Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (47)

Search Parameters:
Keywords = targeting HBV cccDNA

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 7922 KiB  
Article
Wnt/β-Catenin Signaling Regulates Hepatitis B Virus cccDNA Levels
by Atsuya Ishida, Sadahiro Iwabuchi, Ying-Yi Li, Kazuhisa Murai, Takayoshi Shirasaki, Kazuyuki Kuroki, Tetsuro Shimakami, Koki Nio, Kazunori Kawaguchi, Tadashi Imafuku, Satoru Ito, Taro Yamashita, Shuichi Kaneko, Hiroshi Yanagawa, Kouji Matsushima, Masao Honda and Shinichi Hashimoto
Int. J. Mol. Sci. 2025, 26(14), 6942; https://doi.org/10.3390/ijms26146942 - 19 Jul 2025
Viewed by 281
Abstract
Hepatitis B virus (HBV) specifically infects hepatocytes and has a complex life cycle owing to the stabilization and pooling of covalently closed circular DNA (cccDNA) in the nucleus of infected hepatocytes. We previously reported that the suppression of dedicator of cytokinesis 11 (DOCK11) [...] Read more.
Hepatitis B virus (HBV) specifically infects hepatocytes and has a complex life cycle owing to the stabilization and pooling of covalently closed circular DNA (cccDNA) in the nucleus of infected hepatocytes. We previously reported that the suppression of dedicator of cytokinesis 11 (DOCK11) decreases cccDNA and HBV-DNA levels and identified it as a new HBV therapeutic target. The DOCK11-associated gene, Wnt/β-catenin signaling regulator tankyrase (TNKS), was identified using in vitro methods; however, its function in the HBV life cycle remains unknown. Here, we used various inhibitors, antagonists, and short-hairpin RNA treatments related to TNKS signaling in HBV-infected hepatocytes. The role of TNKS-related Wnt/β-catenin signaling in the HBV life cycle was evaluated using immunoprecipitation assays with DOCK11 and bulk RNA sequencing methods. TNKS and Wnt/β-catenin signaling inhibitors significantly repressed cccDNA and HBV-DNA levels. Conversely, certain Wnt/β-catenin signaling agonists enhanced the HBV life cycle. DOCK11 directly binds to β-catenin to regulate HBV using its nuclear transport system. SKL2001, normally used as a Wnt/β-catenin signaling agonist, strongly reduced cccDNA in HBV-infected hepatocytes and in combination with entecavir predominantly eradicated HBV without cytotoxicity. Therefore, DOCK11 and other Wnt/β-catenin signaling molecules may be therapeutic targets to prevent persistent HBV infection. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Graphical abstract

19 pages, 937 KiB  
Review
The Intrinsically Disordered Region of HBx and Virus–Host Interactions: Uncovering New Therapeutic Approaches for HBV and Cancer
by Rodrigo A. Villanueva and Alejandra Loyola
Int. J. Mol. Sci. 2025, 26(8), 3552; https://doi.org/10.3390/ijms26083552 - 10 Apr 2025
Cited by 1 | Viewed by 890
Abstract
Human viral infections remain a significant global health challenge, contributing to a substantial number of cancer cases worldwide. Among them, infections with oncoviruses such as hepatitis B virus (HBV) and hepatitis C virus (HCV) are key drivers of hepatocellular carcinoma (HCC). Despite the [...] Read more.
Human viral infections remain a significant global health challenge, contributing to a substantial number of cancer cases worldwide. Among them, infections with oncoviruses such as hepatitis B virus (HBV) and hepatitis C virus (HCV) are key drivers of hepatocellular carcinoma (HCC). Despite the availability of an effective HBV vaccine since the 1980s, millions remain chronically infected due to the persistence of covalently closed circular DNA (cccDNA) as a reservoir in hepatocytes. Current antiviral therapies, including nucleos(t)ide analogs and interferon, effectively suppress viral replication but fail to eliminate cccDNA, underscoring the urgent need for innovative therapeutic strategies. Direct-acting antiviral agents (DAAs), which have revolutionized HCV treatment with high cure rates, offer a promising model for HBV therapy. A particularly attractive target is the intrinsically disordered region (IDR) of the HBx protein, which regulates cccDNA transcription, viral replication, and oncogenesis by interacting with key host proteins. DAAs targeting these interactions could inhibit viral persistence, suppress oncogenic signaling, and overcome treatment resistance. This review highlights the potential of HBx-directed DAAs to complement existing therapies, offering renewed hope for a functional HBV cure and reduced cancer risk. Full article
(This article belongs to the Special Issue Antiviral Drug Targets: Structure, Function, and Drug Design 2.0)
Show Figures

Figure 1

30 pages, 6699 KiB  
Review
Potential Benefits of In Silico Methods: A Promising Alternative in Natural Compound’s Drug Discovery and Repurposing for HBV Therapy
by Samuel Chima Ugbaja, Aganze Gloire-Aimé Mushebenge, Hezekiel Kumalo, Mlungisi Ngcobo and Nceba Gqaleni
Pharmaceuticals 2025, 18(3), 419; https://doi.org/10.3390/ph18030419 - 16 Mar 2025
Viewed by 1871
Abstract
Hepatitis B virus (HBV) is an important global public health issue. The World Health Organization (WHO) 2024 Global Hepatitis Report estimated that the global prevalence of people living with HBV infection is 254 million, with an estimated prevalence incidence of 1.2 million new [...] Read more.
Hepatitis B virus (HBV) is an important global public health issue. The World Health Organization (WHO) 2024 Global Hepatitis Report estimated that the global prevalence of people living with HBV infection is 254 million, with an estimated prevalence incidence of 1.2 million new HBV infections yearly. Previous studies have shown that natural compounds have antiviral inhibition potentials. In silico methods such as molecular docking, virtual screening, pharmacophore modeling, quantitative structure–activity relationship (QSAR), and molecular dynamic simulations have been successfully applied in identifying bioactive compounds with strong binding energies in HBV treatment targets. The COVID-19 pandemic necessitated the importance of repurposing already approved drugs using in silico methods. This study is aimed at unveiling the benefits of in silico techniques as a potential alternative in natural compounds’ drug discovery and repurposing for HBV therapy. Relevant articles from PubMed, Google Scholar, and Web of Science were retrieved and analyzed. Furthermore, this study comprehensively reviewed the literature containing identified bioactive compounds with strong inhibition of essential HBV proteins. Notably, hesperidin, quercetin, kaempferol, myricetin, and flavonoids have shown strong binding energies for hepatitis B surface antigen (HBsAg). The investigation reveals that in silico drug discovery methods offer an understanding of the mechanisms of action, reveal previously overlooked viral targets (including PreS1 Domain of HBsAg and cccDNA (Covalently Closed Circular DNA) regulators, and facilitate the creation of specific inhibitors. The integration of in silico, in vitro, and in vivo techniques is essential for the discovery of new drugs for HBV therapy. The insights further highlight the importance of natural compounds and in silico methods as targets in drug discovery for HBV therapy. Moreover, the combination of natural compounds, an in silico approach, and drug repurposing improves the chances of personalized and precision medicine in HBV treatment. Therefore, we recommend drug repurposing strategies that combine in vitro, in vivo, and in silico approaches to facilitate the discovery of effective HBV drugs. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

14 pages, 2356 KiB  
Review
HBV cccDNA: The Molecular Reservoir of Hepatitis B Persistence and Challenges to Achieve Viral Eradication
by André Boonstra and Gulce Sari
Biomolecules 2025, 15(1), 62; https://doi.org/10.3390/biom15010062 - 4 Jan 2025
Cited by 1 | Viewed by 4134
Abstract
Hepatitis B virus (HBV) is a major global health issue, with an estimated 254 million people living with chronic HBV infection worldwide as of 2022. Chronic HBV infection is the leading cause of cirrhosis and liver cancer. Current treatment with nucleos(t)ide analogs is [...] Read more.
Hepatitis B virus (HBV) is a major global health issue, with an estimated 254 million people living with chronic HBV infection worldwide as of 2022. Chronic HBV infection is the leading cause of cirrhosis and liver cancer. Current treatment with nucleos(t)ide analogs is effective in the suppression of viral activity but generally requires lifelong treatment. They fail to eradicate the HBV viral reservoir, called covalently closed circular DNA (cccDNA), which replicates in the nucleus of liver cells. The cccDNA serves as the sole template for viral replication, as it generates the pregenomic RNA (pgRNA) necessary for producing new viral genomes. This stable form of viral DNA can reactivate the virus when treatment is stopped. HBV cccDNA is therefore one of the main challenges in curing chronic HBV infections. By targeting steps such as cccDNA formation, capsid assembly, or particle secretion, researchers continue to seek ways to interfere with HBV replication and to reduce its persistence, ultimately to eradicate HBV as a global health problem. This review provides an overview of what is currently known about cccDNA formation and biogenesis and the ongoing efforts to target and eradicate it to cure chronic HBV infections. Full article
(This article belongs to the Special Issue Molecular Mechanisms Underlying Liver Diseases)
Show Figures

Figure 1

15 pages, 1056 KiB  
Review
Targeting HBV cccDNA Levels: Key to Achieving Complete Cure of Chronic Hepatitis B
by Wei He, Zhijin Zheng, Qian Zhao, Renxia Zhang and Hui Zheng
Pathogens 2024, 13(12), 1100; https://doi.org/10.3390/pathogens13121100 - 13 Dec 2024
Cited by 4 | Viewed by 2112
Abstract
Chronic hepatitis B (CHB) caused by HBV infection has brought suffering to numerous people. Due to the stable existence of HBV cccDNA, the original template for HBV replication, chronic hepatitis B (CHB) is difficult to cure completely. Despite current antiviral strategies being able [...] Read more.
Chronic hepatitis B (CHB) caused by HBV infection has brought suffering to numerous people. Due to the stable existence of HBV cccDNA, the original template for HBV replication, chronic hepatitis B (CHB) is difficult to cure completely. Despite current antiviral strategies being able to effectively limit the progression of CHB, complete CHB cure requires directly targeting HBV cccDNA. In this review, we discuss strategies that may achieve a complete cure of CHB, including inhibition of cccDNA de novo synthesis, targeting cccDNA degradation through host factors and small molecules, CRISP-Cas9-based cccDNA editing, and silencing cccDNA epigenetically. Full article
Show Figures

Figure 1

9 pages, 1028 KiB  
Communication
Chronic Hepatitis B Genotype C Mouse Model with Persistent Covalently Closed Circular DNA
by Deok-Hwa Seo, Wonhee Hur, Juhee Won, Ji-Won Han, Seung-Kew Yoon, Songmee Bae, Kyun-Hwan Kim and Pil-Soo Sung
Viruses 2024, 16(12), 1890; https://doi.org/10.3390/v16121890 - 7 Dec 2024
Viewed by 1505
Abstract
Hepatitis B virus (HBV) can cause chronic infections, significantly increasing the risk of death from cirrhosis and hepatocellular carcinoma (HCC). A key player in chronic HBV infection is covalently closed circular DNA (cccDNA), a stable episomal form of viral DNA that acts as [...] Read more.
Hepatitis B virus (HBV) can cause chronic infections, significantly increasing the risk of death from cirrhosis and hepatocellular carcinoma (HCC). A key player in chronic HBV infection is covalently closed circular DNA (cccDNA), a stable episomal form of viral DNA that acts as a persistent reservoir in infected hepatocytes and drives continuous viral replication. Despite the development of several animal models, few adequately replicate cccDNA formation and maintenance, limiting our understanding of its dynamics and the evaluation of potential therapeutic interventions targeting cccDNA. In this study, we aimed to develop a mouse model to investigate cccDNA formation and maintenance. We infected C57BL/6 mice with recombinant adeno-associated virus (rAAV) carrying a 1.3-overlength HBV genome (genotype C) and collected liver tissue at various time points to assess cccDNA levels and viral replication. Our results demonstrated the successful establishment of a chronic hepatitis B mouse model using rAAV-HBV1.3, which supported persistent HBV infection with sustained cccDNA expression in hepatocytes. Serum levels of HBsAg and HBeAg were elevated for up to 12 weeks, while alanine transaminase (ALT) levels remained within the normal range, indicating limited liver damage during this period. We confirmed HBV DNA expression in hepatocytes, and importantly, cccDNA was detected using qPCR after Plasmid-Safe ATP-Dependent DNase treatment, which selectively removes non-cccDNA forms. Additionally, Southern blot analysis confirmed the presence of cccDNA isolated using the Hirt extraction method. This established model provides a valuable platform for studying the long-term maintenance of cccDNA in chronic HBV infection and offers an important tool for testing novel therapeutic strategies aimed at targeting cccDNA. Full article
Show Figures

Figure 1

18 pages, 16516 KiB  
Article
RRM2 Regulates Hepatocellular Carcinoma Progression Through Activation of TGF-β/Smad Signaling and Hepatitis B Virus Transcription
by Dandan Wu, Xinning Sun, Xin Li, Zongchao Zuo, Dong Yan and Wu Yin
Genes 2024, 15(12), 1575; https://doi.org/10.3390/genes15121575 - 6 Dec 2024
Cited by 1 | Viewed by 3474
Abstract
Background: Hepatocellular carcinoma (HCC) is a type of malignant tumor with high morbidity and mortality. Untimely treatment and high recurrence are currently the major challenges for HCC. The identification of potential targets of HCC progression is crucial for the development of new therapeutic [...] Read more.
Background: Hepatocellular carcinoma (HCC) is a type of malignant tumor with high morbidity and mortality. Untimely treatment and high recurrence are currently the major challenges for HCC. The identification of potential targets of HCC progression is crucial for the development of new therapeutic strategies. Methods: Bioinformatics analyses have been employed to discover genes that are differentially expressed in clinical cases of HCC. A variety of pharmacological methods, such as MTT, colony formation, EdU, Western blotting, Q-PCR, wound healing, Transwell, cytoskeleton F-actin filaments, immunohistochemistry (IHC), hematoxylin–eosin (HE) staining, and dual-luciferase reporter assay analyses, were utilized to study the pharmacological effects and potential mechanisms of ribonucleotide reductase regulatory subunit M2 (RRM2) in HCC. Results: RRM2 expression is significantly elevated in HCC, which is well correlated with poor clinical outcomes. Both in vitro and in vivo experiments demonstrated that RRM2 promoted HCC cell growth and metastasis. Mechanistically, RRM2 modulates the EMT phenotype of HCC, and further studies have shown that RRM2 facilitates the activation of the TGF-β/Smad signaling pathway. SB431542, an inhibitor of TGF-β signaling, significantly inhibited RRM2-induced cell migration. Furthermore, RRM2 expression was correlated with diminished survival in HBV-associated HCC patients. RRM2 knockdown decreased the levels of HBV RNA, pgRNA, cccDNA, and HBV DNA in HepG2.2.15 cells exhibiting sustained HBV infection, while RRM2 knockdown inhibited the activity of the HBV Cp, Xp, and SpI promoters. Conclusion: RRM2 is involved in the progression of HCC by activating the TGF-β/Smad signaling pathway. RRM2 increases HBV transcription in HBV-expressing HCC cells. Targeting RRM2 may be of potential value in the treatment of HCC. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Graphical abstract

17 pages, 1387 KiB  
Review
Evaluation of Interfering RNA Efficacy in Treating Hepatitis B: Is It Promising?
by Giovana Paula Angelice, Pedro Henrique Roque, Gabriel Valente, Krishna Galvão, Livia Melo Villar, Vinicius Motta Mello, Francisco C. A. Mello and Bárbara Vieira Lago
Viruses 2024, 16(11), 1710; https://doi.org/10.3390/v16111710 - 31 Oct 2024
Cited by 4 | Viewed by 2100
Abstract
Background: Despite an existing safe and effective vaccine for hepatitis B virus (HBV), it is still a major public health concern. Nowadays, several drugs are used to treat chronic hepatitis B; however, full healing remains controversial. The viral covalently closed circular DNA (cccDNA) [...] Read more.
Background: Despite an existing safe and effective vaccine for hepatitis B virus (HBV), it is still a major public health concern. Nowadays, several drugs are used to treat chronic hepatitis B; however, full healing remains controversial. The viral covalently closed circular DNA (cccDNA) formed by HBV forms a major challenge in its treatment, as does the ability of HBV to integrate itself into the host genome, which enables infection reactivation. Interfering RNA (RNAi) is a gene-silencing post-transcriptional mechanism which forms as a promising alternative to treat chronic hepatitis B. The aim of the present review is to assess the evolution of hepatitis B treatment approaches based on using RNA interference. Methods: Data published between 2016 and 2023 in scientific databases (PubMed, PMC, LILACS, and Bireme) were assessed. Results: In total, 76,949 articles were initially identified and quality-checked, and 226 eligible reports were analyzed in depth. The main genomic targets, delivery systems, and major HBV therapy innovations are discussed in this review. This review reinforces the therapeutic potential of RNAi and identifies the need for conducting further studies to fill the remaining gaps between bench and clinical practice. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

18 pages, 1144 KiB  
Review
SMC5/6-Mediated Transcriptional Regulation of Hepatitis B Virus and Its Therapeutic Potential
by Johannes Bächer, Lena Allweiss and Maura Dandri
Viruses 2024, 16(11), 1667; https://doi.org/10.3390/v16111667 - 25 Oct 2024
Cited by 5 | Viewed by 2367
Abstract
Cells have developed various mechanisms to counteract viral infections. In an evolutionary arms race, cells mobilize cellular restriction factors to fight off viruses, targeted by viral factors to facilitate their own replication. The hepatitis B virus (HBV) is a small dsDNA virus that [...] Read more.
Cells have developed various mechanisms to counteract viral infections. In an evolutionary arms race, cells mobilize cellular restriction factors to fight off viruses, targeted by viral factors to facilitate their own replication. The hepatitis B virus (HBV) is a small dsDNA virus that causes acute and chronic infections of the liver. Its genome persists in the nuclei of infected hepatocytes as a covalently closed circular DNA (cccDNA) minichromosome, thus building up an episomal persistence reservoir. The chromosomal maintenance complex SMC5/6 acts as a restriction factor hindering cccDNA transcription, whereas the viral regulatory protein HBx targets SMC5/6 for proteasomal degradation, thus relieving transcriptional suppression of the HBV minichromosome. To date, no curative therapies are available for chronic HBV carriers. Knowledge of the factors regulating the cccDNA and the development of therapies involving silencing the minichromosome or specifically interfering with the HBx-SMC5/6 axis holds promise in achieving sustained viral control. Here, we summarize the current knowledge of the mechanism of SMC5/6-mediated HBV restriction. We also give an overview of SMC5/6 cellular functions and how this compares to the restriction of other DNA viruses. We further discuss the therapeutic potential of available and investigational drugs interfering with the HBx-SMC5/6 axis. Full article
(This article belongs to the Special Issue HBV Transcriptional and Post-transcriptional Regulation)
Show Figures

Figure 1

25 pages, 1700 KiB  
Review
Applications of CRISPR/Cas as a Toolbox for Hepatitis B Virus Detection and Therapeutics
by Anuj Kumar, Emmanuel Combe, Léa Mougené, Fabien Zoulim and Barbara Testoni
Viruses 2024, 16(10), 1565; https://doi.org/10.3390/v16101565 - 2 Oct 2024
Cited by 1 | Viewed by 3825
Abstract
Hepatitis B virus (HBV) infection remains a significant global health challenge, leading to chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma (HCC). Covalently closed circular DNA (cccDNA) and integrated HBV DNA are pivotal in maintaining viral persistence. Recent advances in CRISPR/Cas technology offer innovative [...] Read more.
Hepatitis B virus (HBV) infection remains a significant global health challenge, leading to chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma (HCC). Covalently closed circular DNA (cccDNA) and integrated HBV DNA are pivotal in maintaining viral persistence. Recent advances in CRISPR/Cas technology offer innovative strategies to inhibit HBV by directly targeting both cccDNA and integrated HBV DNA or indirectly by degrading HBV RNAs or targeting host proteins. This review provides a comprehensive overview of the latest advancements in using CRISPR/Cas to inhibit HBV, with a special highlight on newer non-double-strand (non-DSB) break approaches. Beyond the canonical use of CRISPR/Cas for target inhibition, we discuss additional applications, including HBV diagnosis and developing models to understand cccDNA biology, highlighting the diverse use of this technology in the HBV field. Full article
(This article belongs to the Special Issue CRISPR/Cas in Viral Research 2024)
Show Figures

Figure 1

12 pages, 1890 KiB  
Review
Roles Played by DOCK11, a Guanine Nucleotide Exchange Factor, in HBV Entry and Persistence in Hepatocytes
by Ying-Yi Li, Kazuhisa Murai, Junyan Lyu and Masao Honda
Viruses 2024, 16(5), 745; https://doi.org/10.3390/v16050745 - 8 May 2024
Cited by 2 | Viewed by 2471
Abstract
HBV infection is challenging to cure due to the persistence of viral covalently closed circular viral DNA (cccDNA). The dedicator of cytokinesis 11 (DOCK11) is recognized as a guanine nucleotide exchange factor (GEF) for CDC42 that has been reported to be required for [...] Read more.
HBV infection is challenging to cure due to the persistence of viral covalently closed circular viral DNA (cccDNA). The dedicator of cytokinesis 11 (DOCK11) is recognized as a guanine nucleotide exchange factor (GEF) for CDC42 that has been reported to be required for HBV persistence. DOCK11 is expressed in both the cytoplasm and nucleus of human hepatocytes and is functionally associated with retrograde trafficking proteins Arf-GAP with GTPase domain, ankyrin repeat, and pleckstrin homology domain-containing protein 2 (AGAP2), and ADP-ribosylation factor 1 (ARF1), together with the HBV capsid, in the trans-Golgi network (TGN). This opens an alternative retrograde trafficking route for HBV from early endosomes (EEs) to the TGN and then to the endoplasmic reticulum (ER), thereby avoiding lysosomal degradation. DOCK11 also facilitates the association of cccDNA with H3K4me3 and RNA Pol II for activating cccDNA transcription. In addition, DOCK11 plays a crucial role in the host DNA repair system, being essential for cccDNA synthesis. This function can be inhibited by 10M-D42AN, a novel DOCK11-binding peptide, leading to the suppression of HBV replication both in vitro and in vivo. Treatment with a combination of 10M-D42AN and entecavir may represent a promising therapeutic strategy for patients with chronic hepatitis B (CHB). Consequently, DOCK11 may be seen as a potential candidate molecule in the development of molecularly targeted drugs against CHB. Full article
(This article belongs to the Special Issue Unraveling the Pathogenesis of Persistent Virus Infection)
Show Figures

Figure 1

15 pages, 1122 KiB  
Review
Co-Transcriptional Regulation of HBV Replication: RNA Quality Also Matters
by Guillaume Giraud, Khadija El Achi, Fabien Zoulim and Barbara Testoni
Viruses 2024, 16(4), 615; https://doi.org/10.3390/v16040615 - 16 Apr 2024
Cited by 2 | Viewed by 2353
Abstract
Chronic hepatitis B (CHB) virus infection is a major public health burden and the leading cause of hepatocellular carcinoma. Despite the efficacy of current treatments, hepatitis B virus (HBV) cannot be fully eradicated due to the persistence of its minichromosome, or covalently closed [...] Read more.
Chronic hepatitis B (CHB) virus infection is a major public health burden and the leading cause of hepatocellular carcinoma. Despite the efficacy of current treatments, hepatitis B virus (HBV) cannot be fully eradicated due to the persistence of its minichromosome, or covalently closed circular DNA (cccDNA). The HBV community is investing large human and financial resources to develop new therapeutic strategies that either silence or ideally degrade cccDNA, to cure HBV completely or functionally. cccDNA transcription is considered to be the key step for HBV replication. Transcription not only influences the levels of viral RNA produced, but also directly impacts their quality, generating multiple variants. Growing evidence advocates for the role of the co-transcriptional regulation of HBV RNAs during CHB and viral replication, paving the way for the development of novel therapies targeting these processes. This review focuses on the mechanisms controlling the different co-transcriptional processes that HBV RNAs undergo, and their contribution to both viral replication and HBV-induced liver pathogenesis. Full article
(This article belongs to the Special Issue HBV Transcriptional and Post-transcriptional Regulation)
Show Figures

Figure 1

19 pages, 2046 KiB  
Article
Preclinical Antiviral and Safety Profiling of the HBV RNA Destabilizer AB-161
by Angela M. Lam, Ravi R. Dugyala, Muhammed Sheraz, Fei Liu, Emily P. Thi, Ingrid E. Graves, Andrea Cuconati, Holly Micolochick Steuer, Andrzej Ardzinski, Nathan Overholt, Jeremy D. Mason, Dimitar Gotchev, Andrew G. Cole, Troy O. Harasym and Michael J. Sofia
Viruses 2024, 16(3), 323; https://doi.org/10.3390/v16030323 - 21 Feb 2024
Cited by 7 | Viewed by 2865
Abstract
HBV RNA destabilizers are a class of small-molecule compounds that target the noncanonical poly(A) RNA polymerases PAPD5 and PAPD7, resulting in HBV RNA degradation and the suppression of viral proteins including the hepatitis B surface antigen (HBsAg). AB-161 is a next-generation HBV RNA [...] Read more.
HBV RNA destabilizers are a class of small-molecule compounds that target the noncanonical poly(A) RNA polymerases PAPD5 and PAPD7, resulting in HBV RNA degradation and the suppression of viral proteins including the hepatitis B surface antigen (HBsAg). AB-161 is a next-generation HBV RNA destabilizer with potent antiviral activity, inhibiting HBsAg expressed from cccDNA and integrated HBV DNA in HBV cell-based models. AB-161 exhibits broad HBV genotype coverage, maintains activity against variants resistant to nucleoside analogs, and shows additive effects on HBV replication when combined with other classes of HBV inhibitors. In AAV-HBV-transduced mice, the dose-dependent reduction of HBsAg correlated with concentrations of AB-161 in the liver reaching above its effective concentration mediating 90% inhibition (EC90), compared to concentrations in plasma which were substantially below its EC90, indicating that high liver exposure drives antiviral activities. In preclinical 13-week safety studies, minor non-adverse delays in sensory nerve conductance velocity were noted in the high-dose groups in rats and dogs. However, all nerve conduction metrics remained within physiologically normal ranges, with no neurobehavioral or histopathological findings. Despite the improved neurotoxicity profile, microscopic findings associated with male reproductive toxicity were detected in dogs, which subsequently led to the discontinuation of AB-161’s clinical development. Full article
(This article belongs to the Special Issue HBV Transcriptional and Post-transcriptional Regulation)
Show Figures

Figure 1

18 pages, 6226 KiB  
Review
Review of Related Factors for Persistent Risk of Hepatitis B Virus-Associated Hepatocellular Carcinoma
by Nevin Varghese, Amry Majeed, Suraj Nyalakonda, Tina Boortalary, Dina Halegoua-DeMarzio and Hie-Won Hann
Cancers 2024, 16(4), 777; https://doi.org/10.3390/cancers16040777 - 14 Feb 2024
Cited by 12 | Viewed by 8214
Abstract
Chronic hepatitis B virus (HBV) infection is the largest global cause of hepatocellular carcinoma (HCC). Current HBV treatment options include pegylated interferon-alpha and nucleos(t)ide analogues (NAs), which have been shown to be effective in reducing HBV DNA levels to become undetectable. However, the [...] Read more.
Chronic hepatitis B virus (HBV) infection is the largest global cause of hepatocellular carcinoma (HCC). Current HBV treatment options include pegylated interferon-alpha and nucleos(t)ide analogues (NAs), which have been shown to be effective in reducing HBV DNA levels to become undetectable. However, the literature has shown that some patients have persistent risk of developing HCC. The mechanism in which this occurs has not been fully elucidated. However, it has been discovered that HBV’s covalently closed circular DNA (cccDNA) integrates into the critical HCC driver genes in hepatocytes upon initial infection; additionally, these are not targets of current NA therapies. Some studies suggest that HBV undergoes compartmentalization in peripheral blood mononuclear cells that serve as a sanctuary for replication during antiviral therapy. The aim of this review is to expand on how patients with HBV may develop HCC despite years of HBV viral suppression and carry worse prognosis than treatment-naive HBV patients who develop HCC. Furthermore, HCC recurrence after initial surgical or locoregional treatment in this setting may cause carcinogenic cells to behave more aggressively during treatment. Curative novel therapies which target the life cycle of HBV, modulate host immune response, and inhibit HBV RNA translation are being investigated. Full article
(This article belongs to the Collection Primary Liver Cancer)
Show Figures

Figure 1

31 pages, 5824 KiB  
Review
Current Status and Challenges in Anti-Hepatitis B Virus Agents Based on Inactivation/Inhibition or Elimination of Hepatitis B Virus Covalently Closed Circular DNA
by An-Qi Zhuang, Yan Chen, Shan-Mei Chen, Wen-Cheng Liu, Yao Li, Wen-Jie Zhang and Yi-Hang Wu
Viruses 2023, 15(12), 2315; https://doi.org/10.3390/v15122315 - 25 Nov 2023
Cited by 11 | Viewed by 3967
Abstract
There has been over half a century since the discovery of hepatitis B virus (HBV) to now, but approximately 300 million patients with chronic hepatitis B (CHB) still live in the world, resulting in about one million deaths every year. Although currently approved [...] Read more.
There has been over half a century since the discovery of hepatitis B virus (HBV) to now, but approximately 300 million patients with chronic hepatitis B (CHB) still live in the world, resulting in about one million deaths every year. Although currently approved antivirals (e.g., nucleoside analogues) are effective at reducing HBV replication, they have almost no impact on the existing HBV covalently closed circular DNA (cccDNA) reservoir. HBV cccDNA is a critical obstacle to the complete elimination of the virus via antiviral therapy. The true cure of HBV infection requires the eradication of viral cccDNA from HBV-infected cells; thus, the development of new agents directly or indirectly targeting HBV cccDNA is urgently needed due to the limitations of current available drugs against HBV infection. In this regard, it is the major focus of current anti-HBV research worldwide via different mechanisms to either inactivate/inhibit (functional cure) or eliminate (complete cure) HBV cccDNA. Therefore, this review discussed and summarized recent advances and challenges in efforts to inactivate/silence or eliminate viral cccDNA using anti-HBV agents from different sources, such as small molecules (including epigenetic drugs) and polypeptides/proteins, and siRNA or gene-editing approaches targeting/attenuating HBV cccDNA via different mechanisms, as well as future directions that may be considered in efforts to truly cure chronic HBV infection. In conclusion, no breakthrough has been made yet in attenuating HBV cccDNA, although a number of candidates have advanced into the phase of clinical trials. Furthermore, the overwhelming majority of the candidates function to indirectly target HBV cccDNA. No outstanding candidate directly targets HBV cccDNA. Relatively speaking, CCC_R08 and nitazoxanide may be some of the most promising agents to clear HBV infection in small molecule compounds. Additionally, CRISPR-Cas9 systems can directly target HBV cccDNA for decay and demonstrate significant anti-HBV activity. Consequently, gene-editing approaches targeting HBV cccDNA may be one of the most promising means to achieve the core goal of anti-HBV therapeutic strategies. In short, more basic studies on HBV infection need to be carried out to overcome these challenges. Full article
(This article belongs to the Special Issue Innovative Inhibitors against Viral Targets)
Show Figures

Figure 1

Back to TopTop