resulting in a strong association with Au. Similarly, the element Pb exhibits a close relationship with Au, which can be attributed to the incorporation of tetravalent cations like Te4+ into the mineral structure. The positive correlation between Hg and Au can be attributed to the formation of vacancies and defects within sphalerite, caused by the aforementioned coupled substitution mechanism. A slight positive relationship between Au and other divalent cations, including Fe2+, Mn2+, and Cd2+, may result from these cations simply replacing Zn within the sphalerite lattice. The crystallization temperatures of the sphalerite, calculated via the Fe/Zn ratio, range from 238 °C to 320 °C. The δ34S values are divided into two intervals: one ranging from −1.99 to −1.12‰ and the other varying from 10.96 to 11.48‰. The sulfur isotopic analysis revealed that the ore-forming materials originated from magmatic rock, with some incorporation of metamorphic rock. Comparative studies of the Erdaodianzi gold deposit and other gold deposits in the Jiapigou–Haigou gold belt have confirmed that they are all mesothermal magmatic–hydrothermal lode gold deposits formed at the subduction of the Paleo-Pacific Plate beneath the Eurasian Plate during the Middle Jurassic. The Jiapigou–Haigou gold belt extends northwest to the Huadian area of Jilin province. This suggests potential for research on gold mineralization in the northwest of the belt and indicates a new direction for further gold prospecting in the region. Full article
Show Figures

Figure 1

27 pages, 5945 KiB  
Article
Middle Silurian–Middle Devonian Magmatic Rocks in the Eastern Segment of the Northern Margin of the North China Craton: Implications for Regional Tectonics
by Bin Li, Jingsheng Chen, Fan Yang, Miao Liu, Yanqing Zang and Chao Zhang
Minerals 2024, 14(7), 641; https://doi.org/10.3390/min14070641 - 23 Jun 2024
Cited by 1 | Viewed by 1346
Abstract
This paper presents a detailed study including LA-ICP-MS zircon U-Pb dating, geochemical, zircon Hf isotope, and whole rock Sr-Nd isotope analysis of magmatic rocks from the Yitong County, Jilin Province, NE China. These data are used to better constrain the Middle Silurian–Middle Devonian [...] Read more.
This paper presents a detailed study including LA-ICP-MS zircon U-Pb dating, geochemical, zircon Hf isotope, and whole rock Sr-Nd isotope analysis of magmatic rocks from the Yitong County, Jilin Province, NE China. These data are used to better constrain the Middle Silurian–Middle Devonian tectonic evolution in the eastern segment of the northern margin of the North China Craton (NCC). Zircon U-Pb dating results show that the Ximangzhang tonalite formed in the Late Silurian (425 ± 6 Ma); the basalt, andesite, and metamorphic olivine-bearing basalt in the Fangniugou volcanic rocks formed in the Middle Silurian (428 ± 6.6 Ma) and Middle Devonian (388.4 ± 3.9 Ma, and 384.1 ± 4.9 Ma). The Late Silurian tonalites are characterized by high SiO2 and Na2O and low K2O, MgO, FeOT, and TiO2, with an A/CNK ratio of 0.91–1.00, characteristic of calc-alkaline I-type granite. They are enriched in Rb, Ba, Th, U, and K, and depleted in Nb, Sr, P, and Ti, with positive εNd(t) (+0.35) and εHf(t) (+0.44 to +6.31) values, suggesting that they mainly originated from the partial melting of Meso–Neoproterozoic accretionary lower crustal material (basalt). The Middle Silurian basalts are characterized by low SiO2, P2O5, TiO2, and Na2O and high Al2O3, FeOT, and K2O, enriched in Rb, Ba, Th, U, and K and depleted in Nb, Ta, Sr, P, and Ti, indicative of shoshonitic basalt. The Late Silurian tonalites have positive εNd(t) (+4.91 to +6.18) values and primarily originated from depleted mantle magmas metasomatized by subduction fluids, supplemented by a small amount of subducted sediments and crustal materials. The Middle Devonian volcanic rocks exhibit low SiO2, TiO2, and Na2O and high K2O, and MgO, enriched in Rb, K, and LREEs and depleted in Nb, Ta, Sr, and HREEs, characteristic of shoshonitic volcanic rocks. Their εNd(t) (+2.11 to +3.77) and εHf(t) (+5.90 to +11.73) values are positive. These characteristics indicate that the Middle Devonian volcanic rocks primarily originated from depleted mantle magmas metasomatized by subduction fluids, with the addition of crustal materials or subducted sediments during their formation. Based on regional geological data, it is believed that the study area underwent the following evolutionary stages during the Silurian–Devonian period: (1) active continental margin stage of southward subduction of the Paleo–Asian Ocean (PAO) (443–419 Ma); (2) arc-continent collision stage (419–405 Ma); (3) post-collision extension stage (404–375 Ma); (4) active continental margin stage, with the PAO plate subducting southward once again (375–360 Ma). Full article
Show Figures

Figure 1

27 pages, 15311 KiB  
Article
Permian Granitic Plutons from the Northern Margin of the North China Craton: Implications for the Tectonic Evolution of the Central Asian Orogenic Belt
by Jingsheng Chen, Dexin Tian, Bin Li, Yi Shi, Zhonghui Gao, Yi Tian, Weiwei Li, Chao Zhang and Yan Wang
Minerals 2023, 13(12), 1554; https://doi.org/10.3390/min13121554 - 17 Dec 2023
Cited by 2 | Viewed by 2040
Abstract
As the world’s largest accretionary orogen, the Central Asian Orogenic Belt (CAOB) underwent continuous juvenile crustal growth in the Phanerozoic. The northern margin of the North China Craton (NCC) and its adjacent area form the eastern segment of the CAOB, which is a [...] Read more.
As the world’s largest accretionary orogen, the Central Asian Orogenic Belt (CAOB) underwent continuous juvenile crustal growth in the Phanerozoic. The northern margin of the North China Craton (NCC) and its adjacent area form the eastern segment of the CAOB, which is a key area for learning about the geological evolution of the Paleo-Asian Ocean (PAO). In the Permian, the west of the northern margin of the NCC was a post-collision extensional environment, while the east was in a subduction stage. As a connecting area, the Permian evolution of the PAO in the middle of the northern margin of the NCC has not been systematically studied. In order to fill the gap and understand the continuous temporal and spatial evolutionary process of the PAO, this paper focuses on the Permian granitic rocks in the Chifeng area. Zircon U-Pb dating and the geochemical analysis of whole-rock major and trace elements were conducted to build a granite chronological framework, and to discuss the genesis and tectonic background of the granitic rocks, along with tectono-magmatic evolutionary history in the Chifeng area. The respective LA-ICP-MS zircon U-Pb dating results from eight samples are 269 ± 1, 268 ± 3, 260 ± 4, 260 ± 1, 260 ± 1, 255 ± 2, 254 ± 2 and 256 ± 1 Ma, respectively. These results, combined with previous data, revealed that the Permian granitic rocks had undergone three events of magmatism: (1) monzogranitic-syenitic phase (294–284 Ma; Cisuralian); (2) monzogranitic phase (269–260 Ma; Guadalupian) and (3) late monzogranitic-syenitic phase (256–254 Ma; Lopingian). From the Early Permian (294–284 Ma) to the Middle Permian (269–260 Ma), granites with fine-medium-grained locally porphyritic texture and massive structure showed a high-potassium calc-alkaline series formed in a compressional setting, indicating a continuous collision between the Xing’an-Mongolian Orogenic Belt (XMOB) and the NCC. During the Late Permian-Early Triassic (256–248 Ma), granites with massive structure and medium-grained texture in the Chifeng area were magmatism dominated by A- and I-type granites of high-potassium calc-alkaline series, combined with the coeval basic rocks, which constituted a typical “bimodal” rock assemblage. This suggests that the Chifeng area was located in an extensional setting where the subducting slab broke off during the collision between the XMOB and NCC. These granitic plutons from the Permian are believed to have been generated by the subduction-collision of the Paleo-Asian oceanic crust beneath the NCC, according to emplacement time and occurrence location. Our findings provide strong evidence for Permian continuous temporal and spatial tectonic evolution and the characterization of the eventual closure of the PAO in Chifeng area at the northern margin of the NCC. Full article
Show Figures

Figure 1

20 pages, 7601 KiB  
Article
Sources of Metallogenic Materials of the Saima Alkaline Rock-Hosted Niobium–Tantalum Deposit in the Liaoning Region: Evidence from the Sr-Nd-Pb and Li Isotopes
by Yue Wu, Nan Ju, Xin Liu, Lu Shi, Yuhui Feng and Danzhen Ma
Minerals 2023, 13(11), 1443; https://doi.org/10.3390/min13111443 - 15 Nov 2023
Cited by 3 | Viewed by 1643
Abstract
The Saima alkaline rock-hosted niobium–tantalum deposit (hereafter referred to as the Saima Deposit) is situated in the Liaodong Peninsula, which constitutes the eastern segment of the northern margin of the North China Craton. The rock types of the Saima Deposit include phonolite, nepheline [...] Read more.
The Saima alkaline rock-hosted niobium–tantalum deposit (hereafter referred to as the Saima Deposit) is situated in the Liaodong Peninsula, which constitutes the eastern segment of the northern margin of the North China Craton. The rock types of the Saima Deposit include phonolite, nepheline syenite, and aegirine nepheline syenite, which hosts niobium–tantalum ore bodies. In this study, the primary niobium-bearing minerals identified include loparite, betafite, and fersmite. The Saima pluton is characterized as a potassium-rich, low-sodium, and peraluminous alkaline pluton. Trace element characteristics reveal that the metallization-associated syenite is enriched in large-ion lithophile elements (LILEs) such as K and Rb but is relatively depleted in high-field strength elements (HFSEs). As indicated by the rare earth element (REE) profile, the Saima pluton exhibits a high total REE content (∑REE), dominance of light REEs (LREEs), and scarcity of heavy REEs (HREEs). The Sr-Nd-Pd isotopic data suggest that aegirine nepheline syenite and nepheline syenite share consistent isotopic signatures, indicating a common origin. The Saima alkaline pluton displays elevated ISr values ranging from 0.70712 to 0.70832 coupled with low εNd(t) values between −12.84 and −11.86 and two-stage model ages (tDM2) from 1967 to 2047 Ma. These findings indicate that the metallogenic materials for the Saima Deposit derive from both an enriched mantle source and some crustal components. The lithium (Li) isotopic fractionation observed during the genesis of the Saima pluton could be attributed to the differential diffusion rates of 6Li and 7Li under non-equilibrium fluid–rock interactions. Full article
Show Figures

Figure 1

27 pages, 8120 KiB  
Article
Tectonic Transformation and Metallogenesis of the Yanshan Movement during the Late Jurassic Period: Evidence from Geochemistry and Zircon U-Pb Geochronology of the Adamellites in Xingcheng, Western Liaoning, China
by Pengyue Hu, Chenyue Liang, Changqing Zheng, Xiao Zhou, Yan Yang and Erlin Zhu
Minerals 2019, 9(9), 518; https://doi.org/10.3390/min9090518 - 28 Aug 2019
Cited by 12 | Viewed by 4618
Abstract
The Yanshan Movement occurred mainly during the Middle-Late Jurassic, and gave rise to NE trending structures, magmatic events, volcanism and mineral resources. The transformation and evolution of the movement during the Middle-Late Jurassic were investigated from the rock assemblage, geochemistry, and chronology in [...] Read more.
The Yanshan Movement occurred mainly during the Middle-Late Jurassic, and gave rise to NE trending structures, magmatic events, volcanism and mineral resources. The transformation and evolution of the movement during the Middle-Late Jurassic were investigated from the rock assemblage, geochemistry, and chronology in adamellites which were exposed in the Xingcheng area, western Liaoning. Two types of adamellites were recognized—biotite adamellites with the formation age of 172–168 Ma and garnet-bearing adamellites of 158–152 Ma. All the samples of the two types of adamellites displayed enriched characteristics with high content of SiO2 (66.86–75.55 wt.%) and total alkali (Na2O + K2O = 7.56–8.71 wt.%), high large ion lithophile element (LILE: K, Rb, Sr), and low high field strength element (HFSE: Ce, Ta, P, Ti). The biotite adamellites belong to metaluminous-peraluminous I-type granites, and show volcanic arc granite characteristics, and were formed by partial melting of the ancient crust in the compressional setting that resulting from the subduction of the Paleo-Pacific plate beneath the north margin of the North China Craton (NCC). The garnet-bearing adamellites are also metaluminous-peraluminous I-type granites, with characteristics of both the compressional and extensional regimes, which were formed at the middle-late stages of the continuing subduction of the Paleo-Pacific plate, while simultaneously, the frontal side of the subduction slab began to roll back, leading to an extensional environment. Combining with regional geophysical studies and our petrological and geochemical studies, we propose that the eastern segment of the northern margin of NCC may have been controlled by the Paleo-Pacific tectonic domain at the latest in the Middle Jurassic, while the initiation of the tectonic regime from a compressional to an extensional environment was during the Late Jurassic (158–152 Ma) as a response of the Yanshan Movement. Simultaneously, geochronological statistics of the ore deposits in western Liaoning show that the Mesozoic endogenetic metalliferous deposits formed in a compressive environment influenced by the subduction of the Paleo-Pacific plate, similar to the magma events in ages, and the magmatism provided the thermodynamic condition and the source of metallogenic hydrothermal fluid for mineralization. Full article
(This article belongs to the Special Issue Role of Magmatic Activity in Generation of Ore Deposits)
Show Figures

Figure 1

36 pages, 12111 KiB  
Review
Paleozoic–Mesozoic Porphyry Cu(Mo) and Mo(Cu) Deposits within the Southern Margin of the Siberian Craton: Geochemistry, Geochronology, and Petrogenesis (a Review)
by Anita N. Berzina, Adel P. Berzina and Victor O. Gimon
Minerals 2016, 6(4), 125; https://doi.org/10.3390/min6040125 - 29 Nov 2016
Cited by 23 | Viewed by 7607
Abstract
The southern margin of the Siberian craton hosts numerous Cu(Mo) and Mo(Cu) porphyry deposits. This review provides the first comprehensive set of geological characteristics, geochronological data, petrochemistry, and Sr–Nd isotopic data of representative porphyry Cu(Mo) and Mo(Cu) deposits within the southern margin of [...] Read more.
The southern margin of the Siberian craton hosts numerous Cu(Mo) and Mo(Cu) porphyry deposits. This review provides the first comprehensive set of geological characteristics, geochronological data, petrochemistry, and Sr–Nd isotopic data of representative porphyry Cu(Mo) and Mo(Cu) deposits within the southern margin of the Siberian craton and discusses the igneous processes that controlled the evolution of these magmatic systems related to mineralization. Geochronological data show that these porphyry deposits have an eastward-younging trend evolving from the Early Paleozoic to Middle Mesozoic. The western part of the area (Altay-Sayan segment) hosts porphyry Cu and Mo–Cu deposits that generally formed in the Early Paleozoic time, whereas porphyry Cu–Mo deposits in the central part (Northern Mongolia) formed in the Late Paleozoic–Early Mesozoic. The geodynamic setting of the region during these mineralizing events is consistent with Early Paleozoic subduction of Paleo-Asian Ocean plate with the continuous accretion of oceanic components to the Siberian continent and Late Paleozoic–Early Mesozoic subduction of the west gulf of the Mongol–Okhotsk Ocean under the Siberian continent. The eastern part of the study area (Eastern Transbaikalia) hosts molybdenum-dominated Mo and Mo–Cu porphyry deposits that formed in the Jurassic. The regional geodynamic setting during this mineralizing process is related to the collision of the Siberian and North China–Mongolia continents during the closure of the central part of the Mongol–Okhotsk Ocean in the Jurassic. Available isotopic data show that the magmas related to porphyritic Cu–Mo and Mo–Cu mineralization during the Early Paleozoic and Late Paleozoic–Early Mesozoic were mainly derived from mantle materials. The generation of fertile melts, related to porphyritic Mo and Mo–Cu mineralization during the Jurassic involved variable amounts of metasomatized mantle source component, the ancient Precambrian crust, and the juvenile crust, contributed by mantle-derived magmatic underplating. Full article
(This article belongs to the Special Issue Mineral Deposit Genesis and Exploration)
Show Figures

Figure 1

Back to TopTop