Thalamic Stroke: An Opportunity to Study the Brain Mechanisms of Sleep–Wake and Cognition
Abstract
:1. Introduction
2. Thalamus and Anatomical Vascular Territories
Reference | TS | Control | Time Post-Stroke | Sleep Symptoms | Sleep Assessment | Sleep Alterations | Cognitive Assessment | Cognitive Domains Affected | ||
---|---|---|---|---|---|---|---|---|---|---|
Santamaria et al., 2000 [45] | Unilateral TS | N = 13 | Age- and sex- matched volunteers | N = 18 | 7–21 dps | Hypersomnolence, daytime sleepiness, altered level of consciousness | PSG | ↓ TST, ↓ NREM2, ↓ SS density | - | - |
Hermann et al., 2008 [46] | Paramedian TS | N = 31 | Age-matched patients with PNS | N = 12 | 5–30 dps | Hypersomnolence, psychomotor slowing | PSG | ↑ NREM1, ↓ NREM2, ↓ SS density, ↓ SS power | Attention, executive functioning, verbal memory, visual memory, object naming | Attention, executive functioning, verbal and visual memory |
Danet et al., 2015 [47] | Unilateral left TS | N = 12 | Age- and education-matched volunteers | N = 25 | <90 dps | - | - | - | Executive functioning, verbal memory, visual memory, object naming | Verbal memory, executive functioning, object naming |
Kraft et al., 2015 [48] | Isolated unilateral TS | N = 16 | Age- and sex- matched volunteers | N = 52 | 1–132 mps | - | - | - | Computer-based attention tests | Spatial bias, processing speed |
Wu et al., 2016 [49] | Minor TS | N = 27 | Age and sex-matched volunteers, ↑RDI in TS | N = 12 | 14 and 90 dps | Hypersomnolence, daytime sleepiness | PSG | ↑ SL, ↓ SE, ↑ NREM1, ↓ NREM2, ↓ NREM3 | Global cognitive functioning, verbal memory | Global cognitive functioning, verbal memory |
Mensen et al., 2018 [50] | Uni- and bilateral TS | N = 9 | Young healthy adults | N = 9 | 5–8 dps | - | hd -EEG | ↓ SS power | - | - |
Jaramillo et al., 2021 [51] | Unilateral TS | N = 12 | Age-, sex- and AHI-matched extrathalamic stroke patients | N = 11 | 3 dps | Daytime sleepiness | hd -EEG | ↓ SWA | Visual memory, visuospatial functioning | No significant differences |
Temel et al., 2021 [52] | Thalamic hemorrhage | N = 28 | Age-, sex- and AHI-matched volunteers | N = 28 | 3–6 mps | - | - | - | Global cognitive functioning, verbal memory, executive functioning, verbal fluency | Global cognitive functioning, verbal memory, executive functioning, verbal fluency |
Scharf et al., 2022 [53] | Unilateral TS | N = 37 | Age- and sex-matched volunteers | N = 37 | 1, 6, 12, 24 mps | Hypersomnolence, reduced vigilance | - | - | Attention, executive functioning, verbal memory, visual memory, verbal fluency | Verbal memory, executive functioning, verbal fluency |
3. The Thalamus and Sleep
4. The Thalamus and Cognition
5. Thalamic Stroke: A Model for Sleep-Dependent Plasticity and Cognition
6. The Thalamus and the Interaction between Sleep and Cognition
7. Thalamic Dynamics as the Window of Opportunity
8. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jak, A.J.; Bondi, M.W.; Delano-Wood, L.; Wierenga, C.; Corey-Bloom, J.; Salmon, D.P.; Delis, D.C. Quantification of five neuropsychological approaches to defining mild cognitive impairment. Am. J. Geriatr. Psychiatry 2009, 17, 368–375. [Google Scholar] [CrossRef] [PubMed]
- Nys, G.M.S.; Van Zandvoort, M.J.E.; De Kort, P.L.M.; Jansen, B.P.W.; De Haan, E.H.F.; Kappelle, L.J. Cognitive disorders in acute stroke: Prevalence and clinical determinants. Cerebrovasc. Dis. 2007, 23, 408–416. [Google Scholar] [CrossRef] [PubMed]
- Lam, R.W.; Kennedy, S.H.; McIntyre, R.S.; Khullar, A. Cognitive dysfunction in major depressive disorder: Effects on psychosocial functioning and implications for treatment. Can. J. Psychiatry 2014, 59, 649–654. [Google Scholar] [CrossRef] [PubMed]
- Kong, J.; Zhou, L.; Li, X.; Ren, Q. Sleep disorders affect cognitive function in adults: An overview of systematic reviews and meta-analyses. Sleep Biol. Rhythms. 2023, 21, 133–142. [Google Scholar] [CrossRef]
- Klinzing, J.G.; Niethard, N.; Born, J. Mechanisms of systems memory consolidation during sleep. Nat. Neurosci. 2019, 22, 1598–1610. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Kang, H.; Xu, Q.; Chen, M.J.; Liao, Y.; Thiyagarajan, M.; O’Donnell, J.; Christensen, D.I.; Nicholson, C.; Iliff, J.J.; et al. Sleep drives metabolite clearance from the adult brain. Science 2013, 342, 373–377. [Google Scholar] [CrossRef] [PubMed]
- Lo, J.C.; Groeger, J.A.; Cheng, G.H.; Dijk, D.J.; Chee, M.W.L. Self-reported sleep duration and cognitive performance in older adults: A systematic review and meta-analysis. Sleep Med. 2016, 17, 87–98. [Google Scholar] [CrossRef] [PubMed]
- Wallace, A.; Bucks, R.S. Memory and obstructive sleep apnea: A meta-analysis. Sleep 2013, 36, 203–220. [Google Scholar] [CrossRef]
- Mao, J.; Huang, X.; Yu, J.; Chen, L.; Huang, Y.; Tang, B.; Guo, J. Association between REM Sleep Behavior Disorder and Cognitive Dysfunctions in Parkinson’s Disease: A Systematic Review and Meta-Analysis of Observational Studies. Front. Neurol. 2020, 11, 577874. [Google Scholar] [CrossRef]
- Arguinchona, J.H.; Tadi, P. Neuroanatomy, Reticular Activating System; StatPearls: Treasure Island, FL, USA, 2023. [Google Scholar]
- Rothschild, G.; Eban, E.; Frank, L.M. A cortical-hippocampal-cortical loop of information processing during memory consolidation. Nat. Neurosci. 2017, 20, 251–259. [Google Scholar] [CrossRef]
- Ferrara, M.; Moroni, F.; De Gennaro, L.; Nobili, L. Hippocampal sleep features: Relations to human memory function. Front. Neurol. 2012, 3, 57. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Li, W.; Ma, Y.; Tossell, K.; Harris, J.J.; Harding, E.C.; Ba, W.; Miracca, G.; Wang, D.; Li, L.; et al. GABA and glutamate neurons in the VTA regulate sleep and wakefulness. Nat. Neurosci. 2019, 22, 106–119. [Google Scholar] [CrossRef] [PubMed]
- Salmond, C.H.; Chatfield, D.A.; Menon, D.K.; Pickard, J.D.; Sahakian, B.J. Cognitive sequelae of head injury: Involvement of basal forebrain and associated structures. Brain 2005, 128, 189–200. [Google Scholar] [CrossRef] [PubMed]
- Anaclet, C.; Pedersen, N.P.; Ferrari, L.L.; Venner, A.; Bass, C.E.; Arrigoni, E.; Fuller, P.M. Basal forebrain control of wakefulness and cortical rhythms. Nat. Commun. 2015, 6, 8744. [Google Scholar] [CrossRef] [PubMed]
- Simon, E.B.; Oren, N.; Sharon, H.; Kirschner, A.; Goldway, N.; Okon-Singer, H.; Tauman, R.; Deweese, M.M.; Keil, A.; Hendler, T. Losing neutrality: The neural basis of impaired emotional control without sleep. J. Neurosci. 2015, 35, 13194–13205. [Google Scholar] [CrossRef] [PubMed]
- Peck, C.J.; Daniel Salzman, C. The Amygdala and basal forebrain as a pathway for motivationally guided attention. J. Neurosci. 2014, 34, 13757–13767. [Google Scholar] [CrossRef] [PubMed]
- Motomura, Y.; Kitamura, S.; Nakazaki, K.; Oba, K.; Katsunuma, R.; Terasawa, Y.; Hida, A.; Moriguchi, Y.; Mishima, K. Recovery from unrecognized sleep loss accumulated in daily life improved mood regulation via prefrontal suppression of amygdala activity. Front. Neurol. 2017, 8, 306. [Google Scholar] [CrossRef]
- Dudai, Y.; Karni, A.; Born, J. The Consolidation and Transformation of Memory. Neuron 2015, 88, 20–32. [Google Scholar] [CrossRef]
- Tononi, G.; Cirelli, C. Sleep and the Price of Plasticity: From Synaptic and Cellular Homeostasis to Memory Consolidation and Integration. Neuron 2014, 81, 12–34. [Google Scholar] [CrossRef]
- Diekelmann, S.; Born, J. The memory function of sleep. Nat. Rev. Neurosci. 2010, 11, 114–126. [Google Scholar] [CrossRef]
- Datta, S.; MacLean, R.R. Neurobiological mechanisms for the regulation of mammalian sleep–wake behavior: Reinterpretation of historical evidence and inclusion of contemporary cellular and molecular evidence. Neurosci. Biobehav. Rev. 2007, 31, 775–824. [Google Scholar] [CrossRef] [PubMed]
- Walker, M.P.; Stickgold, R. Sleep-Dependent Learning and Memory Consolidation. Neuron 2004, 44, 121–133. [Google Scholar] [CrossRef] [PubMed]
- Maquet, P. The Role of Sleep in Learning and Memory. Science 2001, 294, 1048–1052. [Google Scholar] [CrossRef] [PubMed]
- Seibt, J.; Richard, C.J.; Sigl-Glöckner, J.; Takahashi, N.; Kaplan, D.I.; Doron, G.; de Limoges, D.; Bocklisch, C.; Larkum, M.E. Cortical dendritic activity correlates with spindle-rich oscillations during sleep in rodents. Nat. Commun. 2017, 8, 684. [Google Scholar] [CrossRef] [PubMed]
- Sirota, A.; Buzsáki, G. Interaction between neocortical and hippocampal networks via slow oscillations. Thalamus Relat. Syst. 2005, 3, 245. [Google Scholar] [CrossRef] [PubMed]
- Ngo, H.-V.; Fell, J.; Staresina, B. Sleep spindles mediate hippocampal-neocortical coupling during long-duration ripples. Elife 2020, 9, e57011. [Google Scholar] [CrossRef] [PubMed]
- Grieve, K.L.; Acuña, C.; Cudeiro, J. The primate pulvinar nuclei: Vision and action. Trends Neurosci. 2000, 23, 35–39. [Google Scholar] [CrossRef] [PubMed]
- Percheron, G.; Franqois, C.; Talbi, B.; Yelnik, J.; Ffnelon, G. The primate motor thalamus. Brain Res. Rev. 1996, 22, 93–181. [Google Scholar] [CrossRef]
- Griin, A.L.; Piriz, J.; Ferbinteanu, J.; Vertes, R.P. Structural and functional organization of the midline and intralaminar nuclei of the thalamus. Front. Behav. Neurosci. 2022, 6, 964644. [Google Scholar]
- Carrera, E.; Bogousslavsky, J. The thalamus and behavior: Effects of anatomically distinct strokes. Neurology 2006, 66, 1817–1823. [Google Scholar] [CrossRef]
- Butler, A.B. Evolution of the thalamus: A morphological and functional review. Thalamus Relat. Syst. 2008, 4, 35–58. [Google Scholar] [CrossRef]
- Phillips, J.M.; Kambi, N.A.; Redinbaugh, M.J.; Mohanta, S.; Saalmann, Y.B. Disentangling the influences of multiple thalamic nuclei on prefrontal cortex and cognitive control. Neurosci. Biobehav. Rev. 2021, 128, 487–510. [Google Scholar] [CrossRef] [PubMed]
- Wicht, H.; Himstedt, W. Topologic and Connectional Analysis of the Dorsal Thalamus of Rturus alpestris (Amphibia, Urodela, Salamandridae). J. Comp. Neurol. 1988, 267, 545–561. [Google Scholar] [CrossRef] [PubMed]
- Jankowski, M.M.; Ronnqvist, K.C.; Tsanov, M.; Vann, S.D.; Wright, N.F.; Erichsen, J.T.; Aggleton, J.P.; O’Mara, S.M. The anterior thalamus provides a subcortical circuit supporting memory and spatial navigation. Front. Syst. Neurosci. 2013, 7, 45. [Google Scholar] [CrossRef] [PubMed]
- Mai, J.K.; Majtanik, M. Toward a common terminology for the Thalamus. Front. Neuroanat. 2019, 12, 114. [Google Scholar] [CrossRef]
- Kaas, J.H.; Baldwin, M.K.L. The evolution of the pulvinar complex in primates and its role in the dorsal and ventral streams of cortical processing. Vision 2020, 4, 3. [Google Scholar] [CrossRef]
- Baldwin, M.K.L.; Balaram, P.; Kaas, J.H. The evolution and functions of nuclei of the visual pulvinar in primates. J. Comp. Neurol. 2017, 525, 3207–3226. [Google Scholar] [CrossRef]
- Teffer, K.; Semendeferi, K. Human prefrontal cortex: Evolution, development, and pathology. Prog. Brain Res. 2012, 195, 191–218. [Google Scholar] [CrossRef]
- Saper, C.B.; Scammell, T.E.; Lu, J. Hypothalamic regulation of sleep and circadian rhythms. Nature 2005, 437, 1257–1263. [Google Scholar] [CrossRef]
- John, J.; Ramanathan, L.; Siegel, J.M. Rapid changes in glutamate levels in the posterior hypothalamus across sleep-wake states in freely behaving rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008, 295, R2041–R2049. [Google Scholar] [CrossRef]
- Yamagata, T.; Kahn, M.C.; Prius-Mengual, J.; Meijer, E.; Šabanović, M.; Guillaumin, M.C.C.; van der Vinne, V.; Huang, Y.G.; McKillop, L.E.; Jagannath, A.; et al. The hypothalamic link between arousal and sleep homeostasis in mice. Proc. Natl. Acad. Sci. USA 2021, 118, e2101580118. [Google Scholar] [CrossRef] [PubMed]
- Schmahmann, J.D. Vascular syndromes of the thalamus. Stroke 2003, 34, 2264–2278. [Google Scholar] [CrossRef] [PubMed]
- Xiong, B.; Li, A.; Lou, Y.; Chen, S.; Long, B.; Peng, J.; Yang, Z.; Xu, T.; Yang, X.; Li, X.; et al. Precise Cerebral Vascular Atlas in Stereotaxic Coordinates of Whole Mouse Brain. Front. Neuroanat. 2017, 11, 128. [Google Scholar] [CrossRef] [PubMed]
- Santamaria, J.; Pujol, M.; Orteu, N.; Solanas, A.; Cardenal, C.; Santacruz, P.; Chimeno, E.; Moon, P. Unilateral thalamic stroke does not decrease ipsilateral sleep spindles. Sleep 2000, 23, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Hermann, D.M.; Siccoli, M.; Brugger, P.; Wachter, K.; Mathis, J.; Achermann, P.; Bassetti, C.L. Evolution of neurological, neuropsychological and sleep-wake disturbances after paramedian thalamic stroke. Stroke 2008, 39, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Danet, L.; Barbeau, E.J.; Eustache, P.; Planton, M.; Raposo, N.; Sibon, I.; Albucher, J.F.; Bonneville, F.; Peran, P.; Pariente, J. Thalamic amnesia after infarct. Neurology 2015, 85, 2107–2115. [Google Scholar] [CrossRef] [PubMed]
- Kraft, A.; Irlbacher, K.; Finke, K.; Kaufmann, C.; Kehrer, S.; Liebermann, D.; Bundesen, C.; Brandt, S.A. Dissociable spatial and non-spatial attentional deficits after circumscribed thalamic stroke. Cortex 2015, 64, 327–342. [Google Scholar] [CrossRef]
- Wu, W.; Cui, L.; Fu, Y.; Tian, Q.; Liu, L.; Zhang, X.; Du, N.; Chen, Y.; Qiu, Z.; Song, Y.; et al. Sleep and Cognitive Abnormalities in Acute Minor Thalamic Infarction. Neurosci. Bull. 2016, 32, 341–348. [Google Scholar] [CrossRef]
- Mensen, A.; Poryazova, R.; Huber, R.; Bassetti, C.L. Individual spindle detection and analysis in high-density recordings across the night and in thalamic stroke. Sci. Rep. 2018, 8, 17885. [Google Scholar] [CrossRef]
- Jaramillo, V.; Jendoubi, J.; Maric, A.; Mensen, A.; Heyse, N.C.; Eberhard-Moscicka, A.K.; Wiest, R.; Bassetti, C.L.; Huber, R. Thalamic Influence on Slow Wave Slope Renormalization during Sleep. Ann. Neurol. 2021, 90, 821–833. [Google Scholar] [CrossRef]
- Temel, M.; Polat, B.S.A.; Kayali, N.; Karadas, O. Cognitive profile of patients with thalamic hemorrhage according to lesion localization. Dement. Geriatr. Cogn. Dis. Extra 2021, 11, 129–133. [Google Scholar] [CrossRef]
- Scharf, A.C.; Gronewold, J.; Todica, O.; Moenninghoff, C.; Doeppner, T.R.; de Haan, B.; Bassetti, C.L.; Hermann, D.M. Evolution of Neuropsychological Deficits in First-Ever Isolated Ischemic Thalamic Stroke and Their Association with Stroke Topography: A Case-Control Study. Stroke 2022, 53, 1904–1914. [Google Scholar] [CrossRef] [PubMed]
- Lenzi, I.; Borsa, M.; Czekus, C.; Rusterholz, T.; Bassetti, C.L.; Gutierrez Herrera, C. Optical mini-stroke of thalamic networks impairs sleep stability, topography and cognition. BioRxiv 2021. [Google Scholar] [CrossRef]
- Silva, D.G.; Xavier, G.F. Anterior thalamic NMDA-induced damage impairs extrapolation relying on serial stimulus patterns, in rats. Neurobiol. Learn. Mem. 2021, 185, 107536. [Google Scholar] [CrossRef] [PubMed]
- Blasi, F.; Hérisson, F.; Wang, S.; Mao, J.; Ayata, C. Late-Onset Thermal Hypersensitivity after Focal Ischemic Thalamic Infarcts as a Model for Central Post-Stroke Pain in Rats. J. Cereb. Blood Flow Metab. 2015, 35, 1100–1103. [Google Scholar] [CrossRef] [PubMed]
- Garcia, J.H.; Liu, K.-F.; Ho, K.-L. Neuronal Necrosis after Middle Cerebral Artery Occlusion in Wistar Rats Progresses at Different Time Intervals in the Caudoputamen and the Cortex. Stroke 1995, 26, 636–643. [Google Scholar] [CrossRef] [PubMed]
- Steriade, M. Sleep oscillations in corticothalamic neuronal networks and their development into self-sustained paroxysmal activity. Rom. J. Neurol. Psychiatry 1993, 31, 151–161. [Google Scholar] [PubMed]
- Warby, S.C.; Wendt, S.L.; Welinder, P.; Munk, E.G.S.; Carrillo, O.; Sorensen, H.B.D.; Jennum, P.; Peppard, P.E.; Perona, P.; Mignot, E. Sleep-spindle detection: Crowdsourcing and evaluating performance of experts, non-experts and automated methods. Nat. Methods 2014, 11, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Cox, R.; Schapiro, A.C.; Manoach, D.S.; Stickgold, R. Individual Differences in Frequency and Topography of Slow and Fast Sleep Spindles. Front. Hum. Neurosci. 2017, 11, 433. [Google Scholar] [CrossRef]
- Schabus, M.; Dang-Vu, T.T.; Albouy, G.; Balteau, E.; Boly, M.; Carrier, J.; Darsaud, A.; Degueldre, C.; Desseilles, M.; Gais, S.; et al. Hemodynamic cerebral correlates of sleep spindles during human non-rapid eye movement sleep. Proc. Natl. Acad. Sci. USA 2007, 104, 13164–13169. [Google Scholar] [CrossRef]
- Mak-Mccully, R.A.; Rolland, M.; Sargsyan, A.; Gonzalez, C.; Magnin, M.; Chauvel, P.; Rey, M.; Bastuji, H.; Halgren, E. Coordination of cortical and thalamic activity during non-REM sleep in humans. Nat. Commun. 2017, 8, 15499. [Google Scholar] [CrossRef]
- Lüthi, A. Sleep Spindles. Neuroscientist 2014, 20, 243–256. [Google Scholar] [CrossRef] [PubMed]
- Osorio-Forero, A.; Cardis, R.; Vantomme, G.; Guillaume-Gentil, A.; Katsioudi, G.; Devenoges, C.; Fernandez, L.M.J.; Lüthi, A. Noradrenergic circuit control of non-REM sleep substates. Curr. Biol. 2021, 31, 5009–5023.e7. [Google Scholar] [CrossRef]
- Vantomme, G.; Osorio-Forero, A.; Lüthi, A.; Fernandez, L.M.J. Regulation of Local Sleep by the Thalamic Reticular Nucleus. Front Neurosci. 2019, 13, 576. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-García, M.; Wallman, M.-J.; Timofeev, I. Somatotopic organization of ferret thalamus. Front. Integr. Neurosci. 2014, 8, 90. [Google Scholar] [CrossRef] [PubMed]
- Timofeev, I.; Chauvette, S. The Spindles: Are They Still Thalamic? Sleep 2013, 36, 825–826. [Google Scholar] [CrossRef] [PubMed]
- Halassa, M.M.; Chen, Z.; Wimmer, R.D.; Brunetti, P.M.; Zhao, S.; Zikopoulos, B.; Wang, F.; Brown, E.N.; Wilson, M.A. State-Dependent Architecture of Thalamic Reticular Subnetworks. Cell 2014, 158, 808–821. [Google Scholar] [CrossRef] [PubMed]
- Bonjean, M.; Baker, T.; Lemieux, M.; Timofeev, I.; Sejnowski, T.; Bazhenov, M. Corticothalamic Feedback Controls Sleep Spindle Duration In Vivo. J. Neurosci. 2011, 31, 9124–9134. [Google Scholar] [CrossRef]
- Fernandez, L.M.J.; Lüthi, A. Sleep spindles: Mechanisms and functions. Physiol. Rev. 2019, 100, 805–868. [Google Scholar] [CrossRef]
- Ujma, P.P.; Szalárdy, O.; Fabó, D.; Erőss, L.; Bódizs, R. Thalamic activity during scalp slow waves in humans. Neuroimage 2022, 257, 119325. [Google Scholar] [CrossRef]
- Neske, G.T. The slow oscillation in cortical and thalamic networks: Mechanisms and functions. Front. Neural Circuits 2016, 9, 88. [Google Scholar] [CrossRef] [PubMed]
- David, F.; Schmiedt, J.T.; Taylor, H.L.; Orban, G.; Di Giovanni, G.; Uebele, V.N.; Renger, J.J.; Lambert, R.C.; Leresche, N.; Crunelli, V. Essential thalamic contribution to slow waves of natural sleep. J. Neurosci. 2013, 33, 19599–19610. [Google Scholar] [CrossRef] [PubMed]
- Schreiner, T.; Kaufmann, E.; Noachtar, S.; Mehrkens, J.H.; Staudigl, T. The human thalamus orchestrates neocortical oscillations during NREM sleep. Nat. Commun. 2022, 13, 5231. [Google Scholar] [CrossRef]
- Lewis, L.D.; Voigts, J.; Flores, F.J.; Ian Schmitt, L.; Wilson, M.A.; Halassa, M.M.; Brown, E.N. Thalamic reticular nucleus induces fast and local modulation of arousal state. Elife 2015, 4, e08760. [Google Scholar] [CrossRef] [PubMed]
- Krone, L.; Frase, L.; Piosczyk, H.; Selhausen, P.; Zittel, S.; Jahn, F.; Kuhn, M.; Feige, B.; Mainberger, F.; Klöppel, S.; et al. Top-down control of arousal and sleep: Fundamentals and clinical implications. Sleep Med. Rev. 2017, 31, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Redinbaugh, M.J.; Phillips, J.M.; Kambi, N.A.; Mohanta, S.; Andryk, S.; Dooley, G.L.; Afrasiabi, M.; Raz, A.; Saalmann, Y.B. Thalamus Modulates Consciousness via Layer-Specific Control of Cortex. Neuron 2020, 106, 66–75.e12. [Google Scholar] [CrossRef] [PubMed]
- Halassa, M.M.; Kastner, S. Thalamic functions in distributed cognitive control. Nat. Neurosci. 2017, 20, 1669–1679. [Google Scholar] [CrossRef]
- Leppla, C.A.; Keyes, L.R.; Glober, G.; Matthews, G.A.; Batra, K.; Jay, M.; Feng, Y.; Chen, H.S.; Mills, F.; Delahanty, J.; et al. Thalamus sends information about arousal but not valence to the amygdala. Psychopharmacology 2023, 240, 477–499. [Google Scholar] [CrossRef]
- Peters, S.K.; Dunlop, K.; Downar, J. Cortico-striatal-thalamic loop circuits of the salience network: A central pathway in psychiatric disease and treatment. Front. Syst. Neurosci. 2016, 10, 104. [Google Scholar] [CrossRef]
- Ren, S.; Wang, Y.; Yue, F.; Cheng, X.; Dang, R.; Qiao, Q.; Sun, X.; Li, X.; Jiang, Q.; Yao, J.; et al. The paraventricular thalamus is a critical thalamic area for wakefulness. Science 2018, 362, 429–434. [Google Scholar] [CrossRef]
- Pergola, G.; Danet, L.; Pitel, A.-L.; Carlesimo, G.A.; Segobin, S.; Pariente, J.; Suchan, B.; Mitchell, A.S.; Barbeau, E.J. The Regulatory Role of the Human Mediodorsal Thalamus. Trends Cogn. Sci. 2018, 22, 1011–1025. [Google Scholar] [CrossRef] [PubMed]
- Saper, C.B.; Fuller, P.M. Wake–sleep circuitry: An overview. Curr. Opin. Neurobiol. 2017, 44, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Parnaudeau, S.; Bolkan, S.S.; Kellendonk, C. The Mediodorsal Thalamus: An Essential Partner of the Prefrontal Cortex for Cognition. Biol. Psychiatry 2018, 83, 648–656. [Google Scholar] [CrossRef] [PubMed]
- Paz, J.T.; Christian, C.A.; Parada, I.; Prince, D.A.; Huguenard, J.R. Focal Cortical Infarcts Alter Intrinsic Excitability and Synaptic Excitation in the Reticular Thalamic Nucleus. J. Neurosci. 2010, 30, 5465–5479. [Google Scholar] [CrossRef] [PubMed]
- Shin, A.; Park, S.; Shin, W.; Woo, J.; Jeong, M.; Kim, J.; Kim, D. A brainstem-to-mediodorsal thalamic pathway mediates sound-induced arousal from slow-wave sleep. Curr. Biol. 2023, 33, 875–885.e5. [Google Scholar] [CrossRef] [PubMed]
- Colavito, V.; Tesoriero, C.; Wirtu, A.T.; Grassi-Zucconi, G.; Bentivoglio, M. Limbic thalamus and state-dependent behavior: The paraventricular nucleus of the thalamic midline as a node in circadian timing and sleep/wake-regulatory networks. Neurosci. Biobehav. Rev. 2015, 54, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Brock, O.; Gelegen, C.; Sully, P.; Salgarella, I.; Jager, P.; Menage, L.; Mehta, I.; Jęczmień-Łazur, J.; Djama, D.; Strotheret, L.; et al. A Role for Thalamic Projection GABAergic Neurons in Circadian Responses to Light. J. Neurosci. 2022, 42, 9158–9179. [Google Scholar] [CrossRef]
- Chrobok, L.; Pradel, K.; Janik, M.E.; Sanetra, A.M.; Bubka, M.; Myung, J.; Rahim, A.R.; Klich, J.D.; Jeczmien-Lazur, J.; Palus-Chramiec, K.; et al. Intrinsic circadian timekeeping properties of the thalamic lateral geniculate nucleus. J. Neurosci. Res. 2021, 99, 3306–3324. [Google Scholar] [CrossRef]
- Gent, T.C.; Bandarabadi, M.; Herrera, C.G.; Adamantidis, A.R. Thalamic dual control of sleep and wakefulness. Nat. Neurosci. 2018, 21, 974–984. [Google Scholar] [CrossRef]
- Steriade, M.; Sakai, K.; Jouvet, M. Bulbo-thalamic neurons related to thalamocortical activation processes during paradoxical sleep. Exp. Brain Res. 1984, 54, 463–475. [Google Scholar] [CrossRef]
- Bandarabadi, M.; Herrera, C.G.; Gent, T.C.; Bassetti, C.; Schindler, K.; Adamantidis, A.R. A role for spindles in the onset of rapid eye movement sleep. Nat. Commun. 2020, 11, 5247. [Google Scholar] [CrossRef] [PubMed]
- Maquet, P.; Peters, J.M.; Aerts, J.; Delfiore, G.; Degueldre, C.; Luxen, A.; Franck, G. Functional neuroanatomy of human rapid-eye-movement sleep and dreaming. Nature 1996, 383, 163–166. [Google Scholar] [CrossRef] [PubMed]
- Buchsbaum, M.S.; Hazlett, E.A.; Wu, J.; Bunney, W.E. Positron emission tomography with deoxyglucose-F18 imaging of sleep. Neuropsychopharmacology 2001, 25, S50–S56. [Google Scholar] [CrossRef]
- Braun, A. Regional cerebral blood flow throughout the sleep-wake cycle. An H2(15)O PET study. Brain 1997, 120, 1173–1197. [Google Scholar] [CrossRef]
- Wehrle, R.; Kaufmann, C.; Wetter, T.C.; Holsboer, F.; Auer, D.P.; Pollmächer, T.; Czisch, M. Functional microstates within human REM sleep: First evidence from fMRI of a thalamocortical network specific for phasic REM periods. Eur. J. Neurosci. 2007, 25, 863–871. [Google Scholar] [CrossRef]
- Aime, M.; Calcini, N.; Borsa, M.; Campelo, T.; Rusterholz, T.; Sattin, A.; Fellin, T.; Adamantidis, A. Paradoxical somatodendritic decoupling supports cortical plasticity during REM sleep. Science 2022, 376, 724–730. [Google Scholar] [CrossRef] [PubMed]
- Warburton, E.C.; Aggleton, J.P. Differential deficits in the Morris water maze following cytotoxic lesions of the anterior thalamus and fornix transection. Behav. Brain Res. 1999, 98, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Frohardt, R.J.; Bassett, J.P.; Taube, J.S. Path integration and lesions within the head direction cell circuit: Comparison between the roles of the anterodorsal thalamus and dorsal tegmental nucleus. Behav. Neurosci. 2006, 120, 135–149. [Google Scholar] [CrossRef]
- Van Groen, T.; Kadish, I.; Michael Wyss, J. Role of the anterodorsal and anteroventral nuclei of the thalamus in spatial memory in the rat. Behav. Brain Res. 2002, 132, 19–28. [Google Scholar] [CrossRef]
- Laurens, J.; Kim, B.; Dickman, J.D.; Angelaki, D.E. Gravity orientation tuning in macaque anterior thalamus. Nat. Neurosci. 2016, 19, 1566–1568. [Google Scholar] [CrossRef]
- Tsanov, M.; Chah, E.; Vann, S.D.; Reilly, R.B.; Erichsen, J.T.; Aggleton, J.P.; O’Mara, S.M. Theta-modulated head direction cells in the rat anterior thalamus. J. Neurosci. 2011, 31, 9489–9502. [Google Scholar] [CrossRef]
- Jankowski, M.M.; Passecker, J.; Islam, N.; Vann, S.; Erichsen, J.T.; Aggleton, J.P.; O’Mara, S.M. Evidence for spatially-responsive neurons in the rostral thalamus. Front. Behav. Neurosci. 2015, 9, 256. [Google Scholar] [CrossRef] [PubMed]
- Doumont, J.R.; Aggleton, J.P. Dissociation of recognition and recency memory judgments after anterior thalamic nuclei lesions in rats. Behav. Neurosci. 2013, 127, 415–431. [Google Scholar] [CrossRef] [PubMed]
- Nelson, A.J.D.; Vann, S.D. Mammilliothalamic tract lesions disrupt tests of visuo-spatial memory. Behav. Neurosci. 2014, 128, 494–503. [Google Scholar] [CrossRef] [PubMed]
- Toader, A.C.; Regalado, J.M.; Li, Y.R.; Terceros, A.; Yadav, N.; Kumar, S.; Satow, S.; Hollunder, F.; Bonito-Oliva, A.; Rajasethupathy, P. Anteromedial thalamus gates the selection and stabilization of long-term memories. Cell 2023, 186, 1369–1381.e17. [Google Scholar] [CrossRef] [PubMed]
- Cross, L.; Brown, M.W.; Aggleton, J.P.; Warburton, E.C. The medial dorsal thalamic nucleus and the medial prefrontal cortex of the rat function together to support associative recognition and recency but not item recognition. Learn. Mem. 2013, 20, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Nelson, A.J.D.; Vann, S.D. The importance of mammillary body efferents for recency memory: Towards a better understanding of diencephalic amnesia. Brain Struct. Funct. 2017, 222, 2143–2156. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, A.S.; Dalrymple-Alford, J.C. Dissociable memory effects after medial thalamus lesions in the rat. Eur. J. Neurosci. 2005, 22, 973–985. [Google Scholar] [CrossRef]
- Hunt, P.R.; Aggleton, J.P. An examination of the spatial working memory deficit following neurotoxic medial dorsal thalamic lesions in rats. Behav. Brain Res. 1998, 97, 129–141. [Google Scholar] [CrossRef]
- Cardoso-Cruz, H.; Sousa, M.; Vieira, J.B.; Lima, D.; Galhardo, V. Prefrontal cortex and mediodorsal thalamus reduced connectivity is associated with spatial working memory impairment in rats with inflammatory pain. Pain 2013, 154, 2397–2406. [Google Scholar] [CrossRef]
- Bolkan, S.S.; Stujenske, J.M.; Parnaudeau, S.; Spellman, T.J.; Rauffenbart, C.; Abbas, A.I.; Harris, A.Z.; Gordon, J.A.; Kellendonk, C. Thalamic projections sustain prefrontal activity during working memory maintenance. Nat. Neurosci. 2017, 20, 987–996. [Google Scholar] [CrossRef] [PubMed]
- De Bourbon-Teles, J.; Bentley, P.; Koshino, S.; Shah, K.; Dutta, A.; Malhotra, P.; Egner, T.; Husain, M.; Soto, D. Thalamic control of human attention driven by memory and learning. Curr. Biol. 2014, 24, 993–999. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Peräkylä, J.; Polvivaara, M.; Öhman, J.; Peltola, J.; Lehtimäki, K.; Huhtala, H.; Hartikainen, K.M. Human anterior thalamic nuclei are involved in emotion-attention interaction. Neuropsychologia 2015, 78, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Wimmer, R.D.; Wilson, M.A.; Halassa, M.M. Thalamic circuit mechanisms link sensory processing in sleep and attention. Front. Neural Circuits 2016, 9, 83. [Google Scholar] [CrossRef] [PubMed]
- Bassetti, C.; Mathis, J.; Gugger, M.; Lovblad, K.O.; Hess, C.W. Hypersomnia following paramedian thalamic stroke: A report of 12 patients. Ann. Neurol. 1996, 39, 471–480. [Google Scholar] [CrossRef] [PubMed]
- Bassetti, C.L.; Valko, P. Poststroke Hypersomnia. Sleep Med. Clin. 2006, 1, 139–155. [Google Scholar] [CrossRef]
- Luigetti, M.; Di Lazzaro, V.; Broccolini, A.; Vollono, C.; Dittoni, S.; Frisullo, G.; Pilato, F.; Profice, P.; Losurdo, A.; Morosetti, R.; et al. Bilateral thalamic stroke transiently reduces arousals and NREM sleep instability. J. Neurol. Sci. 2011, 300, 151–154. [Google Scholar] [CrossRef] [PubMed]
- Fritsch, M.; Villringer, K.; Ganeshan, R.; Rangus, I.; Nolte, C.H. Frequency, clinical presentation and outcome of vigilance impairment in patients with uni- and bilateral ischemic infarction of the paramedian thalamus. J. Neurol. 2021, 268, 4340–4348. [Google Scholar] [CrossRef]
- Facchin, L.; Schöne, C.; Mensen, A.; Bandarabadi, M.; Pilotto, F.; Saxena, S.; Libourel, P.A.; Bassetti, C.L.A.; Adamantidis, A.R. Slow waves promote sleep-dependent plasticity and functional recovery after stroke. J. Neurosci. 2020, 40, 8637–8651. [Google Scholar] [CrossRef]
- Kim, K.; Mohan, A.; Yeh, B.-Y.; Ghebrendrias, Y.; Brentlinger, G.; Han, J. Thalamic Dementia in Acute Inpatient Rehabilitation—Role for Amantadine? Am. J. Phys. Med. Rehabil. 2021, 100, e9–e12. [Google Scholar] [CrossRef]
- Lanna, M.E.D.O.; Madeira, D.M.; Alves, G.; Alves, C.E.; Valente, L.E.; Laks, J.; Engelhardt, E. Vascular dementia by thalamic strategic infarct. Arq. Neuropsiquiatr. 2008, 66, 412–414. [Google Scholar] [CrossRef] [PubMed]
- Catsman-Berrevoets, C.E.; Harskamp, F.v. Compulsive pre-sleep behavior and apathy due to bilateral thalamic stroke: Response to bromocriptine. Neurology 1988, 38, 647. [Google Scholar] [CrossRef]
- Longarzo, M.; Cavaliere, C.; Orsini, M.; Tramontano, L.; Aiello, M.; Salvatore, M.; Grossi, D. A Multimodal Imaging Study in a Case of Bilateral Thalamic Damage with Multidomain Cognitive Impairment. Front. Neurol. 2019, 14, 1048. [Google Scholar] [CrossRef] [PubMed]
- Abbruzzese, G.; Arata, L.; Bino, G.; Dall’Agata, D.; Leonardi, A. Thalamic dementia: Report of a case with unusual lesion location. Ital. J. Neurol. Sci. 1986, 7, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Liebermann, D.; Ostendorf, F.; Kopp, U.A.; Kraft, A.; Bohner, G.; Nabavi, D.G.; Kathmann, N.; Ploner, C.J. Subjective cognitive-affective status following thalamic stroke. J. Neurol. 2013, 260, 386–396. [Google Scholar] [CrossRef] [PubMed]
- Scharf, A.-C.; Gronewold, J.; Eilers, A.; Todica, O.; Moenninghoff, C.; Doeppner, T.R.; de Haan, B.; Bassetti, C.L.; Hermann, D.M. Depression and anxiety in acute ischemic stroke involving the anterior but not paramedian or inferolateral thalamus. Front. Psychol. 2023, 14, 1218526. [Google Scholar] [CrossRef] [PubMed]
- Stewart, J.T.; Quijije, N.; Sheyner, I.; Stover, K.T. Delirium without focal signs related to a thalamic stroke. J. Am. Geriatr. Soc. 2010, 58, 2433–2434. [Google Scholar] [CrossRef] [PubMed]
- Bogousslavsky, J.; Ferrazzini, M.; Regli, F.; Assal, G.; Tanabe, H.; Delaloye-Bischof, A. Manic delirium and frontal-like syndrome with paramedian infarction of the right thalamus. J. Neurol. Neurosurg. Psychiatry 1988, 51, 116–119. [Google Scholar] [CrossRef]
- Herrera, C.G.; Cadavieco, M.C.; Jego, S.; Ponomarenko, A.; Korotkova, T.; Adamantidis, A. Hypothalamic feedforward inhibition of thalamocortical network controls arousal and consciousness. Nat. Neurosci. 2016, 19, 290–298. [Google Scholar] [CrossRef]
- Czekus, C.; Steullet, P.; Orero López, A.; Bozic, I.; Rusterholz, T.; Bandarabadi, M.; Do, K.Q.; Herrera, C.G. Alterations in TRN-anterodorsal thalamocortical circuits affect sleep architecture and homeostatic processes in oxidative stress vulnerable Gclm−/− mice. Mol. Psychiatry. 2022, 27, 4394–4406. [Google Scholar] [CrossRef]
- Adamantidis, A.R.; Gutierrez Herrera, C.; Gent, T.C. Oscillating circuitries in the sleeping brain. Nat. Rev. Neurosci. 2019, 20, 746–762. [Google Scholar] [CrossRef] [PubMed]
- Geva-Sagiv, M.; Nir, Y. Local sleep oscillations: Implications for memory consolidation. Front. Neurosci. 2019, 13, 813. [Google Scholar] [CrossRef] [PubMed]
- Fogel, S.M.; Smith, C.T. The function of the sleep spindle: A physiological index of intelligence and a mechanism for sleep-dependent memory consolidation. Neurosci. Biobehav. Rev. 2011, 35, 1154–1165. [Google Scholar] [CrossRef] [PubMed]
- Morin, A.; Doyon, J.; Dostie, V.; Barakat, M.; Tahar, A.H.; Korman, M.; Benali, H.; Karni, A.; Ungerleider, L.G.; Carrier, J. Motor sequence learning increases sleep spindles and fast frequencies in post-training sleep. Sleep 2008, 31, 1149–1156. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, C.; Peigneux, P.; Muto, V.; Schenkel, M.; Knoblauch, V.; Münch, M.; de Quervain, D.J.F.; Wirz-Justice, A.; Cajochen, C. Encoding difficulty promotes postlearning changes in sleep spindle activity during napping. J. Neurosci. 2006, 26, 8976–8982. [Google Scholar] [CrossRef] [PubMed]
- Fogel, S.M.; Nader, R.; Cote, K.A.; Smith, C.T. Sleep spindles and learning potential. Behav. Neurosci. 2007, 121, 1. [Google Scholar] [CrossRef] [PubMed]
- Vermeulen, M.C.M.; Van der Heijden, K.B.; Swaab, H.; Van Someren, E.J.W. Sleep spindle characteristics and sleep architecture are associated with learning of executive functions in school-age children. J. Sleep Res. 2019, 28, e12779. [Google Scholar] [CrossRef]
- Guadagni, V.; Byles, H.; Tyndall, A.V.; Parboosingh, J.; Longman, R.S.; Hogan, D.B.; Hanly, P.J.; Younes, M.; Poulin, M.J. Association of sleep spindle characteristics with executive functioning in healthy sedentary middle-aged and older adults. J. Sleep Res. 2020, 30, e13037. [Google Scholar] [CrossRef]
- de Andrés, I.; Garzón, M.; Reinoso-Suárez, F. Functional anatomy of non-REM sleep. Front. Neurol. 2011, 2, 70. [Google Scholar] [CrossRef]
- Siccoli, M.M.; Rölli-Baumeler, N.; Achermann, P.; Bassetti, C.L. Correlation between sleep and cognitive functions after hemispheric ischaemic stroke. Eur. J. Neurol. 2008, 15, 565–572. [Google Scholar] [CrossRef]
- Tamaki, M.; Matsuoka, T.; Nittono, H.; Hori, T. Fast Sleep Spindle (13–15 Hz) Activity Correlates with Sleep-Dependent Improvement in Visuomotor Performance. Sleep 2008, 31, 204–211. [Google Scholar] [CrossRef]
- Poe, G.R.; Walsh, C.M.; Bjorness, T.E. Cognitive Neuroscience of Sleep. Prog. Brain Res. 2010, 185, 1–19. [Google Scholar] [PubMed]
- Zou, G.; Li, Y.; Liu, J.; Zhou, S.; Xu, J.; Qin, L.; Shao, Y.; Yao, P.; Sun, H.; Zou, Q.; et al. Altered thalamic connectivity in insomnia disorder during wakefulness and sleep. Hum. Brain Mapp. 2021, 42, 259–270. [Google Scholar] [CrossRef] [PubMed]
- Santarnecchi, E.; Sprugnoli, G.; Sicilia, I.; Dukart, J.; Neri, F.; Romanella, S.M.; Cerase, A.; Vatti, G.; Rocchi, R.; Rossi, A. Thalamic altered spontaneous activity and connectivity in obstructive sleep apnea syndrome. J. Neuroimaging 2022, 32, 314–327. [Google Scholar] [CrossRef] [PubMed]
- Yoo, S.W.; Oh, Y.S.; Ryu, D.W.; Lee, K.S.; Lyoo, C.H.; Kim, J.S. Low thalamic monoamine transporter availability is related to excessive daytime sleepiness in early Parkinson’s disease. Neurol. Sci. 2020, 41, 1081–1087. [Google Scholar] [CrossRef] [PubMed]
- Ramm, M.; Boentert, M.; Lojewsky, N.; Jafarpour, A.; Young, P.; Heidbreder, A. Disease-specific attention impairment in disorders of chronic excessive daytime sleepiness. Sleep Med. 2019, 53, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Tsapanou, A.; Gu, Y.; O’Shea, D.; Eich, T.; Tang, M.X.; Schupf, N.; Manly, J.; Zimmerman, M.; Scarmeas, N.; Stern, Y. Daytime somnolence as an early sign of cognitive decline in a community-based study of older people. Int. J. Geriatr. Psychiatry 2016, 31, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Plante, D.T.; Birn, R.M.; Walsh, E.C.; Hoks, R.M.; Cornejo, M.D.; Abercrombie, H.C. Reduced resting-state thalamostriatal functional connectivity is associated with excessive daytime sleepiness in persons with and without depressive disorders. J. Affect. Disord. 2018, 227, 517–520. [Google Scholar] [CrossRef]
- Yousaf, T.; Pagano, G.; Niccolini, F.; Politis, M. Increased dopaminergic function in the thalamus is associated with excessive daytime sleepiness. Sleep Med. 2018, 43, 25–30. [Google Scholar] [CrossRef]
- Quiñones, G.M.; Mayeli, A.; Yushmanov, V.E.; Hetherington, H.P.; Ferrarelli, F. Reduced GABA/glutamate in the thalamus of individuals at clinical high risk for psychosis. Neuropsychopharmacology 2021, 46, 1133–1139. [Google Scholar] [CrossRef]
- Sui, Y.; Tian, Y.; Ko, W.K.D.; Wang, Z.; Jia, F.; Horn, A.; De Ridder, D.; Choi, K.S.; Bari, A.A.; Wang, S.; et al. Deep Brain Stimulation Initiative: Toward Innovative Technology, New Disease Indications, and Approaches to Current and Future Clinical Challenges in Neuromodulation Therapy. Front. Neurol. 2021, 11, 597451. [Google Scholar] [CrossRef] [PubMed]
- Buenzli, J.C.; Werth, E.; Baumann, C.R.; Belvedere, A.; Renzel, R.; Stieglitz, L.H.; Imbach, L.L. Deep brain stimulation of the anterior nucleus of the thalamus increases slow wave activity in NREM sleep. Epilepsia 2023, 64, 2044–2055. [Google Scholar] [CrossRef]
- Gummadavelli, A.; Motelow, J.E.; Smith, N.; Zhan, Q.; Schiff, N.D.; Blumenfeld, H. Thalamic stimulation to improve level of consciousness after seizures: Evaluation of electrophysiology and behavior. Epilepsia 2015, 56, 114–124. [Google Scholar] [CrossRef] [PubMed]
- Campolattaro, M.M.; Halverson, H.E.; Freeman, J.H. Medial auditory thalamic stimulation as a conditioned stimulus for eyeblink conditioning in rats. Learn. Mem. 2007, 14, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Ponnath, A.; Farris, H.E. Sound-by-sound thalamic stimulation modulates midbrain auditory excitability and relative binaural sensitivity in frogs. Front. Neural Circuits 2014, 8, 85. [Google Scholar] [CrossRef] [PubMed]
- Caspary, D.M.; Llano, D.A. Auditory thalamic circuits and GABAA receptor function: Putative mechanisms in tinnitus pathology. Hear. Res. 2017, 349, 197–207. [Google Scholar] [CrossRef] [PubMed]
- Lefaucheur, J.P.; Aleman, A.; Baeken, C.; Benninger, D.H.; Brunelin, J.; Di Lazzaro, V.; Filipović, S.R.; Grefkes, C.; Hasan, A.; Hummel, F.C.; et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014–2018). Clin. Neurophysiol. 2020, 131, 474–528. [Google Scholar] [CrossRef]
- Lin, H.; Li, W.; Ni, J.; Wang, Y. Clinical study of repetitive transcranial magnetic stimulation of the motor cortex for thalamic pain. Medicine 2018, 97, e11235. [Google Scholar] [CrossRef]
- Minks, E.; Kopickova, M.; Marecek, R.; Streitova, H.; Bares, M. Transcranial magnetic stimulation of the cerebellum. Biomed. Papers. 2010, 154, 133–139. [Google Scholar] [CrossRef]
- Sitaram, R.; Ros, T.; Stoeckel, L.; Haller, S.; Scharnowski, F.; Lewis-Peacock, J.; Weiskopf, N.; Blefari, M.L.; Rana, M.; Oblak, E.; et al. Closed-loop brain training: The science of neurofeedback. Nat. Rev. Neurosci. 2017, 18, 86–100. [Google Scholar] [CrossRef]
- Bearden, T.S.; Cassisi, J.E.; Pineda, M. Neurofeedback Training for a Patient with Thalamic and Cortical Infarctions. Appl. Psychophysiol. Biofeedback. 2003, 28, 241–253. [Google Scholar] [CrossRef] [PubMed]
- Zotev, V.; Misaki, M.; Phillips, R.; Wong, C.K.; Bodurka, J. Real-time fMRI neurofeedback of the mediodorsal and anterior thalamus enhances correlation between thalamic BOLD activity and alpha EEG rhythm. Hum. Brain Mapp. 2018, 39, 1024–1042. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Filchenko, I.; Bassetti, C.L.A.; Gutierrez Herrera, C. Thalamic Stroke: An Opportunity to Study the Brain Mechanisms of Sleep–Wake and Cognition. Clin. Transl. Neurosci. 2023, 7, 36. https://doi.org/10.3390/ctn7040036
Filchenko I, Bassetti CLA, Gutierrez Herrera C. Thalamic Stroke: An Opportunity to Study the Brain Mechanisms of Sleep–Wake and Cognition. Clinical and Translational Neuroscience. 2023; 7(4):36. https://doi.org/10.3390/ctn7040036
Chicago/Turabian StyleFilchenko, Irina, Claudio L. A. Bassetti, and Carolina Gutierrez Herrera. 2023. "Thalamic Stroke: An Opportunity to Study the Brain Mechanisms of Sleep–Wake and Cognition" Clinical and Translational Neuroscience 7, no. 4: 36. https://doi.org/10.3390/ctn7040036
APA StyleFilchenko, I., Bassetti, C. L. A., & Gutierrez Herrera, C. (2023). Thalamic Stroke: An Opportunity to Study the Brain Mechanisms of Sleep–Wake and Cognition. Clinical and Translational Neuroscience, 7(4), 36. https://doi.org/10.3390/ctn7040036