Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (55)

Search Parameters:
Keywords = thaumatin-like proteins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2982 KiB  
Article
Antioxidant Activity of Annurca Apple By-Products at Different Ripening Stages: A Sustainable Valorization Approach
by Pasquale Perrone, Sara Palmieri, Marina Piscopo, Gennaro Lettieri, Fabiola Eugelio, Federico Fanti and Stefania D’Angelo
Antioxidants 2025, 14(8), 941; https://doi.org/10.3390/antiox14080941 (registering DOI) - 30 Jul 2025
Viewed by 259
Abstract
This study explores the sustainable valorization of Annurca apple by-products by examining the polyphenolic content and antioxidant activity of peel, flesh, and core at two ripening stages. Ripening significantly enhanced the concentration of bioactive compounds, particularly in the peel, where total polyphenols increased [...] Read more.
This study explores the sustainable valorization of Annurca apple by-products by examining the polyphenolic content and antioxidant activity of peel, flesh, and core at two ripening stages. Ripening significantly enhanced the concentration of bioactive compounds, particularly in the peel, where total polyphenols increased from 124.4 to 423.3 mg of CAE/100 g FW, flavonoids from 18.2 to 51.3 mg of quercetin equivalents, and ortho-diphenols from 11.9 to 36.1 mg of CAE. The flesh and core showed more moderate increases. Antioxidant activity, assessed using five in vitro assays (DPPH, ABTS, FRAP, TAC, and H2O2), was consistently highest in the peel, especially in the ABTS assay. Although the flesh had fewer phenolics, it showed a 1.5-fold increase during ripening, accompanied by improved antioxidant performance. The core also proved notable antioxidant potential, particularly in ripe samples. UHPLC-MS/MS analysis identified 11 phenolic compounds, showing tissue- and ripening-specific distribution. SDS-PAGE revealed a ripening-related increase in Thaumatin-like Protein 1a (TLP1a), especially in the core and flesh. Its association with tissues showing high antioxidant ability suggests a possible role in enhancing the bioactivity of polyphenol-rich extracts. From an agri-food waste valorization perspective, the peel and core represent promising sources of bioactive compounds for developing functional foods and nutraceuticals. Full article
Show Figures

Graphical abstract

11 pages, 2386 KiB  
Article
Genome-Wide In Silico Analysis Expanding the Potential Allergen Repertoire of Mango (Mangifera indica L.)
by Amit Singh, Aayan Zarif, Annelise N Huynh, Zhibo Yang and Nagib Ahsan
Appl. Sci. 2025, 15(15), 8375; https://doi.org/10.3390/app15158375 - 28 Jul 2025
Viewed by 257
Abstract
The potential of a protein to cause an allergic reaction is often assessed using a variety of computational techniques. Leveraging advances in high-throughput protein sequence data coupled with in silico or computational methods can be used to systematically analyze large proteomes for allergenic [...] Read more.
The potential of a protein to cause an allergic reaction is often assessed using a variety of computational techniques. Leveraging advances in high-throughput protein sequence data coupled with in silico or computational methods can be used to systematically analyze large proteomes for allergenic potential. Despite mango’s widespread consumption and growing clinical reports of hypersensitivity, the full extent of their allergenicity is yet unknown. In this study, for the first time, we conducted a genome-wide in silico analysis by analyzing a total of 54,010 protein sequences to identify the complete spectrum of potential mango allergens. These proteins were analyzed using various bioinformatics tools to predict their allergenic potential based on sequence similarity, structural features, and known allergen databases. In addition to the known mango allergens, including Man i 1, Man i 2, and Man i 3, our findings demonstrated that several isoforms of cysteine protease, non-specific lipid-transfer protein (LTP), legumin B-like, 11S globulin, vicilin, thaumatin-like protein, and ervatamin-B family proteins exhibited strong allergenic potential, with >80% 3D epitope identity, >70% linear 80 aa window identity, and matching with >80 known allergens. Thus, a genome-wide in silico study provided a comprehensive profile of the possible mango allergome, which could help identify the low-allergen-containing mango cultivars and aid in the development of accurate assays for variety-specific allergic reactions. Full article
(This article belongs to the Special Issue New Diagnostic and Therapeutic Approaches in Food Allergy)
Show Figures

Figure 1

14 pages, 3131 KiB  
Article
A Bxtlp Gene Affects the Pathogenicity of Bursaphelenchus xylophilus
by Shuisong Liu, Qunqun Guo, Ziyun Huang, Wentao Feng, Yingying Zhang, Wenying Zhao, Ronggui Li and Guicai Du
Forests 2025, 16(7), 1122; https://doi.org/10.3390/f16071122 - 7 Jul 2025
Viewed by 263
Abstract
Pine wilt disease (PWD), a destructive pine forest disease caused by pine wood nematode (PWN), Bursaphelenchus xylophilus, has led to huge economic losses and ecological environment damage. Thaumatin-like proteins (TLPs) are the products of a complex gene family involved in host defense [...] Read more.
Pine wilt disease (PWD), a destructive pine forest disease caused by pine wood nematode (PWN), Bursaphelenchus xylophilus, has led to huge economic losses and ecological environment damage. Thaumatin-like proteins (TLPs) are the products of a complex gene family involved in host defense and a wide range of developmental processes in fungi, plants, and animals. In this study, a tlp gene of B. xylophilus (Bxtlp) (GenBank: OQ863020.1) was amplified via PCR and cloned into the expression vector pET-15b to construct the recombinant vector PET-15b-Bxtlp, which was then transformed into Escherichia coli BL-21(DE3). The recombinant protein was successfully purified using Ni-NTA affinity chromatography. The effect of the Bxtlp gene on the vitality and pathogenicity of PWNs was elucidated through RNA interference (RNAi) and overexpression. Bxtlp dsRNA significantly reduced the feeding, motility, spawning, and reproduction abilities of PWN; shortened its lifespan; and increased the female–male ratio. In contrast, the recombinant BxTLP markedly enhanced the reproductive ability of PWN. In addition, Bxtlp dsRNA increased reactive oxygen species (ROS) content in nematodes, while the recombinant BxTLP was confirmed to have antioxidant capacity in vitro. Furthermore, the bioassays on Pinus thunbergii saplings demonstrated that Bxtlp could significantly influence PWN pathogenicity. Overall, we speculate that Bxtlp affects the pathogenicity of PWNs mainly via regulating ROS levels, the motility, and hatching of PWN. Full article
(This article belongs to the Section Forest Health)
Show Figures

Figure 1

18 pages, 7932 KiB  
Article
Characterization of Thaumatin-like Gene Family Reveals Group V CaTLPs Drive Anthracnose Resistance in Pepper (Capsicum annuum)
by Hao Wu, Jian Zeng, Cui Mao, Weifeng Huang, Chuanhong Li, Liya Yang, Xiaohan Zhang, Jiaxian Lin, Jianjun Lei, Yong Zhou, Zhangsheng Zhu and Jie Zheng
Horticulturae 2025, 11(6), 703; https://doi.org/10.3390/horticulturae11060703 - 18 Jun 2025
Viewed by 536
Abstract
Pepper anthracnose is a globally devastating fungal disease caused by Colletotrichum spp. In this study, we explored the molecular mechanisms underlying anthracnose resistance in Capsicum annuum by comparing a resistant variety 225 with a susceptible variety 307. Phenotypic analysis revealed that variety 225 [...] Read more.
Pepper anthracnose is a globally devastating fungal disease caused by Colletotrichum spp. In this study, we explored the molecular mechanisms underlying anthracnose resistance in Capsicum annuum by comparing a resistant variety 225 with a susceptible variety 307. Phenotypic analysis revealed that variety 225 displayed stronger resistance than variety 307. Through comparative transcriptome analysis and weighted gene co-expression network analysis (WGCNA), 17 gene modules were identified, among which the salmon module showed a strong association with resistance in variety 225. Within this module, 18 hub genes—including Ca59V2g00372.1 (CaTLP6), encoding a thaumatin-like protein (TLP)—were significantly upregulated upon infection. A genome-wide analysis identified 31 CaTLP genes in C. annuum, with members of group V (such as CaTLP6) exhibiting induced expression post-inoculation of Colletotrichum scovillei. Subcellular localization analysis indicated that group V CaTLP proteins were associated with the plasma membrane, suggesting a role in pathogen recognition. These findings highlight the significance of CaTLP genes, particularly those in group V, in pepper’s defense against anthracnose caused by C. scovillei and offer promising targets for breeding resistant cultivars. Full article
Show Figures

Figure 1

16 pages, 5075 KiB  
Article
Thaumatin-like Gene TLP1b Confers to Seed Oil Content and Resistance to Sclerotinia sclerotiorum in Arabidopsis
by Jinghang Liao, Shucheng Qi, Hong Huang, Hongmei Liao, Yixin Cui, Zhi Liu, Wei Qian and Hongli Dong
Int. J. Mol. Sci. 2025, 26(5), 1930; https://doi.org/10.3390/ijms26051930 - 24 Feb 2025
Viewed by 739
Abstract
The synergistic optimization of yield and abiotic/biotic resistance is of great significance in plant breeding. However, the genomic mechanisms underlying the selection for environmental adaptation and yield-related traits remain poorly understood. In this study, we identified a thaumatin-like protein (TLP), AtTLP1b, which was [...] Read more.
The synergistic optimization of yield and abiotic/biotic resistance is of great significance in plant breeding. However, the genomic mechanisms underlying the selection for environmental adaptation and yield-related traits remain poorly understood. In this study, we identified a thaumatin-like protein (TLP), AtTLP1b, which was shown to pleiotropically regulate seed oil content and resistance to Sclerotinia sclerotiorum by gene knockout and overexpressing experiments in Arabidopsis. The oil composition oleic acid (C18:1), linoleic acid (C18:2), linolenic acid (C18:3) and eicosenoic acid (C20:1) were altered significantly in overexpressing and knockout lines. RNA-seq analysis revealed that overexpression of AtTLP1b significantly downregulated the expression levels of genes involved in wax, suberin synthesis, oxylipin metabolism and plant–pathogen interaction. Furthermore, more than half of the genes involved in the circadian rhythm–plant pathway were differentially expressed in the overexpressing lines. We propose that AtTLP1b primarily inhibits fatty acid synthesis and plant immune responses via the circadian rhythm–plant pathway. Our findings suggest that AtTLP1b plays a vital role in simultaneous improvement of seed oil content and resistance to S. sclerotiorum and provides a valuable resource for molecular breeding. Full article
(This article belongs to the Special Issue Crop Stress Biology and Molecular Breeding: 4th Edition)
Show Figures

Figure 1

11 pages, 1075 KiB  
Review
Allergy to Thaumatin-like Proteins—What Do We Know?
by Magdalena Rydzyńska, Zbigniew Bartuzi, Tomasz Rosada, Magdalena Grześk-Kaczyńska and Natalia Ukleja-Sokołowska
Foods 2025, 14(4), 543; https://doi.org/10.3390/foods14040543 - 7 Feb 2025
Viewed by 1433
Abstract
Thaumatin-like proteins (TLPs) are a class of allergens that are predominantly found in fruits. These proteins are involved in plant defense mechanisms and exhibit antifungal activity. TLPs are classified as pathogenesis-related proteins (PR-5) and are typically synthesized in response to biotic stress, such [...] Read more.
Thaumatin-like proteins (TLPs) are a class of allergens that are predominantly found in fruits. These proteins are involved in plant defense mechanisms and exhibit antifungal activity. TLPs are classified as pathogenesis-related proteins (PR-5) and are typically synthesized in response to biotic stress, such as pathogen attacks. Sensitization to TLPs can result in a broad spectrum of allergic reactions, ranging from localized symptoms, such as oral allergy syndrome, to severe manifestations, including anaphylaxis. Key allergens within this group include Mal d 2 (apple), Pru p 2 (peach), and Pru av 2 (cherry). The list of allergens belonging to the TLP protein group continues to expand with newly discovered molecules. Diagnostic approaches for TLP allergies remain limited. Allergen component-resolved diagnostics can detect specific TLPs. The epidemiology of TLP-induced allergies is underexplored, and further research is needed to elucidate the prevalence, natural course, and clinical outcomes of these allergic conditions. Full article
Show Figures

Figure 1

35 pages, 2813 KiB  
Article
Effects of Saccharomyces paradoxus Fermentation on White Wine Composition: Insights from Integrated Standard and Metabolomics Approaches
by Igor Lukić, Doris Delač Salopek, Ivana Horvat, Igor Pasković, Ana Hranilović, Ivana Rajnović, Tanja Vojvoda Zeljko, Silvia Carlin and Urska Vrhovsek
Appl. Sci. 2024, 14(23), 11362; https://doi.org/10.3390/app142311362 - 5 Dec 2024
Viewed by 1481
Abstract
Despite its promising potential, the capabilities of Saccharomyces paradoxus in commercial winemaking are still unutilized and require further investigation. In this study, the effects of fermentation by a S. paradoxus strain P01-161 on the composition of Malvazija istarska white wine in two harvest [...] Read more.
Despite its promising potential, the capabilities of Saccharomyces paradoxus in commercial winemaking are still unutilized and require further investigation. In this study, the effects of fermentation by a S. paradoxus strain P01-161 on the composition of Malvazija istarska white wine in two harvest years were investigated. A range of complementary standard and metabolomics analysis approaches were applied, including OIV methods for basic parameters; HPLC-DAD-RI for organic acids, glycerol, and proteins; UPLC/MS/MS for phenolic compounds; and GC/FID, GC/MS, and GC × GC/TOF-MS for volatile compounds. The harvest year exhibited a significant impact, but many distinctive traits of S. paradoxus versus S. cerevisiae control wines were consistent across the seasons. These included reductions in malic acid and certain phenols and pathogenesis-related proteins. Saccharomyces paradoxus fermentation yielded higher levels of glycerol, volatile acidity, and specific thaumatin-like proteins. Among a total of 474 identified volatile compounds, S. paradoxus exhibited lower concentrations of several odoriferous alcohols, acids, and esters, as well as higher concentrations of β-damascenone, acetaldehyde, isobutyric acid, ethyl 2-methylbutyrate, ethyl acetate, isobutyl acetate, various esters of succinic and lactic acids, accompanied by numerous minor compounds, when compared to S. cerevisiae. These differences suggest the potential for distinct sensory profiles produced by the two yeasts, indicating that S. paradoxus could be a promising alternative for white wine production. Full article
Show Figures

Figure 1

23 pages, 960 KiB  
Article
Genome-Wide Identification and Stress Responses of Cowpea Thaumatin-like Proteins: A Comprehensive Analysis
by Carolline de Jesús-Pires, José Ribamar Costa Ferreira-Neto, Roberta Lane de Oliveira-Silva, Jéssica Barboza da Silva, Manassés Daniel da Silva, Antônio Félix da Costa and Ana Maria Benko-Iseppon
Plants 2024, 13(22), 3245; https://doi.org/10.3390/plants13223245 - 19 Nov 2024
Cited by 2 | Viewed by 1311
Abstract
Cowpea (Vigna unguiculata (L.) Walp.) is an important legume cultivated mainly in regions with limited water availability across the African and American continents. Its productivity is significantly affected by environmental stresses. Thaumatin-like proteins (TLPs), which belong to the PR-5 (pathogenesis-related 5) protein family, [...] Read more.
Cowpea (Vigna unguiculata (L.) Walp.) is an important legume cultivated mainly in regions with limited water availability across the African and American continents. Its productivity is significantly affected by environmental stresses. Thaumatin-like proteins (TLPs), which belong to the PR-5 (pathogenesis-related 5) protein family, are known to be responsive to both biotic and abiotic stresses. However, their role remains controversial, with some TLPs associated with plant defense (particularly against fungal infections) and others associated with abiotic stresses response. In this study, we evaluated the structural diversity and gene expression of TLPs in cowpea (VuTLPs) under different stress conditions, including biotic [mechanical injury followed by inoculation with Cowpea Aphid-borne Mosaic Virus (CABMV) or Cowpea Severe Mosaic Virus (CPSMV)] and abiotic (root dehydration). Genomic anchoring of VuTLPs revealed 34 loci encoding these proteins. Neighbor- joining analysis clustered the VuTLPs into three distinct groups. We identified 15 segmental duplication and 6 tandem duplication gene pairs, with the majority of VuTLP genes found to be under purifying selection. Promoter analysis associated VuTLPs with bHLH, Dof-type, and MYB- related transcription factors, supporting their diverse roles. Diversity in VuTLP function was also observed in their expression profiles under the studied stress conditions. Gene expression data showed that most VuTLPs are recruited within the first minutes after biotic stress imposition. For the root dehydration assay, the most transcripts were up-regulated 150 min post-stress. Moreover, the gene expression data suggested that VuTLPs exhibit functional specialization depending on the stress condition, highlighting their diverse roles and biotechnological potential. Full article
Show Figures

Figure 1

24 pages, 9066 KiB  
Article
Genome-Wide Identification and Expression Analyses of the Thaumatin-Like Protein Gene Family in Tetragonia tetragonoides (Pall.) Kuntze Reveal Their Functions in Abiotic Stress Responses
by Zengwang Huang, Qianqian Ding, Zhengfeng Wang, Shuguang Jian and Mei Zhang
Plants 2024, 13(17), 2355; https://doi.org/10.3390/plants13172355 - 23 Aug 2024
Cited by 1 | Viewed by 1434
Abstract
Thaumatin-like proteins (TLPs), including osmotins, are multifunctional proteins related to plant biotic and abiotic stress responses. TLPs are often present as large multigene families. Tetragonia tetragonoides (Pall.) Kuntze (Aizoaceae, 2n = 2x = 32), a vegetable used in both food and [...] Read more.
Thaumatin-like proteins (TLPs), including osmotins, are multifunctional proteins related to plant biotic and abiotic stress responses. TLPs are often present as large multigene families. Tetragonia tetragonoides (Pall.) Kuntze (Aizoaceae, 2n = 2x = 32), a vegetable used in both food and medicine, is a halophyte that is widely distributed in the coastal areas of the tropics and subtropics. Saline–alkaline soils and drought are two major abiotic stress factors significantly affecting the distribution of tropical coastal plants. The expression of stress resistance genes would help to alleviate the cellular damage caused by abiotic stress factors such as high temperature, salinity–alkalinity, and drought. This study aimed to better understand the functions of TLPs in the natural ecological adaptability of T. tetragonoides to harsh habitats. In the present study, we used bioinformatics approaches to identify 37 TtTLP genes as gene family members in the T. tetragonoides genome, with the purpose of understanding their roles in different developmental processes and the adaptation to harsh growth conditions in tropical coral regions. All of the TtTLPs were irregularly distributed across 32 chromosomes, and these gene family members were examined for conserved motifs of their coding proteins and gene structure. Expression analysis based on RNA sequencing and subsequent qRT-PCR showed that the transcripts of some TtTLPs were decreased or accumulated with tissue specificity, and under environmental stress challenges, multiple TtTLPs exhibited changeable expression patterns at short (2 h), long (48 h), or both stages. The expression pattern changes in TtTLPs provided a more comprehensive overview of this gene family being involved in multiple abiotic stress responses. Furthermore, several TtTLP genes were cloned and functionally identified using the yeast expression system. These findings not only increase our understanding of the role that TLPs play in mediating halophyte adaptation to extreme environments but also improve our knowledge of plant TLP evolution. This study also provides a basis and reference for future research on the roles of plant TLPs in stress tolerance and ecological environment suitability. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

13 pages, 2894 KiB  
Article
Effector Pt9226 from Puccinia triticina Presents a Virulence Role in Wheat Line TcLr15
by Bingxue Wang, Jiaying Chang, Johannes Mapuranga, Chenguang Zhao, Yanhui Wu, Yue Qi, Shengliang Yuan, Na Zhang and Wenxiang Yang
Microorganisms 2024, 12(8), 1723; https://doi.org/10.3390/microorganisms12081723 - 21 Aug 2024
Cited by 3 | Viewed by 1456
Abstract
Effectors are considered to be virulence factors secreted by pathogens, which play an important role during host-pathogen interactions. In this study, the candidate effector Pt9226 was cloned from genomic DNA of Puccinia triticina (Pt) pathotype THTT, and there were six exons [...] Read more.
Effectors are considered to be virulence factors secreted by pathogens, which play an important role during host-pathogen interactions. In this study, the candidate effector Pt9226 was cloned from genomic DNA of Puccinia triticina (Pt) pathotype THTT, and there were six exons and five introns in the 877 bp sequence, with the corresponding open reading frame of 447 bp in length, encoding a protein of 148 amino acids. There was only one polymorphic locus of I142V among the six Pt pathotypes analyzed. Bioinformatics analysis showed that Pt9226 had 96.46% homology with the hypothetical putative protein PTTG_26361 (OAV96349.1) in the Pt pathotype BBBD. RT-qPCR analyses showed that the expression of Pt9226 was induced after Pt inoculation, with a peak at 36 hpi, which was 20 times higher than the initial expression at 0 hpi, and another high expression was observed at 96 hpi. No secretory function was detected for the Pt9226-predicted signal peptide. The subcellular localization of Pt9226Δsp-GFP was found to be multiple, localized in the tobacco leaves. Pt9226 could inhibit programmed cell death (PCD) induced by BAX/INF1 in tobacco as well as DC3000-induced PCD in wheat. The transient expression of Pt9226 in 26 wheat near-isogenic lines (NILs) by a bacterial type III secretion system of Pseudomonas fluorescens EtHAn suppressed callose accumulation triggered by Ethan in wheat near-isogenic lines TcLr15, TcLr25, and TcLr30, and it also suppressed the ROS accumulation in TcLr15. RT-qPCR analysis showed that the expression of genes coded for pathogenesis-related protein TaPR1, TaPR2, and thaumatin-like protein TaTLP1, were suppressed, while the expression of PtEF-1α was induced, with 1.6 times at 72 h post inoculation, and TaSOD was induced only at 24 and 48 h compared with the control, when the Pt pathotype THTT was inoculated on a transient expression of Pt9226 in wheat TcLr15. Combining all above, Pt9226 acts as a virulence effector in the interaction between the Pt pathotype THTT and wheat. Full article
(This article belongs to the Special Issue Molecular Interactions between Plant Pathogens and Crops)
Show Figures

Figure 1

19 pages, 2771 KiB  
Article
The Influence of Chitosan Derivatives in Combination with Bacillus subtilis Bacteria on the Development of Systemic Resistance in Potato Plants with Viral Infection and Drought
by Liubov Yarullina, Joanna Kalatskaja, Vyacheslav Tsvetkov, Guzel Burkhanova, Ninel Yalouskaya, Katerina Rybinskaya, Evgenia Zaikina, Ekaterina Cherepanova, Kseniya Hileuskaya and Viktoryia Nikalaichuk
Plants 2024, 13(16), 2210; https://doi.org/10.3390/plants13162210 - 9 Aug 2024
Cited by 5 | Viewed by 1877
Abstract
Viral diseases of potatoes are among the main problems causing deterioration in the quality of tubers and loss of yield. The growth and development of potato plants largely depend on soil moisture. Prevention strategies require comprehensive protection against pathogens and abiotic stresses, including [...] Read more.
Viral diseases of potatoes are among the main problems causing deterioration in the quality of tubers and loss of yield. The growth and development of potato plants largely depend on soil moisture. Prevention strategies require comprehensive protection against pathogens and abiotic stresses, including modeling the beneficial microbiome of agroecosystems combining microorganisms and immunostimulants. Chitosan and its derivatives have great potential for use in agricultural engineering due to their ability to induce plant immune responses. The effect of chitosan conjugate with caffeic acid (ChCA) in combination with Bacillus subtilis 47 on the transcriptional activity of PR protein genes and changes in the proteome of potato plants during potato virus Y (PVY) infection and drought was studied. The mechanisms of increasing the resistance of potato plants to PVY and lack of moisture are associated with the activation of transcription of genes encoding PR proteins: the main protective protein (PR-1), chitinase (PR-3), thaumatin-like protein (PR-5), protease inhibitor (PR-6), peroxidase (PR-9), and ribonuclease (PR-10), as well as qualitative and quantitative changes in the plant proteome. The revealed activation of the expression of marker genes of systemic acquired resistance and induced systemic resistance under the influence of combined treatment with B. subtilis and chitosan conjugate indicate that, in potato plants, the formation of resistance to viral infection in drought conditions proceeds synergistically. By two-dimensional electrophoresis of S. tuberosum leaf proteins followed by MALDI-TOF analysis, 10 proteins were identified, the content and composition of which differed depending on the experiment variant. In infected plants treated with ChCA, the synthesis of proteinaceous RNase P 1 and oxygen-evolving enhancer protein 2 was enhanced in conditions of normal humidity, and 20 kDa chaperonin and TMV resistance protein N-like was enhanced in conditions of lack of moisture. The virus coat proteins were detected, which intensively accumulated in the leaves of plants infected with potato Y-virus. ChCA treatment reduced the content of these proteins in the leaves, and in plants treated with ChCA in combination with Bacillus subtilis, viral proteins were not detected at all, both in conditions of normal humidity and lack of moisture, which suggests the promising use of chitosan derivatives in combination with B. subtilis bacteria in the regulation of plant resistance. Full article
(This article belongs to the Special Issue The Role of Signaling Molecules in Plant Stress Tolerance)
Show Figures

Figure 1

19 pages, 2950 KiB  
Article
Molecular Mapping and Transfer of Quantitative Trait Loci (QTL) for Sheath Blight Resistance from Wild Rice Oryza nivara to Cultivated Rice (Oryza sativa L.)
by Kumari Neelam, Sumit Kumar Aggarwal, Saundarya Kumari, Kishor Kumar, Amandeep Kaur, Ankita Babbar, Jagjeet Singh Lore, Rupinder Kaur, Renu Khanna, Yogesh Vikal and Kuldeep Singh
Genes 2024, 15(7), 919; https://doi.org/10.3390/genes15070919 - 14 Jul 2024
Cited by 1 | Viewed by 2175
Abstract
Sheath blight (ShB) is the most serious disease of rice (Oryza sativa L.), caused by the soil-borne fungus Rhizoctonia solani Kühn (R. solani). It poses a significant threat to global rice productivity, resulting in approximately 50% annual yield loss. Managing [...] Read more.
Sheath blight (ShB) is the most serious disease of rice (Oryza sativa L.), caused by the soil-borne fungus Rhizoctonia solani Kühn (R. solani). It poses a significant threat to global rice productivity, resulting in approximately 50% annual yield loss. Managing ShB is particularly challenging due to the broad host range of the pathogen, its necrotrophic nature, the emergence of new races, and the limited availability of highly resistant germplasm. In this study, we conducted QTL mapping using an F2 population derived from a cross between a partially resistant accession (IRGC81941A) of Oryza nivara and the susceptible rice cultivar Punjab rice 121 (PR121). Our analysis identified 29 QTLs for ShB resistance, collectively explaining a phenotypic variance ranging from 4.70 to 48.05%. Notably, a cluster of four QTLs (qRLH1.1, qRLH1.2, qRLH1.5, and qRLH1.8) on chromosome 1 consistently exhibit a resistant response against R. solani. These QTLs span from 0.096 to 420.1 Kb on the rice reference genome and contain several important genes, including Ser/Thr protein kinase, auxin-responsive protein, protease inhibitor/seed storage/LTP family protein, MLO domain-containing protein, disease-responsive protein, thaumatin-like protein, Avr9/Cf9-eliciting protein, and various transcription factors. Additionally, simple sequence repeats (SSR) markers RM212 and RM246 linked to these QTLs effectively distinguish resistant and susceptible rice cultivars, showing great promise for marker-assisted selection programs. Furthermore, our study identified pre-breeding lines in the advanced backcrossed population that exhibited superior agronomic traits and sheath blight resistance compared to the recurrent parent. These promising lines hold significant potential for enhancing the sheath blight resistance in elite cultivars through targeted improvement efforts. Full article
(This article belongs to the Special Issue Genetics and Breeding of Rice)
Show Figures

Figure 1

18 pages, 3364 KiB  
Article
The Bursaphelenchus xylophilus Effector BxNMP1 Targets PtTLP-L2 to Mediate PtGLU Promoting Parasitism and Virulence in Pinus thunbergii
by Dan Yang, Lin Rui, Yi-Jun Qiu, Tong-Yue Wen, Jian-Ren Ye and Xiao-Qin Wu
Int. J. Mol. Sci. 2024, 25(13), 7452; https://doi.org/10.3390/ijms25137452 - 7 Jul 2024
Cited by 1 | Viewed by 1500
Abstract
Pinus is an important economic tree species, but pine wilt disease (PWD) seriously threatens the survival of pine trees. PWD caused by Bursaphelenchus xylophilus is a major quarantine disease worldwide that causes significant economic losses. However, more information about its molecular pathogenesis is [...] Read more.
Pinus is an important economic tree species, but pine wilt disease (PWD) seriously threatens the survival of pine trees. PWD caused by Bursaphelenchus xylophilus is a major quarantine disease worldwide that causes significant economic losses. However, more information about its molecular pathogenesis is needed, resulting in a lack of effective prevention and treatment measures. In recent years, effectors have become a hot topic in exploring the molecular pathogenic mechanism of pathogens. Here, we identified a specific effector, BxNMP1, from B. xylophilus. In situ hybridization experiments revealed that BxNMP1 was specifically expressed in dorsal gland cells and intestinal cells, and RT–qPCR experiments revealed that BxNMP1 was upregulated in the early stage of infection. The sequence of BxNMP1 was different in the avirulent strain, and when BxNMP1-silenced B. xylophilus was inoculated into P. thunbergii seedlings, the disease severity significantly decreased. We demonstrated that BxNMP1 interacted with the thaumatin-like protein PtTLP-L2 in P. thunbergii. Additionally, we found that the β-1,3-glucanase PtGLU interacted with PtTLP-L2. Therefore, we hypothesized that BxNMP1 might indirectly interact with PtGLU through PtTLP-L2 as an intermediate mediator. Both targets can respond to infection, and PtTLP-L2 can enhance the resistance of pine trees. Moreover, we detected increased salicylic acid contents in P. thunbergii seedlings inoculated with B. xylophilus when BxNMP1 was silenced or when the PtTLP-L2 recombinant protein was added. In summary, we identified a key virulence effector of PWNs, BxNMP1. It positively regulates the pathogenicity of B. xylophilus and interacts directly with PtTLP-L2 and indirectly with PtGLU. It also inhibits the expression of two targets and the host salicylic acid pathway. This study provides theoretical guidance and a practical basis for controlling PWD and breeding for disease resistance. Full article
(This article belongs to the Section Molecular Toxicology)
Show Figures

Figure 1

19 pages, 10297 KiB  
Article
Genome-Wide Identification of TLP Gene Family in Populus trichocarpa and Functional Characterization of PtTLP6, Preferentially Expressed in Phloem
by Mengjie Guo, Xujun Ma, Shiying Xu, Jiyao Cheng, Wenjing Xu, Nabil Ibrahim Elsheery and Yuxiang Cheng
Int. J. Mol. Sci. 2024, 25(11), 5990; https://doi.org/10.3390/ijms25115990 - 30 May 2024
Cited by 2 | Viewed by 1260
Abstract
Thaumatin-like proteins (TLPs) in plants are involved in diverse biotic and abiotic stresses, including antifungal activity, low temperature, drought, and high salinity. However, the roles of the TLP genes are rarely reported in early flowering. Here, the TLP gene family was identified in [...] Read more.
Thaumatin-like proteins (TLPs) in plants are involved in diverse biotic and abiotic stresses, including antifungal activity, low temperature, drought, and high salinity. However, the roles of the TLP genes are rarely reported in early flowering. Here, the TLP gene family was identified in P. trichocarpa. The 49 PtTLP genes were classified into 10 clusters, and gene structures, conserved motifs, and expression patterns were analyzed in these PtTLP genes. Among 49 PtTLP genes, the PtTLP6 transcription level is preferentially high in stems, and GUS staining signals were mainly detected in the phloem tissues of the PtTLP6pro::GUS transgenic poplars. We generated transgenic Arabidopsis plants overexpressing the PtTLP6 gene, and its overexpression lines showed early flowering phenotypes. However, the expression levels of main flowering regulating genes were not significantly altered in these PtTLP6-overexpressing plants. Our data further showed that overexpression of the PtTLP6 gene led to a reactive oxygen species (ROS) burst in Arabidopsis, which might advance the development process of transgenic plants. In addition, subcellular localization of PtTLP6-fused green fluorescent protein (GFP) was in peroxisome, as suggested by tobacco leaf transient transformation. Overall, this work provides a comprehensive analysis of the TLP gene family in Populus and an insight into the role of TLPs in woody plants. Full article
(This article belongs to the Special Issue Advances in Forest Tree Physiology, Breeding and Genetic Research)
Show Figures

Figure 1

15 pages, 3367 KiB  
Review
Thaumatin-like Proteins in Legumes: Functions and Potential Applications—A Review
by Lanlan Feng, Shaowei Wei and Yin Li
Plants 2024, 13(8), 1124; https://doi.org/10.3390/plants13081124 - 17 Apr 2024
Cited by 11 | Viewed by 3389
Abstract
Thaumatin-like proteins (TLPs) comprise a complex and evolutionarily conserved protein family that participates in host defense and several developmental processes in plants, fungi, and animals. Importantly, TLPs are plant host defense proteins that belong to pathogenesis-related family 5 (PR-5), and growing evidence has [...] Read more.
Thaumatin-like proteins (TLPs) comprise a complex and evolutionarily conserved protein family that participates in host defense and several developmental processes in plants, fungi, and animals. Importantly, TLPs are plant host defense proteins that belong to pathogenesis-related family 5 (PR-5), and growing evidence has demonstrated that they are involved in resistance to a variety of fungal diseases in many crop plants, particularly legumes. Nonetheless, the roles and underlying mechanisms of the TLP family in legumes remain unclear. The present review summarizes recent advances related to the classification, structure, and host resistance of legume TLPs to biotic and abiotic stresses; analyzes and predicts possible protein–protein interactions; and presents their roles in phytohormone response, root nodule formation, and symbiosis. The characteristics of TLPs provide them with broad prospects for plant breeding and other uses. Searching for legume TLP genetic resources and functional genes, and further research on their precise function mechanisms are necessary. Full article
(This article belongs to the Special Issue Molecular Physiology and Biotechnology of Legume Development)
Show Figures

Figure 1

Back to TopTop