Permian Granitic Plutons from the Northern Margin of the North China Craton: Implications for the Tectonic Evolution of the Central Asian Orogenic Belt
Abstract
:1. Introduction
- (1)
- Based on the analysis of sedimentary petrography, mixed accumulation of ophiolite, formation of stratigraphic deposition, and contact between the Carboniferous strata and ophiolite, it has been proposed that the northern margin of the NCC and the XMOB collided and collaged in the early Late Paleozoic, resulting in the complete subduction of the PAO [17,18]. Since the Late Carboniferous and after the SP and NCC were united through the XMOB, the study area has been characterized by intracontinental rifting magmatic and sedimentary activities [17,18]. It is believed that the Permian basin is a new rift basin with extension-related volcanic activities [17]. Some scholars also believe that the PAO closed before the Early Permian based on magmatism [19,20].
- (2)
- (3)
- Some scholars consider that the subduction of the PAO occurred in the Late Paleozoic, and its closure took place in Late Permian to Early Triassic times based on (I) paleomagnetism, mixing of paleontological groups, and biological extinction events suggesting that the PAO closed at the end of the Permian [2,23,24]. (II) Geochronological and geochemical data of magmatism show that a post-collision extensional environment can be interpreted for the Early Triassic. Therefore, the closure of the PAO was delimited as Late Permian [4,8,12,25,26,27,28,29]. (III) Oceanic Carboniferous basalts and Permian fossil content were discovered in the north of the Xar Moron River [30,31]. The reefs and marine fossils of the late Permian and the P/T unconformity surface exposed in Balin Right Banner, Inner Mongolia, and Jiutai County, Jilin, proved that the PAO closed at the end of the Late Permian [32]. (IV) Ophiolite suites obducted in the Late Permian-Early Triassic in the island arc/back-arc environment, indicating the two plates likely collided in this period [7,33,34,35,36]. (V) The zircon U-Pb age of the Permian clastic deposits in Balin Left Banner showed the final collision and merged time of the two plates were likely later than 266 Ma [37].
- (4)
2. Geological Setting and Sample Descriptions
2.1. Geological Setting
2.2. Geological and Petrological Characteristics of Permian Granitoid Intrusions
3. Analytical Methods
3.1. Sample Preparation
3.2. Zircon LA-ICP-MS U-Pb Isotope Dating
3.3. Major- and Trace-Element Analyses
4. Analytical Results
4.1. Zircon U-Pb Ages
4.1.1. Early-Middle Permian
4.1.2. Late-Middle Permian
4.1.3. Late Permian
4.2. Major and Trace Element Geochemistry
4.2.1. Early-Middle Permian Monzogranite
4.2.2. Late-Middle Permian Monzogranite
4.2.3. Late Permian Monzogranite and Syenogranite
5. Discussion
5.1. Permian Magmatism in the Chifeng Area
5.1.1. Early Permian (294–284 Ma)
5.1.2. Middle Permian (269–260 Ma)
5.1.3. Late Permian-Early Triassic (256–248 Ma)
5.2. Genetic Types of the Middle-Late Permian Granitic Rocks in the Chifeng Area
5.2.1. Middle Permian Monzogranite
5.2.2. Genesis of the Late Permian Granite
5.2.3. Petrogenesis of High-K, I-Type Granitic Rocks of the Permian
5.3. Tectonic Implications and Geological Significance
5.3.1. Tectonic Setting
Tectonic Setting of the Middle Permian Monzogranite
Tectonic Setting of Late Permian Granite
5.3.2. Permian Tectonic-Magmatic Evolution in the Chifeng Area
Early Permian–Active Continental Marginal Environment
Middle Permian-Continent-Continent Collision Environment
Late Permian-Early Triassic-PAO Final Closure and Subduction Slab Break-off
6. Conclusions
- (1)
- According to the zircon U-Pb dating results, three events of Permian granitic magmatism were identified in the Chifeng area: (1) a suite of syenogranites and monzogranites dated at ca. 294–284 Ma (Cisuralian); (2) a suite of monzogranites dated at ca. 269–260 Ma (Guadalupian); and (3) a suite of monzogranites and syenogranites dated at ca. 256–254 Ma (Lopingian).
- (2)
- The two events related to the Middle Permian monzogranite represent I-type granite with Al-saturated, Si- and K-rich, negative Eu anomaly; enrichment of LILEs (Rb, Th, K, and La); and negative Sr, P, and Ti anomalies. The Late Permian syenogranite is rich in Si and K and poor in Al, classified as I-type granite with moderately negative Eu anomalies; enrichment of LILEs (Rb, Th, K, La, and Ce); minor enrichment in HFSEs (Nd, Zr, and Hf); and negative anomalies of Ba, P, Ti, and Sr. These Permian high-K I-type granites were formed by partial melting of the lower crustal source under relatively low-pressure conditions. The Late Permian monzogranite is A-type granite, displaying a “V” shape of rare-earth elements, with strongly negative Eu anomalies; enrichment of LILES (Rb, Th, U, and K); negative anomalies of Ba, P, and Ti; and obvious Sr negative anomalies, formed in a low-pressure environment caused by tension.
- (3)
- The Permian tectono-magmatic evolution of the PAO can be divided into three events: (1) Early Permian granite formed in the setting of the PAO subducting to the NCC; (2) Middle Permian granite formed during the collision of the XMOB and the NCC; and (3) Late Permian-Early Triassic granite formed in an extensional setting induced by the slab breaking off after the collision between the XMOB and the NCC, responsible for the closing of the PAO.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sengör, A.M.C.; Natal’in, B.A. Paleotectonics of Asia: Fragments of a synthesis. In The Tectonic Evolution of Asia; Yin, A., Harrison, T.M., Eds.; Cambrige University Press: Cambridge, UK, 1996; pp. 486–641. [Google Scholar]
- Sengör, A.M.C.; Natal’in, B.A.; Burtman, V.S. Evolution of the altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature 1993, 364, 299–307. [Google Scholar] [CrossRef]
- Jahn, B.M. The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic. Geol. Soc. Lond. Spec. Publ. 2004, 226, 73–100. [Google Scholar] [CrossRef]
- Li, J.Y. Permian geodynamic setting of northeast China and adjacent regions: Closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate. J. Asian Earth Sci. 2006, 26, 207–224. [Google Scholar] [CrossRef]
- Wu, F.Y.; Sun, D.Y.; Ge, W.C.; Zhang, Y.B.; Grant, M.L.; Wilde, S.A.; Jahn, B.M. Geochronology of the Phanerozoic granitoids in Northeastern China. J. Asian Earth Sci. 2011, 41, 1–30. [Google Scholar] [CrossRef]
- Wu, F.Y.; Sun, D.Y.; Li, H.M.; Jahn, B.M.; Wilde, S.A. A-type granites in Northeastern China: Age and geochemical constraints on their petrogenesis. Chem. Geol. 2002, 187, 143–173. [Google Scholar] [CrossRef]
- Song, S.G.; Wang, M.M.; Xu, X.; Wang, C.; Niu, Y.L.; Allen, M.B.; Su, L. Ophiolites in the Xing’an-Inner Mongolia accretionary belt of the CAOB: Implications for two cycles of seafloor spreading and accretionary orogenic events. Tectonics 2015, 34, 2221–2248. [Google Scholar] [CrossRef]
- Chen, J.S.; Tian, D.X.; Yang, H.; Li, W.W.; Liu, M.; Li, B.; Yang, F.; Li, W.; Wu, Z. Triassic granitic magmatism at the northern margin of the North China Craton: Implications of geochronology and geochemistry for the tectonic evolution of the Central Asian Orogenic Belt. Acta Geol. Sin. 2019, 93, 1325–1353. [Google Scholar] [CrossRef]
- Chen, B.; Jahn, B.M.; Tian, W. Evolution of the Solonker Suture Zone: Constraints from zircon U-Pb ages, Hf isotopic ratios and whole-rock Nd-Sr isotope compositions of subduction- and collision-related magmas and forearc sediments. J. Asian Earth Sci. 2009, 34, 245–257. [Google Scholar] [CrossRef]
- Wang, W.Q. Late Paleozoic Tectonic Evolution of the Central-Northern Margin of the North China Craton: Constraints from Zircon U-Pb Ages and Geochemistry of Igneous Rocks in Ondor Sum-Jining Area. Ph.D. Thesis, Jilin University, Changchun, China, 2014; pp. 1–169, (In Chinese with English Abstract). [Google Scholar]
- Chen, J.S.; Liu, Z.H.; Liu, Y.J.; Feng, Z.Q.; Zhang, L.D.; Wang, Y. Recent progress in the tectonic evolution of the eastern segment of Central Asia Orogenic Belt. Acta Petrol. Sin. 2022, 38, 2175–2180, (In Chinese with English Abstract). [Google Scholar]
- Xiao, W.J.; Windley, B.F.; Hao, J.; Zhai, M.G. Accretion leading to collision and the Permian Solonker Suture, Inner Mongolia, China: Termination of the Central Asian Orogenic Belt. Tectonics 2003, 22, 1069–1090. [Google Scholar] [CrossRef]
- Zhang, S.H.; Zhao, Y.; Song, B.; Hu, J.M.; Liu, S.W.; Yang, Y.H.; Chen, F.K.; Liu, X.M.; Liu, J. Contrasting Late Carboniferous and Late Permian-Middle Triassic intrusive suites from the northern margin of the North China Craton: Geochronology, petrogenesis, and tectonic implications. Geol. Soc. Am. Bull. 2009, 121, 181–200. [Google Scholar] [CrossRef]
- Zhao, Y.L.; Li, W.M.; Wen, Q.B.; Liang, T.Y.; Feng, Z.Q.; Zhou, J.P.; Shen, L. Late Paleozoic tectonic framework of eastern Inner Mongolia: Evidence from the detrital zircon U-Pb ages of the Mid-Late Permian to Early Triassic sandstones. Acta Petrol. Sin. 2016, 32, 2807–2822, (In Chinese with English Abstract). [Google Scholar]
- Liu, Y.; Xi, A.H.; Ge, Y.H.; Tang, X.Y.; Xu, B.W.; Wang, M.Z.; Ma, Y.J. LA-ICP-MS zircon U-Pb ages and petrogenesis of granodiorite in Mengguyingzi, Chifeng, Inner Mongolia. Geol. Bull. China 2015, 34, 437–446, (In Chinese with English Abstract). [Google Scholar]
- Liu, Y.J.; Li, W.M.; Feng, Z.Q.; Wen, Q.B.; Neubauer, F.; Liang, C.Y. A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt. Gondwana Res. 2017, 43, 123–148. [Google Scholar] [CrossRef]
- Tang, K.D. Tectonic development of Paleozoic fold belts at the northern margin of the Sino-Korean Craton. Tectonics 1990, 9, 249–260. [Google Scholar] [CrossRef]
- Tang, K.D.; Ju, N.; Zhang, D.Q.; Zhang, G.B.; Feng, Y.; Sun, J.G. Implication of the tectonic eveolution of Paleo-Asian Ocean. Geol. Resour. 2022, 31, 246–259, (In Chinese with English Abstract). [Google Scholar]
- Zhang, S.H.; Zhao, Y.; Davis, G.A.; Ye, H.; Wu, F. Temporal and spatial variations of Mesozoic magmatism and deformation in the North China Craton: Implications for lithospheric thinning and decratonization. Earth-Sci. Rev. 2014, 131, 49–87. [Google Scholar] [CrossRef]
- Zhao, P.; Jahn, B.; Xu, B.; Liao, W.; Wang, Y. Geochemistry, geochronology and zircon Hf isotopic study of peralkaline-alkaline intrusions along the northern margin of the North China Craton and its tectonic implication for the southeastern Central Asian Orogenic Belt. Lithos 2016, 261, 92–108. [Google Scholar] [CrossRef]
- Zhang, S.H.; Zhao, Y.; Song, B.; Yang, Z.Y.; Hu, J.M.; Wu, H. Carboniferous granitic plutons from the northern margin of the North China Block: Implications for a Late Palaeozoic active continental margin. J. Geol. Soc. Lond. 2007, 164, 451–463. [Google Scholar] [CrossRef]
- Li, B.; Chen, J.S.; Liu, M.; Yang, F.; Li, W.; Wu, Z.; Chen, M.H.; Wu, C.S. LA-ICP-MS zircon U-Pb geochronology and geochemical characteristics of the Early Permian granite in Chifeng area, Inner Mongolia. Geol. Bull. China 2018, 37, 1671–1681, (In Chinese with English Abstract). [Google Scholar]
- Wang, Q.; Liu, X.Y. Paleoplate tectonics between Cathasia and Angaraland in Inner Mongolia of China. Tectonics 1986, 5, 1073–1088. [Google Scholar] [CrossRef]
- Li, P.W.; Gao, R.; Guan, Y.; Li, Q.S. The closed times of the Paleo-Asian Ocean and the Paleo-Tethys Ocean: Implication for the tectonic cause of the End-Permian mass extinction. J. Jilin Univ. 2009, 39, 521–527, (In Chinese with English Abstract). [Google Scholar]
- Zhang, S.H.; Zhao, Y.; Song, B. Hornblende thermobarometry of the Carboniferous granitoids from the Inner Mongolia Paleo-Uplift: Implications for the geotectonic evolution of the northern margin of North China Block. Mineral. Petrol. 2006, 87, 123–141. [Google Scholar] [CrossRef]
- Windley, B.F.; Alexeiev, D.; Xiao, W.J.; Kroener, A.; Badarch, G. Tectonic models for accretion of the Central Asian Orogenic Belt. J. Geol. Soc. Lond. 2007, 164, 31–48. [Google Scholar] [CrossRef]
- Guan, Q.B.; Liu, Z.H.; Liu, Y.J.; Liu, J.; Wang, S.J.; Tian, Y. Geochemistry and zircon U–Pb geochronology of mafic rocks in the Kaiyuan tectonic mélange of northern Liaoning Province, NE China: Constraints on the tectonic evolution of the Paleo-Asian Ocean. Geol. J. 2019, 54, 656–678. [Google Scholar] [CrossRef]
- Shi, S.S.; Shi, Y.; Zhang, C.; Shi, J.M.; Jiang, S. Geochronology and geochemistry of the Triassic intrusive rocks in the Faku area, northern Liaoning, China: Constraints on the evolution of the Palaeo-Asian Ocean. Geol. J. 2022, 57, 1658–1681. [Google Scholar] [CrossRef]
- Chen, J.S.; Li, W.W.; Shi, Y.; Li, B.; Zhao, C.Q.; Zhang, L.D. Evolution of the eastern segment of the the northern margin of the North China Craton in the Triassic: Evidence from the geochronology and geochemistry of magmatic rocks in Kaiyuan area, North Liaonign. Acta Petrol. Sin. 2022, 38, 2216–2248, (In Chinese with English Abstract). [Google Scholar]
- Wang, Y.J. A review of the study of the Paleozoic radiation of the Paleozoic in China. Acta Micropalaeontological Sin. 2001, 18, 313–320, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Li, J.Y.; Gao, L.M.; Sun, G.H.; Li, Y.P.; Wang, Y.B. Shuangjingzi Middle Triassic syn-collisional crust-derived granite in the East Inner Mongolia and its constraint on the timing of collision between Siberian and Sino-Korean Paleo-plates. Acta Petrol. Sin. 2007, 23, 565–582, (In Chinese with English Abstract). [Google Scholar]
- Tian, S.G.; Li, Z.S.; Zhang, Y.S.; Gong, Y.X.; Zhai, D.X.; Wang, M. Late Carboniferous-Permian tectono-geographical conditions and development in eastern Inner Mengolia and adjacent areas. Acta Geol. Sin. 2016, 90, 688–707, (In Chinese with English Abstract). [Google Scholar]
- Miao, L.C.; Fan, W.M.; Liu, D.Y.; Zhang, F.Q.; Shi, Y.R.; Guo, F. Geochronology and geochemistry of the Hegenshan ophiolitic complex: Implications for late-stage tectonic evolution of the Inner Mongolia-Daxinganling Orogenic Belt, China. J. Asian Earth Sci. 2008, 32, 348–370. [Google Scholar] [CrossRef]
- Robinson, P.T.; Zhou, M.F.; Hu, X.F.; Reynolds, P.; Bai, W.J.; Yang, J.S. Geochemical constraints on the oringin of the Hegenshan ophiolite, Inner Mongolia, China. J. Asian Earth Sci. 1999, 17, 423–442. [Google Scholar] [CrossRef]
- Jian, P.; Liu, D.Y.; KröNer, A.; Windley, B.F.; Shi, Y.R.; Zhang, W.; Zhang, F.Q.; Miao, L.C.; Zhang, L.Q.; Tomurhuu, D. Evolution of a Permian intraoceanic arc-trench system in the Solonker Suture Zone, Central Asian Orogenic Belt, China and Mongolia. Lithos 2010, 118, 169–190. [Google Scholar] [CrossRef]
- Chu, H.; Zhang, J.R.; Wei, C.J.; Wang, H.C.; Ren, Y.W. A new interpretation of the tectonic setting and age of meta-basic volcanics in the Ondor Sum Group, Inner Mongolia, China. Sci. Bull. 2013, 58, 3580–3587. [Google Scholar] [CrossRef]
- Zhang, S.H.; Zhao, Y.; Liu, J.M.; Hu, J.M.; Song, B.; Liu, J.; Wu, H. Geochronology, geochemistry and tectonic setting of the Late Paleozoic-Early Mesozoic magmatism in the northern margin of the North China Block: A preliminary review. Acta Petrol. Et Mineral. 2010, 29, 824–842, (In Chinese with English Abstract). [Google Scholar]
- Zhang, Y.B.; Wu, F.Y.; Wilde, S.A.; Zhai, M.G.; Lu, X.P.; Sun, D.Y. Zircon U-Pb ages and tectonic implications of “Early Paleozoic” granitoids at Yanbian, Jilin Province, Northeast China. Isl. Arc. 2004, 13, 484–505. [Google Scholar] [CrossRef]
- Zhang, S.H.; Zhao, Y.; Ye, H.; Hou, K.J.; Li, C.F. Early Mesozoic alkaline complexes in the northern North China Craton: Implications for cratonic lithospheric destruction. Lithos 2012, 155, 1–18. [Google Scholar] [CrossRef]
- Duan, P.X.; Li, C.M.; Liu, C.; Deng, J.F.; Zhao, G.C. Geochronology and geochemistry of the granites from the Jinchanggouliang gold deposit area in the Inner Mongolia and its geological significance. Acta Petrol. Sin. 2014, 30, 3189–3202, (In Chinese with English Abstract). [Google Scholar]
- Chen, B.; Jahn, B.M.; Wilde, S.A.; Xu, B. Two contrasting Paleozoic magmatic belts in northern Inner Mongolia, China: Petrogenesis and tectonic implications. Tectonophysics 2000, 328, 157–182. [Google Scholar] [CrossRef]
- Chen, J.S.; Li, B.; Yang, H.; Liu, M.; Yang, F.; Li, W.; Wang, Y.; Cui, T.R. New zircon U-Pb age of granodiorite in Chifeng at the northern margin of North China Craton and constraints on plate tectonic evolution. Acta Geol. Sin. 2018, 92, 410–413. [Google Scholar] [CrossRef]
- Wiedenbeck, M.; Allé, P.; Corfu, F.; Griffin, W.L.; Meier, M.; Oberli, F.; Quadt, A.; Roddick, J.C.; Spiegel, W. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostand. Geoanalytical Res. 1995, 19, 1–23. [Google Scholar] [CrossRef]
- Black, L.P.; Kamo, S.L.; Allen, C.M.; Davis, D.W.; Aleinikoff, J.N.; Valley, J.W.; Mundil, R.; Campbell, I.H.; Korsch, R.J.; Williams, I.S.; et al. Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID–TIMS, ELA–ICP–MS and oxygen isotope documentation for a series of zircon standards. Chem. Geol. 2004, 205, 115–140. [Google Scholar] [CrossRef]
- Ludwig, K.R. User’s manual for isoplot 3.0: A geochronological toolkit for microsoft excel. Berkeley Geochronol. Cent. Spec. Publ. 2003, 4, 1–70. [Google Scholar]
- Andersen, T. Correction of common Lead in U-Pb analyses that do not report 204Pb. Chem. Geol. 2002, 192, 59–79. [Google Scholar] [CrossRef]
- Horstwood, M.S.A.; Košler, J.; Gehrels, G.; Jackson, S.E.; McLean, N.M.; Paton, C.; Pearson, N.J.; Sircombe, K.; Sylvester, P.; Vermeesch, P. Community-derived standards for LA-ICP-MS U-(Th-) Pb geochronology–Uncertainty propagation, age interpretation and data reporting. Geostand. Geoanalytical Res. 2016, 40, 311–332. [Google Scholar] [CrossRef]
- Belousova, E.; Griffin, W.; O’Reilly, S.Y.; Fisher, N. Igneous zircon: Trace element composition as an indicator of source rock type. Contrib. Mineral. Petrol. 2002, 143, 602–622. [Google Scholar] [CrossRef]
- Hoskin, P.W.O.; Ireland, T.R. Rare earth element chemistry of zircon and its use as a provenance indicator. Geology 2000, 28, 627–630. [Google Scholar] [CrossRef]
- Peccerillo, A.; Taylor, S.R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib. Mineral. Petrol. 1976, 58, 63–81. [Google Scholar] [CrossRef]
- Maniar, P.D.; Piccoli, P.M. Tectonic discrimination of granitoids. Geol. Soc. Am. Bull. 1989, 101, 635–643. [Google Scholar] [CrossRef]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Shao, J.A.; Zhang, Z.; She, H.Q.; Liu, D.S. The discovery of Phanerozoic granulite in Chifeng area of North Craton and its implication. Earth Sci. Front. 2012, 19, 187–198, (In Chinese with English Abstract). [Google Scholar]
- Jiang, S.H.; Liang, Q.L.; Nie, F.J.; Liu, Y.F. A preliminary study of zircon LAMC-ICP-MS U-Pb ages of the Shuangjingzi complex in Linxi, Inner Mongolia. Geol. China 2014, 41, 1108–1123, (In Chinese with English Abstract). [Google Scholar]
- Xi, A.H.; Ma, Y.J.; Ge, Y.H.; Tang, X.Y.; Liu, S.; Xu, B.W.; Liu, Y. Multi-stage intrusive evidence and geological significance of Dayingzi granite in Chifeng, Eastern Inner Mongolia. J. Jilin Univ. 2015, 45, 791–803, (In Chinese with English Abstract). [Google Scholar]
- Whalen, J.B.; Currie, K.L.; Chappell, B.W. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contrib. Mineral. Petrol. 1987, 95, 407–419. [Google Scholar] [CrossRef]
- Zhang, Q.; Ran, A.; Li, C.D. A-type granite: What is the essence? Acta Petrol. Mineral. 2012, 31, 621–626, (In Chinese with English Abstract). [Google Scholar]
- Chappell, B.W.; White, A.J. I- and S-type granites in the Lachlan Fold Belt. Trans. R. Soc. Edinb. Earth Sci. 1992, 83, 1–26. [Google Scholar]
- Clemens, J.D.; Holloway, J.R.; White, A.J. Origin of A-type granites: Experimental constraints. Am. Miner. 1986, 71, 317–324. [Google Scholar]
- Anderson, J.L. Proterozoic anorogenic granite plutonism of North America. Mem. Geol. Soc. Am. 1983, 161, 133–154. [Google Scholar]
- Scaillet, B.; Macdonald, R. Phase relations of peralkaline silicic magmas and petrogenetic implications. J. Petrol. 2001, 42, 825–845. [Google Scholar] [CrossRef]
- Scaillet, B.; Macdonald, R. Experimental constraints on the relationships between peralkaline rhyolites of the Kenya Rift Valley. J. Petrol. 2003, 44, 1867–1894. [Google Scholar] [CrossRef]
- Roberts, M.P.; Clemens, J.D. Origin of high-potassium, calc-alkaline, I-type granitoids. Geology 1993, 21, 825–828. [Google Scholar] [CrossRef]
- Liegeois, J.P.; Navez, J.; Hertogen, J.; Black, R. Contrasting origin of postcollisional high-K calc-alkaline and shoshonitic versus alkaline and peralkaline granitoids: The use of sliding normalization. Lithos 1998, 45, 1–28. [Google Scholar] [CrossRef]
- DePaolo, D.J. Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planet. Sci. Lett. 1981, 53, 189–202. [Google Scholar] [CrossRef]
- Moghazi, A.M. Geochemistry and petrogenesis of a high-K calc-alkaline Dokhan Volcanic suite, South Safaga area, Egypt: The role of late Neoproterozoic crustal extension. Precambrian Res. 2003, 125, 161–178. [Google Scholar] [CrossRef]
- Dickinson, W.R. Potash-depth (K-h) relations in continental-margin and intraoceanic magmatic arcs. Geology 1975, 3, 53–56. [Google Scholar] [CrossRef]
- Yang, H.; Ge, W.C.; Zhao, G.C.; Dong, Y.; Xu, W.L.; Wang, Z.H.; Ji, Z.; Yu, J.J. Late Triassic intrusive complex in the Jidong region, Jiamusi-Khanka Block, NE China: Geochemistry, zircon U-Pb ages, Lu-Hf isotopes, and implications for magma mingling and mixing. Lithos 2015, 224–225, 143–159. [Google Scholar] [CrossRef]
- Yang, J.H.; Wu, F.Y.; Chung, S.L.; Wilde, S.A.; Chu, M.F. A hybrid origin for the Yianshan A-type granite, northeast China: Geochemical and Sr-Nd-Hf isotopic evidence. Lithos 2006, 89, 89–106. [Google Scholar] [CrossRef]
- Clemens, J.D.; Darbyshire, D.P.F.; Flinders, J. Sources of post-orogenic calcalkaline magmas: The Arrochar and Garabal Hill-Glen Fyne complexes, Scotland. Lithos 2009, 112, 524–542. [Google Scholar] [CrossRef]
- Sisson, T.W.; Ratajeski, K.; Hankins, W.B.; Glazner, A.F. Voluminous granitic magmas from common basaltic sources. Contrib. Mineral. Petrol. 2005, 148, 635–661. [Google Scholar] [CrossRef]
- Topuz, G.; Altherr, R.; Siebel, W.; Schwarz, W.H.; Zack, T.; Hasözbek, A.; Barth, M.; Satır, M.; Şen, C. Carboniferous high-potassium I-type granitoid magmatism in the Eastern Pontides: The Gümüşhane pluton (NE Turkey). Lithos 2010, 116, 92–110. [Google Scholar] [CrossRef]
- Hofmann, A.W. Chemical differentiation of the Earth: The relationship between mantle, continental crust, and oceanic crust. Earth Planet. Sci. Lett. 1988, 90, 297–314. [Google Scholar] [CrossRef]
- Yu, J.J.; Wang, F.; Xu, W.L.; Gao, F.H.; Tang, J. Late Permian tectonic evolution at the southeastern margin of the Songnen-Zhangguangcai Range Massif, NE China: Constraints from geochronology and geochemistry of granitoids. Gondwana Res. 2013, 24, 635–647. [Google Scholar] [CrossRef]
- Xiong, X.L.; Adam, J.; Green, T.H. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: Implications for TTG genesis. Chem. Geol. 2005, 218, 339–359. [Google Scholar] [CrossRef]
- Springer, W.; Seck, H.A. Partial fusion of basic granulites at 5-15 kbar: Implications for the origin of TTG magmas. Contrib. Mineral. Petrol. 1997, 127, 30–45. [Google Scholar] [CrossRef]
- Cao, H.H.; Xu, W.L.; Pei, F.P.; Zhang, X.Z. Permian tectonic evolution in southwestern Khanka massif: Evidence from zircon U-Pb chronology, Hf isotope and geochemistry of gabbro and diorite. Acta Geol. Sin. 2011, 85, 1390–1402. [Google Scholar]
- Pearce, J.A. A user’s guide to basalt discrimination diagrams. In Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulphide Exploration; Wyman, D.A., Ed.; Geological Association of Canada, Short Course Notes: St. John’s, NF, Canada, 1996; Volume 12, pp. 79–113. [Google Scholar]
- Batchelor, R.A.; Bowden, P. Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chem. Geol. 1985, 48, 43–55. [Google Scholar] [CrossRef]
- Ikeda, Y.; Yuasa, M. Volcanism in Nascent backarc basins behind the Schichito ridge and adjacent areas in the Izu-Ogasawara Arc, NW Pacific: Evidence for mixing between E-type MORB and island arc magmas at the initiation of back-arc rifing. Contrib. Mineral. Petrol. 1989, 101, 377–393. [Google Scholar] [CrossRef]
- Pin, C.; Paquette, J.L. A mantle-derived bimodal suite in the Hercynian belt: Nd isotope and trace element evidence for a subduction-related rift origin of the Late Devonian brevenne metavolcanics, Massif Central (France). Contrib. Mineral. Petrol. 1997, 129, 222–238. [Google Scholar] [CrossRef]
- Hildreth, W.E.; Halliday, A.N.; Christiansen, R.L. Isotopic and chemical evidence concerning the genesis and contamination of basaltic and rhyolitic magma beneath the Yellowstone Plateau Volcanic Field. J. Petrol. 1991, 32, 63–138. [Google Scholar] [CrossRef]
- Eby, G.N. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications. Geology 1992, 20, 641–644. [Google Scholar] [CrossRef]
- Turner, S.; Sandiford, M.; Foden, J. Some geodynamic and compositional constraints on “postorogenic” magmatism. Geology 1992, 20, 931–934. [Google Scholar] [CrossRef]
- Frost, C.D.; Frost, B.R.; Chamberlain, K.R.; Edwards, B.R. Petrogenesis of the 1.43 Ga Sherman batholith, SE Wyoming, USA: A reduced, rapakivi-type anorogenic granite. J. Petrol. 1999, 40, 1771–1802. [Google Scholar] [CrossRef]
- Bonin, B. Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting, mantle and crustal, sources? A review. Lithos 2004, 78, 1–24. [Google Scholar] [CrossRef]
- Han, B.F. Diverse post-collisional granitoids and their tectonic setting discrimination. Earth Sci. Front. 2007, 14, 64–72, (In Chinese with English Abstract). [Google Scholar]
- Barbarin, B. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos 1999, 46, 605–626. [Google Scholar] [CrossRef]
- Von Blanckenburg, F.; Davies, J.H. Slab breakoff: A model for syncollisional magmatism and tectonics in the Alps. Tectonics 1995, 14, 120–131. [Google Scholar] [CrossRef]
- Zhang, S.H.; Zhao, Y.; Kroner, A.; Liu, X.M.; Xie, L.W.; Chen, F.K. Early Permian plutons from the northern North China Block: Constraints on continental arc evolution and convergent margin magmatism related to the Central Asian Orogenic Belt. Int. J. Earth Sci. 2009, 98, 1441–1467. [Google Scholar] [CrossRef]
- Sun, Y.W.; Ding, H.S.; Liu, H.; Zhang, D.J.; Gong, F.H.; Zheng, Y.J. Fossil plants from the Guadalupian Yujiabeigou Formation in the north margin of North China Plate and their tectonic implications. J. Jilin Univ. 2016, 46, 1268–1283, (In Chinese with English Abstract). [Google Scholar]
- Huang, B.H.; Ding, Q.H. The angara flora from Northern China. Acta Geosci. Sin. 1998, 19, 97–104, (In Chinese with English Abstract). [Google Scholar]
- Shi, Y.; Shi, S.S.; Liu, Z.H.; Liu, J.; Ju, N.; You, H.X.; Zhang, Z.B.; Zhao, C.Q. Petrogenesis of the late Early Palaeozoic adakitic granitoids in the southern margin of the Songliao Basin, NE China: Implications for the subduction of the Palaeo-Asian Ocean. Geol. J. 2019, 54, 3821–3839. [Google Scholar] [CrossRef]
- Miao, L.C.; Zhang, F.Q.; Fan, W.M.; Liu, D.Y. Phanerozoic evolution of the Inner Mongolia-Daxinganling Orogenic Belt in North China: Constraints from geochronology of ophiolites and associated formations. Geol. Soc. Lond. Spec. Publ. 2007, 280, 223–237. [Google Scholar] [CrossRef]
Sample No. | Name of Intrusion | Lithology | GPS Location | |
---|---|---|---|---|
PM210-12-1 | Daluobogou pluton | monzogranite | 119°41′28″ | 42°00′06″ |
PM105-2-2 | Aohan Banner pluton | fine-grained biotite monzogranite | 119°52′48″ | 42°17′58″ |
D3038 | Daluobogou pluton | medium-grained monzogranite | 119°51′53″ | 41°59′40″ |
PM302-7-1 | Xiaodonghuang pluton | porphyry monzogranite | 119°05′29″ | 42°19′21″ |
D5695 | Beizifu pluton | medium-grained monzogranite | 119°18′44″ | 42°07′51″ |
T310 | Erdaogou pluton | medium-grained monzogranite | 119°47′35″ | 42°18′50″ |
PM401-17-1 | Qixieyingzi pluton | medium-grained syenogranite | 119°08′56″ | 42°01′34″ |
PM305-21-1 | Shangchaoyanggou pluton | monzogranite | 119°42′24″ | 42°07′17″ |
Order | Sample | Pluton | Lithology | Age (Ma) | Method | References |
---|---|---|---|---|---|---|
1 | 14CH10 | Jianshanzi | Monzogranite | 294 ± 2 | LA-ICPMS | [22] |
2 | 14CH24 | Mingshan | Granodiorite | 284 ± 2 | LA-ICPMS | [22] |
3 | PM210-12-1 | Daluobogou | Monzogranite | 269 ± 1 | LA-ICPMS | This study |
4 | PM105-2-2 | Aohan Banner | Monzogranite | 268 ± 3 | LA-ICPMS | This study |
5 | D3038 | Daluobogou | Monzogranite | 260 ± 4 | LA-ICPMS | This study |
6 | PM302-7-1 | Xiaodonghuang | Monzogranite | 260 ± 5 | LA-ICPMS | This study |
7 | D5695-1 | Beizifu | Monzogranite | 260 ± 1 | LA-ICPMS | This study |
8 | Sidaogou | Syenogranite | 267 ± 5 | LA-ICPMS | Inner Mongolia 1:250,000 Chifeng regional geological survey | |
9 | Jianshanzi | Monzogranite | 263 ± 2 | LA-ICPMS | ||
10 | Majiadi | Granite | 274 ± 4 | LA-ICPMS | ||
11 | Zhaojiawopu | Diorite | 253 ± 3 | LA-ICPMS | ||
12 | PM305-21-1 | Shangchaoyanggou | Granodiorite | 256 ± 1 | LA-ICPMS | This study |
13 | PM401-17-1 | Qixieyingzi | Syenogranite | 255 ± 2 | LA-ICPMS | This study |
14 | T310 | Erdaohou | Monzogranite | 254 ± 2 | LA-ICPMS | This study |
15 | T101 | Mengguyingzi | Granodiorite | 251 ± 4 | LA-ICPMS | [8] |
16 | D2711-1 | Xiaxinjing | Monzogranite | 250 ± 2 | LA-ICPMS | [8] |
17 | PM210-6-1 | Daluobogou | Monzogranite | 248 ± 1 | LA-ICPMS | [8] |
18 | CH2 | Chaihulanzi | Diorite | 257 ± 6 | SHRIMP | [53] |
19 | DJ10-18 | Shuangjingzi | Granite | 278 ± 1 | LA-ICPMS | [54] |
20 | PM003-1 | Mengguyingzi | Granodiorite | 253 ± 3 | LA-ICPMS | [15] |
21 | Dayingzi | Syenogranite | 268 ± 3 | LA-ICPMS | [55] | |
22 | XG01 | Jinchanggouliang | Monzogranite | 250 ± 1 | LA-ICPMS | [40] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Tian, D.; Li, B.; Shi, Y.; Gao, Z.; Tian, Y.; Li, W.; Zhang, C.; Wang, Y. Permian Granitic Plutons from the Northern Margin of the North China Craton: Implications for the Tectonic Evolution of the Central Asian Orogenic Belt. Minerals 2023, 13, 1554. https://doi.org/10.3390/min13121554
Chen J, Tian D, Li B, Shi Y, Gao Z, Tian Y, Li W, Zhang C, Wang Y. Permian Granitic Plutons from the Northern Margin of the North China Craton: Implications for the Tectonic Evolution of the Central Asian Orogenic Belt. Minerals. 2023; 13(12):1554. https://doi.org/10.3390/min13121554
Chicago/Turabian StyleChen, Jingsheng, Dexin Tian, Bin Li, Yi Shi, Zhonghui Gao, Yi Tian, Weiwei Li, Chao Zhang, and Yan Wang. 2023. "Permian Granitic Plutons from the Northern Margin of the North China Craton: Implications for the Tectonic Evolution of the Central Asian Orogenic Belt" Minerals 13, no. 12: 1554. https://doi.org/10.3390/min13121554
APA StyleChen, J., Tian, D., Li, B., Shi, Y., Gao, Z., Tian, Y., Li, W., Zhang, C., & Wang, Y. (2023). Permian Granitic Plutons from the Northern Margin of the North China Craton: Implications for the Tectonic Evolution of the Central Asian Orogenic Belt. Minerals, 13(12), 1554. https://doi.org/10.3390/min13121554