Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = thalamo-cortical projections

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 12609 KiB  
Article
Direct and Indirect Downstream Pathways That Regulate Repulsive Guidance Effects of FGF3 on Developing Thalamocortical Axons
by Kejuan Li, Jiyuan Li, Qingyi Chen, Yuting Dong, Hanqi Gao and Fang Liu
Int. J. Mol. Sci. 2025, 26(15), 7361; https://doi.org/10.3390/ijms26157361 - 30 Jul 2025
Viewed by 202
Abstract
The thalamus is an important sensory relay station. It integrates all somatic sensory pathways (excluding olfaction) and transmits information through thalamic relay neurons before projecting to the cerebral cortex via thalamocortical axons (TCAs). Emerging evidence has shown that FGF3, a member of the [...] Read more.
The thalamus is an important sensory relay station. It integrates all somatic sensory pathways (excluding olfaction) and transmits information through thalamic relay neurons before projecting to the cerebral cortex via thalamocortical axons (TCAs). Emerging evidence has shown that FGF3, a member of the morphogen family, is an axon guidance molecule that repels TCAs away from the hypothalamus and into the internal capsule so that they subsequently reach different regions of the cortex. However, current studies on FGF-mediated axon guidance predominantly focus on phenomenological observations, with limited exploration of the underlying molecular mechanisms. To address this gap, we investigated both direct and indirect downstream signaling pathways mediating FGF3-dependent chemorepulsion of TCAs at later developmental stages. Firstly, we used pharmacological inhibitors to identify the signaling cascade(s) responsible for FGF3-triggered direct chemorepulsion of TCAs, in vitro and in vivo. Our results demonstrate that the PC-PLC pathway is required for FGF3 to directly stimulate the asymmetrical repellent growth of developing TCAs. Then, we found the FGF3-mediated repulsion can be indirectly induced by Slit1 because the addition of FGF3 in the culture media induced an increase in Slit1 expression in the diencephalon. Furthermore, by using downstream inhibitors, we found that the indirect repulsive effect of FGF3 is mediated through the PI3K downstream pathway of FGFR1. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

20 pages, 1940 KiB  
Review
Thalamic Stroke: An Opportunity to Study the Brain Mechanisms of Sleep–Wake and Cognition
by Irina Filchenko, Claudio L. A. Bassetti and Carolina Gutierrez Herrera
Clin. Transl. Neurosci. 2023, 7(4), 36; https://doi.org/10.3390/ctn7040036 - 31 Oct 2023
Cited by 2 | Viewed by 8013
Abstract
The thalamus, and its projections to the cerebral cortex, are crucial for regulating sleep rhythms, such as sleep spindles, and for maintaining arousal and sleep homeostasis. Moreover, they play a significant role in memory, executive functioning, and attention. Altered thalamocortical circuitry caused by [...] Read more.
The thalamus, and its projections to the cerebral cortex, are crucial for regulating sleep rhythms, such as sleep spindles, and for maintaining arousal and sleep homeostasis. Moreover, they play a significant role in memory, executive functioning, and attention. Altered thalamocortical circuitry caused by vascular lesions affects sleep–wake architecture and may contribute to cognitive deficits observed in thalamic stroke patients. This review summarizes the biology of the thalamus and current knowledge regarding the impact of thalamic circuitry on sleep regulation and cognition, drawing from clinical and pre-clinical studies. Furthermore, deep brain stimulation and transcranial magnetic stimulation are discussed as possible therapeutic approaches targeting thalamic circuits. Understanding the role of the thalamus in sleep and cognition opens new avenues for developing novel therapeutic strategies to improve sleep and cognitive functions in affected individuals. Full article
(This article belongs to the Special Issue Sleep–Wake Medicine)
Show Figures

Figure 1

13 pages, 2340 KiB  
Review
Primary Graviceptive System and Astasia: A Case Report and Literature Review
by Ko-Ting Chen, Sheng-Yao Huang, Yi-Jye Chen and Ying-Yun Chen
Brain Sci. 2023, 13(10), 1371; https://doi.org/10.3390/brainsci13101371 - 26 Sep 2023
Cited by 1 | Viewed by 1733
Abstract
Astasia refers to the inability to maintain upright posture during standing, despite having full motor strength. Impairment of the vestibulocerebellar pathway, graviceptive system, and cingulate motor area have been proposed to be related to astasia. However, the responsible neural pathways remain unclear. We [...] Read more.
Astasia refers to the inability to maintain upright posture during standing, despite having full motor strength. Impairment of the vestibulocerebellar pathway, graviceptive system, and cingulate motor area have been proposed to be related to astasia. However, the responsible neural pathways remain unclear. We hypothesize that there is a common neural network behind astasia. To test the hypothesis, we reviewed all reported cases with astasia, including ours, and focused on the correlation between anatomical destruction and symptom presentation. A total of 26, including ours, non-psychogenic astasia patients were identified in the English literature. Seventy-three percent of them were associated with other neurologic symptoms and sixty-two percent of reported lesions were on the right side. Contralateral lateropulsion was very common, followed by retropulsion, when describing astasia. Infarction (54%) was the most reported cause. The thalamus (65%) was the most reported location. Infarctions were the fastest to recover (mean: 10.6 days), while lesions at the brainstem needed a longer time (mean: 61.6 days). By combining the character of lateropulsion in astasia and the presentation of an interrupted graviceptive system, we concluded that the primary graviceptive system may be the common neural network behind astasia. Future studies on astasia should focus on the pathological changes in the perception of verticality in the visual world and the body. Full article
(This article belongs to the Section Systems Neuroscience)
Show Figures

Figure 1

8 pages, 17127 KiB  
Article
Activity of the Lateral Hypothalamus during Genetically Determined Absence Seizures
by Péter Sere, Nikolett Zsigri, Timea Raffai, Szabina Furdan, Fanni Győri, Vincenzo Crunelli and Magor L. Lőrincz
Int. J. Mol. Sci. 2021, 22(17), 9466; https://doi.org/10.3390/ijms22179466 - 31 Aug 2021
Cited by 6 | Viewed by 3470
Abstract
(1) Background: Absence seizures (ASs) are sudden, transient lapses of consciousness associated with lack of voluntary movements and generalized 2.5–4 Hz spike-wave discharges (SWDs) in the EEG. In addition to the thalamocortical system, where these pathological oscillations are generated, multiple neuronal circuits have [...] Read more.
(1) Background: Absence seizures (ASs) are sudden, transient lapses of consciousness associated with lack of voluntary movements and generalized 2.5–4 Hz spike-wave discharges (SWDs) in the EEG. In addition to the thalamocortical system, where these pathological oscillations are generated, multiple neuronal circuits have been involved in their modulation and associated comorbidities including the serotonergic system. Neuronal activity in one of the major synaptic input structures to the brainstem dorsal raphé nucleus (DRN), the lateral hypothalamus (LH), has not been characterized. (2) Methods: We used viral tract tracing and optogenetics combined with in vitro and in vivo electrophysiology to assess the involvement of the LH in absence epilepsy in a genetic rodent model. (3) Results: We found that a substantial fraction of LH neurons project to the DRN of which a minority is GABAergic. The LH to DRN projection can lead to monosynaptic iGluR mediated excitation in DRN 5-HT neurons. Neuronal activity in the LH is coupled to SWDs. (4) Conclusions: Our results indicate that a brain area involved in the regulation of autonomic functions and heavily innervating the RN is involved in ASs. The decreased activity of LH neurons during SWDs could lead to both a decreased excitation and disinhibition in the DRN. These results support a long-range subcortical regulation of serotonergic neuromodulation during ASs and further our understanding of the state-dependence of these seizures and some of their associated comorbidities. Full article
Show Figures

Figure 1

22 pages, 13629 KiB  
Article
Reorganization of Thalamic Inputs to Lesioned Cortex Following Experimental Traumatic Brain Injury
by Xavier Ekolle Ndode-Ekane, Maria del Mar Puigferrat Pérez, Rossella Di Sapia, Niina Lapinlampi and Asla Pitkänen
Int. J. Mol. Sci. 2021, 22(12), 6329; https://doi.org/10.3390/ijms22126329 - 13 Jun 2021
Cited by 8 | Viewed by 3299
Abstract
Traumatic brain injury (TBI) disrupts thalamic and cortical integrity. The effect of post-injury reorganization and plasticity in thalamocortical pathways on the functional outcome remains unclear. We evaluated whether TBI causes structural changes in the thalamocortical axonal projection terminals in the primary somatosensory cortex [...] Read more.
Traumatic brain injury (TBI) disrupts thalamic and cortical integrity. The effect of post-injury reorganization and plasticity in thalamocortical pathways on the functional outcome remains unclear. We evaluated whether TBI causes structural changes in the thalamocortical axonal projection terminals in the primary somatosensory cortex (S1) that lead to hyperexcitability. TBI was induced in adult male Sprague Dawley rats with lateral fluid-percussion injury. A virus carrying the fluorescent-tagged opsin channel rhodopsin 2 transgene was injected into the ventroposterior thalamus. We then traced the thalamocortical pathways and analyzed the reorganization of their axonal terminals in S1. Next, we optogenetically stimulated the thalamocortical relays from the ventral posterior lateral and medial nuclei to assess the post-TBI functionality of the pathway. Immunohistochemical analysis revealed that TBI did not alter the spatial distribution or lamina-specific targeting of projection terminals in S1. TBI reduced the axon terminal density in the motor cortex by 44% and in S1 by 30%. A nematic tensor-based analysis revealed that in control rats, the axon terminals in layer V were orientated perpendicular to the pial surface (60.3°). In TBI rats their orientation was more parallel to the pial surface (5.43°, difference between the groups p < 0.05). Moreover, the level of anisotropy of the axon terminals was high in controls (0.063) compared with TBI rats (0.045, p < 0.05). Optical stimulation of the sensory thalamus increased alpha activity in electroencephalography by 312% in controls (p > 0.05) and 237% (p > 0.05) in TBI rats compared with the baseline. However, only TBI rats showed increased beta activity (33%) with harmonics at 5 Hz. Our findings indicate that TBI induces reorganization of thalamocortical axonal terminals in the perilesional cortex, which alters responses to thalamic stimulation. Full article
Show Figures

Figure 1

19 pages, 3268 KiB  
Article
Interaction between Mesocortical and Mesothalamic Catecholaminergic Transmissions Associated with NMDA Receptor in the Locus Coeruleus
by Motohiro Okada and Kouji Fukuyama
Biomolecules 2020, 10(7), 990; https://doi.org/10.3390/biom10070990 - 1 Jul 2020
Cited by 13 | Viewed by 3418
Abstract
Noncompetitive N-methyl-D-aspartate/glutamate receptor (NMDAR) antagonists contribute to the pathophysiology of schizophrenia and mood disorders but improve monoaminergic antidepressant-resistant mood disorder and suicidal ideation. The mechanisms of the double-edged sword clinical action of NMDAR antagonists remained to be clarified. The present study determined the [...] Read more.
Noncompetitive N-methyl-D-aspartate/glutamate receptor (NMDAR) antagonists contribute to the pathophysiology of schizophrenia and mood disorders but improve monoaminergic antidepressant-resistant mood disorder and suicidal ideation. The mechanisms of the double-edged sword clinical action of NMDAR antagonists remained to be clarified. The present study determined the interaction between the NMDAR antagonist (MK801), α1 adrenoceptor antagonist (prazosin), and α2A adrenoceptor agonist (guanfacine) on mesocortical and mesothalamic catecholaminergic transmission, and thalamocortical glutamatergic transmission using multiprobe microdialysis. The inhibition of NMDAR in the locus coeruleus (LC) by local MK801 administration enhanced both the mesocortical noradrenergic and catecholaminergic coreleasing (norepinephrine and dopamine) transmissions. The mesothalamic noradrenergic transmission was also enhanced by local MK801 administration in the LC. These mesocortical and mesothalamic transmissions were activated by intra-LC disinhibition of transmission of γ-aminobutyric acid (GABA) via NMDAR inhibition. Contrastingly, activated mesothalamic noradrenergic transmission by MK801 enhanced intrathalamic GABAergic inhibition via the α1 adrenoceptor, resulting in the suppression of thalamocortical glutamatergic transmission. The thalamocortical glutamatergic terminal stimulated the presynaptically mesocortical catecholaminergic coreleasing terminal in the superficial cortical layers, but did not have contact with the mesocortical selective noradrenergic terminal (which projected terminals to deeper cortical layers). Furthermore, the α2A adrenoceptor suppressed the mesocortical and mesothalamic noradrenergic transmissions somatodendritically in the LC and presynaptically/somatodendritically in the reticular thalamic nucleus (RTN). These discrepancies between the noradrenergic and catecholaminergic transmissions in the mesocortical and mesothalamic pathways probably constitute the double-edged sword clinical action of noncompetitive NMDAR antagonists. Full article
(This article belongs to the Special Issue NMDA Receptor in Health and Diseases)
Show Figures

Figure 1

12 pages, 6348 KiB  
Article
Modulation of Fibers to Motor Cortex during Thalamic DBS in Tourette Patients Correlates with Tic Reduction
by Pablo Andrade, Petra Heiden, Moritz Hoevels, Marc Schlamann, Juan C. Baldermann, Daniel Huys and Veerle Visser-Vandewalle
Brain Sci. 2020, 10(5), 302; https://doi.org/10.3390/brainsci10050302 - 15 May 2020
Cited by 20 | Viewed by 4022
Abstract
Probabilistic tractography in Tourette syndrome (TS) patients have shown an alteration in the connectivity of the primary motor cortex and supplementary motor area with the striatum and thalamus, suggesting an abnormal connectivity of the cortico-striatum-thalamocortical-pathways in TS. Deep brain stimulation (DBS) of the [...] Read more.
Probabilistic tractography in Tourette syndrome (TS) patients have shown an alteration in the connectivity of the primary motor cortex and supplementary motor area with the striatum and thalamus, suggesting an abnormal connectivity of the cortico-striatum-thalamocortical-pathways in TS. Deep brain stimulation (DBS) of the centromedian nucleus–nucleus ventrooralis internus (CM-Voi complex) in the thalamus is an effective treatment for refractory TS patients. We investigated the connectivity of activated fibers from CM-Voi to the motor cortex and its correlation between these projections and their clinical outcome. Seven patients with TS underwent CM-Voi-DBS surgery and were clinically evaluated preoperatively and six months postoperatively. We performed diffusion tensor imaging to display the activated fibers projecting from the CM-Voi to the different motor cortex regions of interest. These analyses showed that the extent of tic reduction during DBS is associated with the degree of stimulation-dependent connectivity between CM-Voi and the motor cortex, and in particular, an increased density of projections to the presupplementary motor area (preSMA). Non-responder patients displayed the largest amount of active fibers projecting into cortical areas other than motor cortex compared to responder patients. These findings support the notion that an abnormal connectivity of thalamocortical pathways underlies TS, and that modulation of these circuits through DBS could restore the function and reduce symptoms. Full article
(This article belongs to the Special Issue Deep Brain Stimulation and Tourette Syndrome)
Show Figures

Figure 1

16 pages, 11386 KiB  
Article
Characterization of Behaviour and Remote Degeneration Following Thalamic Stroke in the Rat
by Nina Weishaupt, Patricia Riccio, Taylor Dobbs, Vladimir C. Hachinski and Shawn N. Whitehead
Int. J. Mol. Sci. 2015, 16(6), 13921-13936; https://doi.org/10.3390/ijms160613921 - 17 Jun 2015
Cited by 10 | Viewed by 6599
Abstract
Subcortical ischemic strokes are among the leading causes of cognitive impairment. Selective atrophy of remote brain regions connected to the infarct is thought to contribute to deterioration of cognitive functions. The mechanisms underlying this secondary degenerative process are incompletely understood, but are thought [...] Read more.
Subcortical ischemic strokes are among the leading causes of cognitive impairment. Selective atrophy of remote brain regions connected to the infarct is thought to contribute to deterioration of cognitive functions. The mechanisms underlying this secondary degenerative process are incompletely understood, but are thought to include inflammation. We induce ischemia by unilateral injection of endothelin-I into the rat dorsomedial thalamic nucleus, which has defined reciprocal connections to the frontal cortex. We use a comprehensive test battery to probe for changes in behaviour, including executive functions. After a four-week recovery period, brain sections are stained with markers for degeneration, microglia, astrocytes and myelin. Degenerative processes are localized within the stroke core and along the full thalamocortical projection, which does not translate into measurable behavioural deficits. Significant microglia recruitment, astrogliosis or myelin loss along the axonal projection or within the frontal cortex cannot be detected. These findings indicate that critical effects of stroke-induced axonal degeneration may only be measurable beyond a threshold of stroke severity and/or follow a different time course. Further investigations are needed to clarify the impact of inflammation accompanying axonal degeneration on delayed remote atrophy after stroke. Full article
(This article belongs to the Special Issue The Immune System and Inflammation in Cerebral Ischemia)
Show Figures

Figure 1

Back to TopTop