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Abstract: Thaumatin-like proteins (TLPs) comprise a complex and evolutionarily conserved protein
family that participates in host defense and several developmental processes in plants, fungi, and
animals. Importantly, TLPs are plant host defense proteins that belong to pathogenesis-related family
5 (PR-5), and growing evidence has demonstrated that they are involved in resistance to a variety of
fungal diseases in many crop plants, particularly legumes. Nonetheless, the roles and underlying
mechanisms of the TLP family in legumes remain unclear. The present review summarizes recent
advances related to the classification, structure, and host resistance of legume TLPs to biotic and
abiotic stresses; analyzes and predicts possible protein–protein interactions; and presents their roles
in phytohormone response, root nodule formation, and symbiosis. The characteristics of TLPs
provide them with broad prospects for plant breeding and other uses. Searching for legume TLP
genetic resources and functional genes, and further research on their precise function mechanisms
are necessary.
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1. Introduction

Given their sessile lifestyle, plants have developed a highly complex defense system
against different threats, including biotic and abiotic stresses [1]. Global environmental
deterioration and pathogen invasions can cause enormous harm to agricultural production.
In both animals and plants, several fungal and fungal-like diseases have caused some of the
most severe die-offs and extinctions ever witnessed in wild species, and this is jeopardizing
food security [2].

Plant pathogenic fungi attack a wide range of crops, but controlling fungal diseases
with fungicides is cost intensive and comes with detrimental effects on the environment [3].
Fungal infection threats can be seen across many sources of data, including a high risk
of biodiversity loss, host extinction, and low food yield and quality [2]. When plants
perceive a pathogenic infection, pathogenesis-related (PR) protein genes are significantly
upregulated, acting as the first line of plant defense [1,2]. A recent study showed that
19 classes of PR proteins can be distinguished based on structural similarity and functional
activity [1,4], of which, thaumatin-like proteins (TLPs)—the homologies of sweet-tasting
thaumatin isolated from the plant Thaumatococcus daniellii—belong to the PR-5 family [5,6].
Growing evidence shows that TLPs are involved in resistance to a variety of fungal diseases
in many species, such as Gossypium hirsutum [7], Gossypium barbadense [8], Solanum lycoper-
sicum [4,9], Phyllostachys edulis [10], Ganoderma lingzhi [11], Triticum aestivum L. [12,13], Carya
cathayensis [14], Fragaria ananassa [15], Allium sativum L. [16], Pinus radiata [17], Lentinula
edodes [18], Camellia sinensis [19], Cucumis melo L. [20], Avena nuda [5], Musa acuminate [21],
Manihot esculenta [22], Vitis amurensis [23], Populus szechuanica [24], Camellia sinensis [25],
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Piper colubrinum [26], Cynanchum komarovii [27], Castanea sativa [28], Actinidia chinensis [29],
and Lyophyllum shimeji [30].

Plant TLPs also play diverse roles in abiotic stresses such as drought [31], freezing [32],
and salinity [33,34]. Computational approaches such as cis-regulatory analysis, promoter
analysis, and co-expressed gene analysis have revealed that TLPs play diverse roles in
abiotic stresses [35]. The transcript levels of TLPs are significantly altered under different
stress conditions. These findings reveal the functional diversity of TLPs throughout the
evolution of genes [36].

Twelve thousand years ago, grain legumes played a crucial role in the development of
Neolithic agriculture [37]. Legumes are a globally important crop for food, oil, forage, and
bioactive components, and are the main source of edible vegetable protein and oil [38–40].
Several phytopathogenic diseases are known to limit legume productivity [41,42]. For
example, soybean rust [43], soybean stay-green disease [44], soybean red leaf blotch dis-
ease [45], pea blight disease [45], peanut rust [46], peanut leaf spot [47], faba bean root
rot [48], and other legume pathogenic diseases are caused by multiple pathogens and are
responsible for severe yield loss. Reports have also demonstrated that the productivity of
legume crops such as soybeans, chickpeas, and peanuts has been inhibited by different
abiotic stresses [49–51].

Legumes are some of the most important food crops, and as such, studying biotic and
abiotic stresses in the TLP families is worthwhile. This review provides a comprehensive
discussion of the research progress regarding TLPs in leguminous plants.

2. Classification and Characteristics of TLPs

TLPs are widely distributed in plants, animals, and fungi [52]. In plants, the thaumatin-
like PR-5 family includes PR-5 proteins; OLPs (osmotin-like proteins); PR-like rash; the
PR5-like protein kinase receptor; and permatins such as zeamation in maize, hordomatin in
barley, and avematin in oats [27,53]. Despite their significant diversity in plants, the amino
acid sequences of TLPs have a well-defined thaumatin family signature (PS00316): G-x-
[GF]-x-C-x-T-[GA]-D-C-x(1,2)-[GQ]-x(2,3)-C [28,33,54]. Furthermore, promoter analysis has
shown that TLPs contain five conserved TFBSs (transcription factor binding sites) called
ASRC, CCAF, L1BX, NCS1, and WBXF [55]. Specifically, ASRC and WBXF are responsible
for pathogen defense, CCAF is associated with the circadian clock, L1BX is a homeodomain
protein recognition motif, and NCS1 is a nodulin consensus sequence.

Furthermore, based on their molecular mass, TLPs can be divided into two types.
Large (L)-type TLPs range from 21 to 26 kD and contain 16 conserved cysteine residues;
most TLPs belong to this type, including TLP-1 to -5 in Medicago truncatula [56], Rj4 in
Glycine max [57], AdTLP in Arachis diogoi [58], and CdTLP in Cassia didymobotrya [59]. Small
(S)-type TLPs have molecular masses ranging from 16 to 17 kD and have only 10 cysteines
in conserved positions because of a peptide deletion [28]. All plant TLPs have similar 3D
structures within three domains: domain I, containing 11 stranded β-sheets organized as a
β-barrel, forming the protein core; domain II, containing an α-helix and a set of disulfide-
rich loops; and domain III, containing a β-hairpin and a coil motif, both maintained by
a disulfide bond [31]. There is a cleft structure between domains I and II [60], and each
domain is stabilized by at least one disulfide bridge connected by up to 16 cysteine residues
with a conserved spatial distribution throughout the protein [61]. Below, AhTLP1 (Arachis
hypogaea TLP1) is used as an example to exhibit the general legume TLP structure (Figure 1).

In addition to similar core domains, one domain is often responsible for localization at
either end of the TLP. The N-terminal signal peptide always targets mature proteins in the
secretory pathway. For instance, CkTLP in Cynanchum komarovii [27] and AdTLP [58] are
located in the extracellular space or cell wall. However, the C-terminal peptide diversifies
the subcellular localization of TLPs. For example, the C-terminal propeptide of tobacco
osmotin is responsible for its vacuolar localization [62]. Rj4 is presumed to be localized in
cell membranes because of a unique transmembrane domain in its C-terminus [57].
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mays, 97 TLPs in Gossypium hirsutum, 78 TLPs in Oryza sativa, 66 TLPs in Nicotiana taba-
cum, and 51 TLPs in Arabidopsis thaliana [48]. In this regard, research on legumes is still 
quite limited. The legume genome is extremely complex, and several TLPs have distinct 
differences. For example, 56 TLPs have been found in Medicago truncatula, and only a 
few MtTLPs have been well studied. However, although research is lacking, a recent 
study suggests that MtTLPs exhibit high antifungal activity [41]. 

3.1. Legume TLPs in Response to Biotic Stresses 
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Figure 1. The protein structure of AhTLP1. (A) The protein structure and eight disulfide bonds of
AhTLP (http://www.ebi.ac.uk./interpro/, accessed on 28 March 2024; http://prosite.expasy.org/,
accessed on 28 March 2024). TM: transmembrane helix; SP: signal peptide; N: N-terminal; C: C-
terminal; c: conserved cysteine involved in a disulfide bond. (B) Three-dimensional structure
of AhTLP1 and thaumatin. The TLP protein family contains three conserved domains: domain
I, containing 11 stranded β-sheets organized as a β-barrel, forming the protein core; domain II,
containing an α-helix and a set of disulfide-rich loops (green balls); and domain III, containing a
β-hairpin and a coil motif, both maintained by a disulfide bond. This image was generated with
PyMOL Molecular Graphics System version 2.2.0 (Schrödinger, LLC, https://pymol.org).

3. Biological Functions of TLPs in Legumes

TLPs in plants have various biological functions including host–pathogen interactions,
stress tolerance, and cell-signaling transduction. They mostly participate in responses to
biotic and abiotic stresses [48]. Therefore, it is believed that there are many plant TLPs,
and several reports confirm this belief. In total, there are 106 TLPs in Zea mays, 97 TLPs
in Gossypium hirsutum, 78 TLPs in Oryza sativa, 66 TLPs in Nicotiana tabacum, and 51 TLPs
in Arabidopsis thaliana [48]. In this regard, research on legumes is still quite limited. The
legume genome is extremely complex, and several TLPs have distinct differences. For
example, 56 TLPs have been found in Medicago truncatula, and only a few MtTLPs have
been well studied. However, although research is lacking, a recent study suggests that
MtTLPs exhibit high antifungal activity [41].

3.1. Legume TLPs in Response to Biotic Stresses

Legume TLPs play important roles in plant defense against various biotic stresses.
In 1999, a legume TLP was first isolated from the French bean (Phaseolus vulgaris L.),
and it exerted antifungal activity against Fusarium oxysporum, Pleurotus ostreatus, and
Coprinus comatus [63]. In recent years, more and more TLPs isolated from plants have
been proven to have potential antifungal activities [28]. In legumes, the CdTLP protein
significantly inhibits fungal strains such as Candida albicans, Candida krusei, and Candida
parapsilosis [59]. AdTLP has strong antifungal activity, and transgenic tobacco plants
expressing AdTLP have shown enhanced resistance to the soil-borne pathogen Rhizoctonia

http://www.ebi.ac.uk./interpro/
http://prosite.expasy.org/
https://pymol.org


Plants 2024, 13, 1124 4 of 15

solani [58]. TLP transcript accumulation was detected after inoculating Medicago truncatula
with Colletotrichum trifolii and Erysiphe pisi [64], and recent experimental evidence shows
that MtTLP1-5 have strong in vitro antifungal activities against Rhizoctonia solani, Alternaria
alternata, Fusarium graminearum, Fusarium solani, Verticillium sp., and Phytophthora spp.; all
five MtTLPs reduce the viability of fungal hyphae and significantly reduce A. alternata
spore germination [56]. Chickpea (Cicer arietinum) cells have been shown to experience
a rapid response in their activated defense-related genes, including a TLP gene, after
treatment with a Pmg (Phytophthora megasperma) elicitor and cantharidin [65]. In addition,
bulked segregant analysis (BSA) has shown that chickpeas also express TLPs for Fusarium
oxysporum resistance [66]. The roles of TLPs in different legumes are summarized in Table 1.

Some TLPs have glucan-binding and glucanase activity, inhibition activity similar to
xylanase, α-amylase, or trypsin. Therefore, they have the potential to weaken the cell walls
of fungi and interfere with the metabolic processes of pathogens or even affect the digestive
ability of insects [28,67,68]. As mentioned above, TLPs contain a conserved motif, and most
plant TLPs are the L-type, with 16 highly conserved cysteine residues. Significantly, the 3D
structures of TLPs consist of three domains, of which, domains I and II possess a special
cleft structure that is crucial for receptor binding and antifungal activity [60]. Specifically,
the cleft between domains I and II is made up of five evolutionarily conserved amino
acids (arginine, glutamic acid, and three aspartic acid residues) and provides an acidic
environment for ligand/receptor binding [61]. Further analysis of this protein superfamily
is still necessary to reveal its underlying pathogen-resistance mechanism.

PR proteins accumulate during the plant’s inducible immunity process under pathogenic
infection conditions [69]. Pathogens attack plants and trigger innate immune responses,
including pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) [70]. Re-
cently, research has shown that host-defense peptides (HDPs) have both direct antimicrobial
and immunomodulatory activity, thus protecting multicellular eukaryotes from infections.
Importantly, two TLPs—sweet potato LbACP (Lpomea batatas anti-cancer peptide) and
European plum (Prunus domestica L.) PdPR5-1—were recently discovered to be HDPs,
and they may provide us with valuable tools for developing phytosanitary products [71].
Regarding legumes, the peanut gene TLP1b is a candidate resistant gene that may be used
to impart an immune response to Aspergillus flavus infections [72]. However, little is known
about legume TLPs in terms of plant immune responses. Future research should clarify
this subject.

3.2. Legume TLPs in Response to Abiotic Stresses

Legume TLPs also protect plants from various abiotic stresses besides biotic invasions.
Research has reported that two TLPs in the faba bean (Vicia faba L.), VfTLP4-3 and VfTLP5,
play important roles in mediating the drought response. These two genes are significantly
upregulated under drought conditions, and confer drought resistance and higher POD
activity when ectopically expressed in tobacco [36]. Soybean osmotins such as GmOLPa,
GmOLPb, and P21e are involved in high-salt stress [33,34]. GmOLPa-like and P21-like
osmotins play important roles in drought tolerance; the former shows higher expression
levels in roots, and both are also expressed in nodules. Their highest expression levels can
be found in the leaves or roots of the drought-tolerant cultivar [31]. The TLP1b gene can
be induced by wounding the Caesalpinioideae Senna tora [73]. The AHCSP33 cold shock
protein is a TLP homologous protein secreted into the leaf apoplasts of peanuts (Arachis
hypogaea) during low-temperature exposure. AHCSP33 acts as a cryoprotecting protein
and can prevent the freeze-induced denaturation of L-lactate dehydrogenase (LDH) [32].
In addition, a rare evergreen broad-leaved leguminous shrub, Ammopiptanthus nanus,
expresses large quantities of TLPs to resist low-temperature stress in inhospitable desert
areas. Most AnTLP genes contain multiple cis-acting elements in promoter regions related
to the environmental stress response, and when heterologously expressed in Escherichia
coli, yeast cells, and tobacco leaves, a cold-induced AnTLP13 can better enhance low-
temperature stress tolerance compared with control cells or seedlings [74]. Moreover, a
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study on cowpeas (Vigna unguiculata) with a supply of excess manganese (Mn) showed
a significant increase in soluble apoplastic proteins, including TLPs, in the apoplastic
washing fluid of leaf tissue, suggesting that these proteins have specific physiological
roles in response to Mn stress [75]. The roles of TLPs resistant to abiotic stress in different
legumes are summarized in Table 1.

Table 1. The function of legume TLPs in response to stresses.

Name Sources Function/Biological Role References

TLP Phaseolus vulgaris Antifungal activity [63]
CdTLP Cassia didymobotrya Antifungal activity [59]
AdTLP Arachis diogoi Antifungal activity [58]
MtTLP Medicago truncatula Antifungal activity [56,64]
TLP Cicer arietinum Phytoalexin response [65,66]
VfTLP4-3, VfTLP5 Vicia faba Drought response [36]
StTLP1b Senna tora Wound response [73]
AHCSP33 Arachis hypogaea Cold response [32]
AnTLPs Ammopiptanthus nanus Cold response [74]
GmOLPa Glycine max Salt response [33,34]
GmOLPb Glycine max Salt response [33,34]
TLP Vigna unguiculata Manganese toxicity response [75]
TLP1b Arachis hypogaea Immune response [72]
GmOLPa-like and
P21-like osmotins Glycine max Drought response [31]

3.3. The Role of TLPs in Phytohormone Responses

Several expression analyses have shown that hormone treatments have an induction
effect on legume TLP gene transcript levels, suggesting that TLPs may have a role in
different hormone responses with significant crosstalk [34,58,76,77]. Cis-acting elements
are commonly identified in the promoter region of TLP genes, including motifs controlling
phytohormone responses such as auxin, abscisic acid (ABA), ethylene (ET), salicylic acid
(SA), jasmonic acid (JA), and gibberellic acid (GA) [74,78,79]. However, there have been
few reports on how TLPs act in hormone signal transduction pathways, and there are even
fewer regarding legumes. One study showed that two osmotin-like proteins bind cytokinin
and its analogs, so they are called cytokinin-binding proteins [80]. It has been suggested
that TLPs might be involved in cytokinin transportation partly because of their extracellular
locations [58,74].

SA and JA are two important defense hormones in plants. SA is generally involved in
defense responses against (hemi-)biotrophic pathogens, while JA is associated with defense
responses against necrotrophic pathogens and herbivorous insects; therefore, the SA and
JA defense pathways are usually antagonistic [78,79]. PR5 is activated as an SA response
gene during the plant–pathogen interaction process [81]. In leguminous TLP genes, SA
and JA are spatiotemporally specific to their induction location, and even the same gene
usually has opposite expression patterns in a single tissue when faced with these two
hormonal stimuli. In soybeans, SA stimulation induces two acidic PR-5 genes, GmOLPa
and P21e, notably increasing GmOLPa levels in the lower leaves. MeJA markedly induces
not only neutral GmOLPb but also P21e in these leaves, but GmOLPa transcription levels
will then be lower [33]. PR-5 genes are SA-responsive genes and respond more strongly to
SA treatments than JA treatments in Medicago truncatula, even though they have similar
expression patterns in response to both hormones [82]. TLP1bs in Senna tora are marker
genes for SA signaling and can be induced via wounds: they appear after 6 h and peak after
24 h. However, JA biosynthesis genes can be strongly induced after 1 h and decrease after
3 h, which is unlike that observed in undamaged leaves. This suggests that JA can affect
TLP1b transcription [73]. Generally, TLP genes are more active in the SA pathway, and their
activities can be affected by protein surface pH levels and other changes. However, more
evidence is needed to support these hypotheses (Figure 2).
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Figure 2. Plant defense mechanisms of TLPs. Plants respond to biotic and abiotic stresses through
several pathways. Under stress conditions, metabolic changes and systemic acquired resistance
(SAR) are quickly stimulated and initiate the expression of PR proteins, including PR5. TLPs are PR5
members, multifunctional proteins that exhibit antifungal activity, glucan-binding activity, glucanase
activity, xylanase inhibitor abilities, cytokinin-binding abilities, and actin-binding abilities. TLPs
contain three domains: I, II, and III. N: N-terminal, C: C-terminal.

3.4. The Role of TLPs in Leguminous Nodulation and Symbiosis

Nitrogen is a component of many important compounds in plants, and it plays a
crucial role in the synthesis of proteins, nucleic acids, and chlorophylls. However, most
plants are unable to directly use atmospheric nitrogen gas. Uniquely, legumes with special
metabolic pathways can form root nodules with nitrogen-fixing bacteria to secure nitrogen
for growth and development [83,84]. Soybean nodulation is controlled by several host
genes referred to as Rj (rj) genes; these include the Rj4 gene, which encodes a thaumatin-like
protein. Rj4 is constitutively expressed in roots, including in root nodules, so it is very
likely that Rj4 is involved in gene-for-gene resistance against specific Bradyrhizobium
strains. These strains are highly competitive for nodulation but have low nitrogen fixation
efficiency; thus, cultivars harboring an Rj4 allele are considered favorable. It is also possible
that Rj4 interacts with rhizobial surface polysaccharides given its glucan-binding and
glucanase activities [57]. The nonmycorrhizal legume white lupin (Lupinus albus) prevents
mycorrhiza infection, and a TLP peptide has been identified from its extracellular protein
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components [85]. TLPs have also been detected in the intercellular fluid and different
tissues of healthy white lupins [86] and in the intercellular washing fluid of chickpea
leaves [87], suggesting that these proteins may have inhibitory effects on symbiosis in
addition to their anti-pathogenic functions.

In one study investigating short-term dynamics in proteomic patterns using con-
tinuous sampling, extrafloral nectar produced by an obligate ant plant (Acacia cornigera)
showed that anabolism involving TLP accumulated in the plant’s nectary directly before
secretion, and it diminished quantitatively after the daily secretion process [88]. This plant
is inhabited by mutualistic ants, and large quantities of TLPs in the biochemically complex
components secreted by its nectary may play a role in its symbiotic relationship with
the insects.

3.5. Prediction of Protein–Protein Interactions in Legume TLPs

Protein–protein interactions in legume TLPs and the metabolic pathways they par-
ticipate in may reflect their biological functions and potential roles. To demonstrate this,
we analyzed protein–protein interactions between a TLP protein from Arachis hypogaea,
AhTLP1 (NCBI accession number: XP_025651708.1) and two soybean TLP proteins, namely
GmOLPa (NCBI accession number: NP_001236405.2) and GmOLPb (NCBI accession num-
ber: NP_001235877.1), using the STRING database (https://cn.string-db.org, accessed on
29 January 2024).

By analyzing the results using association rules and k-means clustering, we found
that the interaction network of AhTLP1 can be divided into two clusters (Figure 3, Table 2).
AhTLP1 may physically interact with 10 proteins, including the TYR_PHOSPHATASE_2
domain-containing protein, protein phosphatase 2C, the cyclic nucleotide-binding/kinase
domain-containing protein, the PlsC domain-containing protein, 1-acyl-sn-glycerol-3-
phosphate acyltransferase, 3-deoxy-D-manno-octulosonic-acid transferase, E3 ubiquitin–
protein ligase, and two uncharacterized proteins. Functional association analyses showed
that AhTLP1 may indirectly interact with another 10 proteins, including Rac-like GTP-
binding protein RAC13, ribonucleoside–diphosphate reductase subunit beta, Clathrin
heavy chain, the beta-adaptin-like protein, the FYVE-type domain-containing protein, the
subunit of adaptor protein complex 2, and the beta-adaptin-like protein.

KEGG pathway analysis has shown that the proteins of cluster 1 mainly participate in
glycerolipid metabolism and glycerophospholipid metabolism because of the following
two proteins: the PlsC domain-containing protein 1-acyl-sn-glycerol-3-phosphate acyltrans-
ferase (which is involved in the formation of phosphatidic acid), a precursor of various mem-
brane phospholipids (PLs); and 3-deoxy-D-manno-octulosonic-acid transferase (involved
in the biosynthesis of lipid A), a phosphorylated glycolipid that anchors the lipopolysac-
charide to the outer membrane of the cell in bacteria [89]. The TYR_PHOSPHATASE_2
domain-containing protein is an enzyme responsible for dephosphorylating phosphor-Tyr
from proteins [90]. Protein phosphatase type 2C functions in the ABA signaling pathway,
which is one of the major signal transduction pathways in abiotic stress responses [91].
E3 ubiquitin–protein ligase transfers ubiquitin and ubiquitin-like proteins through an E2
enzyme to a target substrate, which is the final step of ubiquitination [92]. The AhTLP1’s
interaction network indicates its potential role in different cellular processes. In addition,
KEGG pathway analysis of cluster 2 has shown that there are 12 proteins involved in the
endocytosis pathway. Importantly, one study showed that the thaumatin-like protein CalA
in Aspergillus fumigatus assists this fungal pathogen in invading pulmonary epithelial cells
and vascular endothelial cells by inducing its own endocytosis [93]. The above research
shows that TLPs may play a role in the endocytosis pathway.

https://cn.string-db.org
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Figure 3. Protein–protein interaction predictions for Arachis hypogaea TLP1 analyzed using STRING.
A0A444WUM6: AhTLP1, Arachis hypogaea TLP1; KEGG: Kyoto Encyclopedia of Genes and Genomes.
The thickness of the line indicates the degree of confidence prediction of the interaction.

Table 2. The AhTLP1 protein–protein interacting network information.

Interactions Predicted Interaction Partners Protein Accessions

Direct interaction
with AhTLP1

TYR_PHOSPHATASE_2 domain-containing protein Ahy_A09g042676

Protein phosphatase 2C and cyclic nucleotide-binding/kinase
domain-containing protein Ahy_A05g023223, Ahy_B05g074771

PlsC domain-containing protein Ahy_B10g101660, Ahy_A07g037205

1-acyl-sn-glycerol-3-phosphate acyltransferase Ahy_A07g031308

3-deoxy-D-manno-octulosonic-acid transferase Ahy_A02g009900

E3 ubiquitin–protein ligase Ahy_B06g084168

Uncharacterized protein Ahy_A02g009985, Ahy_B09g095505

Indirect interaction
with AhTLP1

Rac-like GTP-binding protein RAC13 Ahy_B10g101133

Ribonucleoside–diphosphate reductase subunit beta Ahy_B08g089004

Clathrin heavy chain Ahy_B07g088015, Ahy_B09g094835,
Ahy_B07g086972, Ahy_B10g103140

Beta-adaptin-like protein Ahy_B10g105006

FYVE-type domain-containing protein Ahy_B08g090320

Subunit of the adaptor protein complex 2 Ahy_B08g093980

Beta-adaptin-like protein Ahy_B08g091239
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For soybean TLP proteins, analyses of GmOLPa and GmOLPb protein–protein interac-
tions conducted on the STRING database have shown that GmOLPa is involved in sucrose
biosynthetic process peroxisome organization and the carbohydrate metabolic process
(Figure 4A, Table 3). Furthermore, GmOLPb is involved in the sucrose biosynthetic process,
defense responses to other organisms, the carbohydrate metabolic process, responses to
biotic stimuli, and defense responses (Figure 4B, Table 4).

Specifically, our protein–protein interaction analysis revealed that GmOLPa inter-
acts with sucrose–phosphatase 2, Bet_v_1 domain-containing protein, regulatory protein
NPR1, sucrose–phosphatase 1, ribonucleoprotein, the UBIQUITIN_CONJUGAT_2 domain-
containing protein, calmodulin-like protein 1, and the ABC transporter family protein.
Functional association analyses showed that GmOLPa may indirectly interact with an-
other 10 proteins, including the glycosyl hydrolase 31 family, sucrose–phosphate synthase
2, and the peroxisome biogenesis proteins. Moreover, our protein–protein interaction
analysis revealed that GmOLPb interacts with cytochrome P450 family proteins, trypsin
inhibitor A, the Fe2+/Zn2+-regulated transporter, sucrose–phosphatase 1, and the bZIP
transcription factor. The functional association analysis also showed that GmOLPb may
indirectly interact with another 10 proteins, including Tim44 domain-containing proteins,
sucrose–phosphate synthase 2, and the glycosyl hydrolase 31 family. Most importantly, the
nonexpressor of pathogenesis-related genes 1 (NPR1) is a master regulator of SA-mediated
SAR, a broad-spectrum disease-resistance mechanism in plants [94]. Basic leucine zipper
(bZIP) genes encode transcription factors (TFs) that control important biochemical and
physiological processes, including various kinds of abiotic and biotic stress responses, such
as salt responses, drought responses, and pathogen responses in soybean [95–97]. This
might explain why GmOLPs participate in high-salt and drought responses.

The above research shows that legume TLPs may be involved in multiple metabolic
pathways. However, the proteins that interact with TLPs predicted by STRING must
be confirmed through experimental verification to comprehensively explore their poten-
tial functions.
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Table 3. GmOLPa protein–protein interaction network information.

Interactions Predicted Interaction Partners Protein Accessions

Direct interaction
with GmOLPa

Sucrose–phosphatase 2 A0A0R0I3G3, A0A0R0E8K1

Bet_v_1 domain-containing protein I1LP68_SOYBN

Regulatory protein NPR1 A0A0R0IBM0

Sucrose–phosphatase 1 I1L9P5_SOYBN

Ribonucleoprotein C6TEA3_SOYBN

UBIQUITIN_CONJUGAT_2 domain-containing protein I1K9A6_SOYBN

Calmodulin-like protein 1 C6SWC0_SOYBN, C6TAX4_SOYBN

ABC transporter family protein K7LE00_SOYBN

Indirect interaction
with GmOLPa

Glycosyl hydrolase 31 family I1MG74_SOYBN, A0A0R0I6Y6

Sucrose–phosphate synthase 2 I1KY06_SOYBN, I1M6Y2_SOYBN, I1N0X9_SOYBN,
I1KFX9_SOYBN, K7M052_SOYBN, I1MU40_SOYBN

Peroxisome biogenesis protein I1M423_SOYBN, I1LU78_SOYBN

Table 4. GmOLPb protein–protein interaction network information.

Interactions Predicted Interaction Partners Protein Accessions

Direct interaction
with GmOLPb

Cytochrome P450 family protein K7MVY7_SOYBN, A0A0R0GJG3, I1N5Y9_SOYBN,
K7MVY4_SOYBN, A0A0R0EGW1, I1JDB7_SOYBN

Trypsin inhibitor A I1N2Q3_SOYBN

Fe2+/Zn2+ regulated transporter IRT

Sucrose–phosphatase 1 I1L9P5_SOYBN

bZIP transcription factor GmbZIP1

Indirect interaction
with GmOLPb

Tim44 domain-containing protein I1JVJ8_SOYBN, K7LB35_SOYBN

Sucrose–phosphate synthase 2 I1KY06_SOYBN, I1KFX9_SOYBN, I1M6Y2_SOYBN,
K7M052_SOYBN, I1N0X9_SOYBN, I1MU40_SOYBN

Glycosyl hydrolase 31 family A0A0R0I6Y6, I1MG74_SOYBN

4. Potential Biotechnological Applications for Legume TLPs

The antifungal activity and stability of TLPs provide them with broad prospects
for agricultural applications in the pathogen-resistance field. Highly conserved cysteine
residues with disulfide bridge structures in most plant TLPs provide stabilization under
extreme thermal and pH conditions, as well as resistance to protease degradation [98,99].
In addition, TLPs also protect plants from abiotic stresses, including cold, salinity, and
drought [28,100]. These characteristics make TLPs a good source for breeding and plant
transformation aimed at producing better performance under biotic and abiotic stresses.

Research shows that TLPs may play a role in plant herbicide resistance. Transcriptomic
studies of chickpeas using two herbicide-susceptible and -tolerant genotypes exposed to
imidazoline (Imazethapyr) have revealed that gene encoding for thaumatin-like protein-1
shows a five-fold change in differential expression as an effect of herbicide on tolerant plants,
indicating that this TLP can be used for further investigation and association application
studies [101].

Legume TLPs may have wide applications in the human food and pharmaceutical
industries. Antifungal proteins (including TLPs) isolated from the seeds of legume plants
have shown inhibitory activity against enzymes that are essential to the life cycle of human
immunodeficiency virus type 1 (HIV-1); for instance, French bean TLPs have been found to
potently inhibit HIV-1 integrase and reverse transcriptase, as well as low HIV-1 protease
inhibitory activity [102]. Thaumatin has been approved and commercialized as a safe
sweetener and flavor enhancer in food because it is 1600 times sweeter than sucrose on a
weight-to-weight basis [103,104]. As homologies of thaumatin, TLPs can be developed as
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natural flavor modifiers or enhancers, replacing synthetic sweeteners. TLP genes can also
be transferred to vegetables or fruit crops as flavor enhancers [28,105,106]. Exploring the
pharmaceutical and sweet proteins in edible legume plants and their potential applications
is a worthwhile research direction.

5. Perspectives

TLPs are a group of proteins with broad application prospects, but corresponding
in-depth research on this family in leguminous plants remains quite limited. Many va-
rieties of leguminous plants are edible and can be used for chemical industry purposes.
Moreover, recombinant TLP products can be expressed and refined in different bioreactors,
such as bacteria, fungi, and other plants, on account of the antifungal activity of TLPs.
Furthermore, transgenic plants with TLPs have displayed increased activity under biotic
and abiotic stresses. TLPs are valuable candidates for plant breeding. Further research
on the precise mechanisms underlying legume TLP protein regulation, localization, and
function is necessary, especially regarding whether TLPs can degrade fungal glucan, as well
as whether they possess pathogen-associated molecular patterns for cell surface pattern
recognition receptors, which can trigger plant immune responses in extracellular regions.
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