Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = tetrabutylammonium iodide (TBAI)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2182 KiB  
Article
Electronically Coupled Heterojunctions Based on Graphene and Cu2−xS Nanocrystals: The Effect of the Surface Ligand
by Ju Y. Shang, Mariangela Giancaspro, Adriana Grandolfo, Rafique A. Lakho, Elisabetta Fanizza, Suraj K. Patel, Giuseppe Valerio Bianco, Marinella Striccoli, Chiara Ingrosso, Oscar Vazquez-Mena and M. Lucia Curri
Molecules 2025, 30(1), 67; https://doi.org/10.3390/molecules30010067 - 27 Dec 2024
Viewed by 1076
Abstract
Optoelectronic devices combining single-layer graphene (SLG) and colloidal semiconducting nanocrystal (NC) heterojunctions have recently gained significant attention as efficient hybrid photodetectors. While most research has concentrated on systems using heavy metal-based semiconductor NCs, there is a need for further exploration of environmentally friendly [...] Read more.
Optoelectronic devices combining single-layer graphene (SLG) and colloidal semiconducting nanocrystal (NC) heterojunctions have recently gained significant attention as efficient hybrid photodetectors. While most research has concentrated on systems using heavy metal-based semiconductor NCs, there is a need for further exploration of environmentally friendly nanomaterials, such as Cu2−xS. Chemical ligands play a crucial role in these hybrid photodetectors, as they enable charge transfer between the NCs and SLG. This study investigates the photoresponse of an SLG/Cu2−xS NCs heterojunction, comparing the effect of two short molecules—tetrabutylammonium iodide (TBAI) and 3,4-dimethylbenzenethiol (DMBT)—as surface ligands on the resulting structures. We have analysed charge transfer at the heterojunctions between SLG and the Cu2−xS NCs before and after modification with TBAI and DMBT using Raman spectroscopy and transconductance measurements under thermal equilibrium. The photoresponse of two hybrid devices based on three layers of Cu2xS NCs, deposited in one case on SLG/Cu2−xS/TBAI (“TBAI-only” device) and in the other on SLG/Cu2−xS/DMBT (“DMBT + TBAI” device), with a TBAI treatment applied, for both, after each layer deposition, has been evaluated under 450 nm laser diode illumination. The results indicate that the TBAI-only device exhibited a significant increase in photocurrent (4 μA), with high responsivity (40 mA/W) and fast response times (<1 s), while the DMBT + TBAI device had lower photocurrent (0.2 μA) and responsivity (2.4 μA), despite similar response speeds. The difference is attributed to DMBT’s π–π interactions with SLG, which enhances electronic coupling but reduces SLG’s mobility and responsivity. Full article
Show Figures

Figure 1

12 pages, 1724 KiB  
Article
Iodophor-Catalyzed Disulfenylation of Amino Naphthalenes with Aryl Sulfonyl Hydrazines
by Yutong Yuan, Jing He, Xiaowei Ma, Sheng Han and Yan Liu
Molecules 2024, 29(11), 2411; https://doi.org/10.3390/molecules29112411 - 21 May 2024
Cited by 1 | Viewed by 1360
Abstract
An iodophor-catalyzed direct disulfenylation of amino naphthalenes with aryl sulfonyl hydrazines in water was developed. A series of aryl sulfides were obtained in moderate to excellent yields. The advantages of this green protocol were the simple reaction conditions (metal-free, water as the solvent, [...] Read more.
An iodophor-catalyzed direct disulfenylation of amino naphthalenes with aryl sulfonyl hydrazines in water was developed. A series of aryl sulfides were obtained in moderate to excellent yields. The advantages of this green protocol were the simple reaction conditions (metal-free, water as the solvent, under air), the odorless and easily available sulfur reagent, the broad substrate scope, and gram-scale synthesis. Moreover, the potential application of aryl sulfides was exemplified by further transformations. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Scheme 1

11 pages, 7429 KiB  
Article
Optimizing the Infrared Photoelectric Detection Performance of Pbs Quantum Dots through Solid-State Ligand Exchange
by Mei Yang, Huan Liu, Shuai Wen, Yuxuan Du and Fei Gao
Materials 2022, 15(24), 9058; https://doi.org/10.3390/ma15249058 - 19 Dec 2022
Cited by 8 | Viewed by 3115
Abstract
Lead sulfide (PbS) quantum dots (QDs) have attracted a great deal of attention in recent decades, due to their value for applications in optoelectronic devices. However, optimizing the performance of optoelectronic devices through ligand engineering has become a major challenge, as the surfactants [...] Read more.
Lead sulfide (PbS) quantum dots (QDs) have attracted a great deal of attention in recent decades, due to their value for applications in optoelectronic devices. However, optimizing the performance of optoelectronic devices through ligand engineering has become a major challenge, as the surfactants that surround quantum dots impede the transport of electrons. In this paper, we prepared PbS QD films and photoconductive devices with four different ligands: 1,2-ethylenedithiol (EDT), tetrabutylammonium iodide (TBAI), hexadecyl trimethyl ammonium bromide (CTAB), and sodium sulfide (Na2S). A series of characterization studies confirmed that using the appropriate ligands in the solid-state ligand exchange step for thin film fabrication can significantly improve the responsivity. The devices treated with sodium sulfide showed the best sensitivity and a wider detection from 400 nm to 2300 nm, compared to the other ligand-treated devices. The responsivity of the champion device reached 95.6 mA/W under laser illumination at 980 nm, with an intensity of 50 mW/cm2. Full article
Show Figures

Figure 1

15 pages, 2318 KiB  
Article
Development of a Polymeric Film Entrapping Rose Bengal and Iodide Anion for the Light-Induced Generation and Release of Bactericidal Hydrogen Peroxide
by Ana M. López-Fernández, Evelina E. Moisescu, Rosa de Llanos and Francisco Galindo
Int. J. Mol. Sci. 2022, 23(17), 10162; https://doi.org/10.3390/ijms231710162 - 5 Sep 2022
Cited by 6 | Viewed by 2692
Abstract
A series of poly(2-hydroxyethyl methacrylate) (PHEMA) thin films entrapping photosensitizer Rose Bengal (RB) and tetrabutylammonium iodide (TBAI) have been synthetized. The materials have been characterized by means of Thermogravimetric Analysis (TGA), Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) and UV-vis Absorption spectroscopy. [...] Read more.
A series of poly(2-hydroxyethyl methacrylate) (PHEMA) thin films entrapping photosensitizer Rose Bengal (RB) and tetrabutylammonium iodide (TBAI) have been synthetized. The materials have been characterized by means of Thermogravimetric Analysis (TGA), Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) and UV-vis Absorption spectroscopy. Irradiation of the materials with white light led to the generation of several bactericidal species, including singlet oxygen (1O2), triiodide anion (I3) and hydrogen peroxide (H2O2). 1O2 production was demonstrated spectroscopically by reaction with the chemical trap 2,2′-(anthracene-9,10-diylbis(methylene))dimalonic acid (ABDA). In addition, the reaction of iodide anion with 1O2 yielded I3 inside the polymeric matrix. This reaction is accompanied by the formation of H2O2, which diffuses out the polymeric matrix. Generation of both I3 and H2O2 was demonstrated spectroscopically (directly in the case of triiodide by the absorption at 360 nm and indirectly for H2O2 using the xylenol orange test). A series of photodynamic inactivation assays were conducted with the synthesized polymers against Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa. Complete eradication (7 log10 CFU/mL) of both bacteria occurred after only 5 min of white light irradiation (400–700 nm; total energy dose 24 J/cm2) of the polymer containing both RB and TBAI. The control polymer without embedded iodide (only RB) showed only marginal reductions of ca. 0.5 log10 CFU/mL. The main novelty of the present investigation is the generation of three bactericidal species (1O2, I3 and H2O2) at the same time using a single polymeric material containing all the elements needed to produce such a bactericidal cocktail, although the most relevant antimicrobial activity is shown by H2O2. This experimental approach avoids multistep protocols involving a final step of addition of I, as described previously for other assays in solution. Full article
(This article belongs to the Special Issue Photodynamic Therapy and Photodetection)
Show Figures

Figure 1

11 pages, 1874 KiB  
Article
Optical Properties, Morphology, and Stability of Iodide-Passivated Lead Sulfide Quantum Dots
by Ivan D. Skurlov, Iurii G. Korzhenevskii, Anastasiia S. Mudrak, Aliaksei Dubavik, Sergei A. Cherevkov, Petr S. Parfenov, Xiaoyu Zhang, Anatoly V. Fedorov, Aleksandr P. Litvin and Alexander V. Baranov
Materials 2019, 12(19), 3219; https://doi.org/10.3390/ma12193219 - 1 Oct 2019
Cited by 14 | Viewed by 4389
Abstract
Iodide atomic surface passivation of lead chalcogenides has spawned a race in efficiency of quantum dot (QD)-based optoelectronic devices. Further development of QD applications requires a deeper understanding of the passivation mechanisms. In the first part of the current study, we compare optics [...] Read more.
Iodide atomic surface passivation of lead chalcogenides has spawned a race in efficiency of quantum dot (QD)-based optoelectronic devices. Further development of QD applications requires a deeper understanding of the passivation mechanisms. In the first part of the current study, we compare optics and electrophysical properties of lead sulfide (PbS) QDs with iodine ligands, obtained from different iodine sources. Methylammonium iodide (MAI), lead iodide (PbI2), and tetrabutylammonium iodide (TBAI) were used as iodine precursors. Using ultraviolet photoelectron spectroscopy, we show that different iodide sources change the QD HOMO/LUMO levels, allowing their fine tuning. AFM measurements suggest that colloidally-passivated QDs result in formation of more uniform thin films in one-step deposition. The second part of this paper is devoted to the PbS QDs with colloidally-exchanged shells (i.e., made from MAI and PbI2). We especially focus on QD optical properties and their stability during storage in ambient conditions. Colloidal lead iodide treatment is found to reduce the QD film resistivity and improve photoluminescence quantum yield (PLQY). At the same time stability of such QDs is reduced. MAI-treated QDs are found to be more stable in the ambient conditions but tend to agglomerate, which leads to undesirable changes in their optics. Full article
Show Figures

Figure 1

14 pages, 1644 KiB  
Article
ZnO/Ionic Liquid Catalyzed Biodiesel Production from Renewable and Waste Lipids as Feedstocks
by Michele Casiello, Lucia Catucci, Francesco Fracassi, Caterina Fusco, Amelita G. Laurenza, Luigi Di Bitonto, Carlo Pastore, Lucia D’Accolti and Angelo Nacci
Catalysts 2019, 9(1), 71; https://doi.org/10.3390/catal9010071 - 10 Jan 2019
Cited by 31 | Viewed by 5450
Abstract
A new protocol for biodiesel production is proposed, based on a binary ZnO/TBAI (TBAI = tetrabutylammonium iodide) catalytic system. Zinc oxide acts as a heterogeneous, bifunctional Lewis acid/base catalyst, while TBAI plays the role of phase transfer agent. Being composed by the bulk [...] Read more.
A new protocol for biodiesel production is proposed, based on a binary ZnO/TBAI (TBAI = tetrabutylammonium iodide) catalytic system. Zinc oxide acts as a heterogeneous, bifunctional Lewis acid/base catalyst, while TBAI plays the role of phase transfer agent. Being composed by the bulk form powders, the whole catalyst system proved to be easy to use, without requiring nano-structuration or tedious and costly preparation or pre-activation procedures. In addition, due to the amphoteric properties of ZnO, the catalyst can simultaneously promote transesterification and esterification processes, thus becoming applicable to common vegetable oils (e.g., soybean, jatropha, linseed, etc.) and animal fats (lard and fish oil), but also to waste lipids such as cooking oils (WCOs), highly acidic lipids from oil industry processing, and lipid fractions of municipal sewage sludge. Reusability of the catalyst system together with kinetic (Ea) and thermodynamic parameters of activation (ΔG and ΔH) are also studied for transesterification reaction. Full article
Show Figures

Graphical abstract

18 pages, 2373 KiB  
Article
Charge Transport in Trap-Sensitized Infrared PbS Quantum-Dot-Based Photoconductors: Pros and Cons
by Alberto Maulu, Juan Navarro-Arenas, Pedro J. Rodríguez-Cantó, Juan F. Sánchez-Royo, Rafael Abargues, Isaac Suárez and Juan P. Martínez-Pastor
Nanomaterials 2018, 8(9), 677; https://doi.org/10.3390/nano8090677 - 30 Aug 2018
Cited by 26 | Viewed by 5666
Abstract
Control of quantum-dot (QD) surface chemistry offers a direct approach for the tuning of charge-carrier dynamics in photoconductors based on strongly coupled QD solids. We investigate the effects of altering the surface chemistry of PbS QDs in such QD solids via ligand exchange [...] Read more.
Control of quantum-dot (QD) surface chemistry offers a direct approach for the tuning of charge-carrier dynamics in photoconductors based on strongly coupled QD solids. We investigate the effects of altering the surface chemistry of PbS QDs in such QD solids via ligand exchange using 3-mercaptopropionic acid (MPA) and tetrabutylammonium iodide (TBAI). The roll-to-roll compatible doctor-blade technique was used for the fabrication of the QD solid films as the photoactive component in photoconductors and field-effect phototransistors. The ligand exchange of the QD solid film with MPA yields superior device performance with higher photosensitivity and detectivity, which is due to less dark current and lower noise level as compared to ligand exchange with TBAI. In both cases, the mechanism responsible for photoconductivity is related to trap sensitization of the QD solid, in which traps are responsible of high photoconductive gain values, but slow response times under very low incident optical power (<1 pW). At medium–high incident optical powers (>100 pW), where traps are filled, both MPA- and TBAI-treated photodevices exhibit similar behavior, characterized by lower responsivity and faster response time, as limited by the mobility in the QD solid. Full article
Show Figures

Figure 1

8 pages, 39 KiB  
Article
Synthesis of Mixed Carbonates via a Three-Component Coupling of Alcohols, CO2, and Alkyl Halides in the Presence of K2CO3 and Tetrabutylammonium Iodide
by Min Shi and Yu-Mei Shen
Molecules 2002, 7(4), 386-393; https://doi.org/10.3390/70400386 - 30 Apr 2002
Cited by 18 | Viewed by 10530
Abstract
Various mixed carbonates can be conveniently prepared in good yields using the corresponding alcohols, alkyl halides under CO2 atmosphere in the presence of potassium carbonate or sodium carbonate and tetrabutylammonium iodide. Full article
Show Figures

Figure 1

Back to TopTop