Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = tapered I-beam

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1933 KiB  
Article
LTBWTB: A Mathematica Software to Evaluate the Lateral-Torsional Buckling Load of Web-Tapered Mono-Symmetric I-Section Beams
by Tolga Yılmaz
Appl. Sci. 2025, 15(13), 7572; https://doi.org/10.3390/app15137572 - 6 Jul 2025
Viewed by 298
Abstract
Web-tapered beams with I-sections, which are aesthetic and structurally efficient, have been widely used in steel structures. Web-tapered I-section beams bent about the strong axis may undergo out-of-plane buckling through lateral deflection and twisting. This primary stability failure mode in slender beams is [...] Read more.
Web-tapered beams with I-sections, which are aesthetic and structurally efficient, have been widely used in steel structures. Web-tapered I-section beams bent about the strong axis may undergo out-of-plane buckling through lateral deflection and twisting. This primary stability failure mode in slender beams is known as lateral-torsional buckling (LTB). Unlike prismatic I-beams, the complex mode shape of web-tapered I-section beams makes it challenging or even impossible to derive a closed-form expression for the LTB load under certain transverse loading conditions. Therefore, the LTB assessment of web-tapered I-section beams is primarily performed using finite element analysis (FEA). However, this method involves multiple steps, requires specialized expertise, and demands significant computational resources, making it impractical in certain cases. This study proposes an analytical approach based on the Ritz method to evaluate the LTB of simply supported web-tapered beams with doubly or mono-symmetric I-sections. The proposed analytical method accounts for web tapering, I-section mono-symmetry, types and positions of transverse loads, and beam slenderness. The method was implemented in Mathematica to allow the rapid evaluation of the LTB capacity of web-tapered I-beams. The study validates the LTB loads computed using the developed Mathematica package against results from shell-based FEA. An excellent agreement was observed between the analytically and numerically calculated LTB loads. Full article
Show Figures

Figure 1

23 pages, 7312 KiB  
Article
Deflection Predictions of Tapered Cellular Steel Beams Using Analytical Models and an Artificial Neural Network
by Amine Osmani, Rabee Shamass, Konstantinos Daniel Tsavdaridis, Felipe Piana Vendramell Ferreira and Abdelwahhab Khatir
Buildings 2025, 15(6), 992; https://doi.org/10.3390/buildings15060992 - 20 Mar 2025
Cited by 2 | Viewed by 540
Abstract
Cellular steel beams are primarily used to accommodate electrical and mechanical services within their structural depth, helping to reduce the floor-to-ceiling height in buildings. These beams are often tapered for various reasons, such as connecting members (e.g., beams) of different depths, adjusting stiffness [...] Read more.
Cellular steel beams are primarily used to accommodate electrical and mechanical services within their structural depth, helping to reduce the floor-to-ceiling height in buildings. These beams are often tapered for various reasons, such as connecting members (e.g., beams) of different depths, adjusting stiffness in specific areas, or enhancing architectural design. This paper presents an algorithm developed using MATLAB R2019a and an artificial neural network (ANN) to predict the deflection of tapered cellular steel beams. The approach considers the web I-section variation parameter (α), along with shear and bending effects that contribute to additional deflections. It also accounts for the influence of the stiffness of the upper and lower T-sections at the centreline of the web opening. To validate the model, a total of 1415 finite element models were analysed. The deflections predicted by the analytical and ANN models were compared with finite element results, showing good agreement. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

17 pages, 1396 KiB  
Article
Two-Way Coupled Aero-Structural Optimization of Stable Flying Wings
by José D. Hoyos, Camilo Echavarría, Juan P. Alvarado, Gustavo Suárez, Juliana A. Niño and Jorge I. García
Aerospace 2023, 10(4), 346; https://doi.org/10.3390/aerospace10040346 - 2 Apr 2023
Cited by 1 | Viewed by 2962
Abstract
An aero-structural algorithm to optimize a flying wing in cruise conditions for preliminary design is developed using two-way interaction between the structure and aerodynamics. A particle swarm routine is employed to solve the multi-objective optimization, aiming to reduce the weight of the structure [...] Read more.
An aero-structural algorithm to optimize a flying wing in cruise conditions for preliminary design is developed using two-way interaction between the structure and aerodynamics. A particle swarm routine is employed to solve the multi-objective optimization, aiming to reduce the weight of the structure and the aerodynamic drag at the design point. Different shapes are evaluated during the optimization process until the algorithm reaches the optimal wing aspect ratio, taper ratio, angle of incidence, twist angle, swept angle, and airfoil shape, where a six-parameters method is employed to allow reflex airfoils. A main isotropic I-beam models the wing structure. An extended vortex lattice model is employed to model the aerodynamics, along with a high-order panel method with fully coupled viscous interaction. The finite element method is used to solve the flying-wing structure under static loads. An algorithm is developed to iterate between the deflection of the wing and its impact on the aerodynamics until convergence is reached. Different constraints are implemented into the objective function to fulfil the structural criteria and the longitudinal static stability. A comparison against a baseline optimization is carried out, achieving higher efficiency and promising results in elliptical lift distribution, and a high static margin, without the use of non-constant twist. The results suggest that combining both reflex airfoils and sweep with washout is the optimal solution to reduce the drag and weight, keeping the longitudinal static stability criteria for tailless aircraft in the lower end of the transonic regime. Full article
(This article belongs to the Special Issue Aerodynamic Shape Optimization)
Show Figures

Figure 1

28 pages, 6746 KiB  
Article
Nonlocal Analysis of the Flexural–Torsional Stability for FG Tapered Thin-Walled Beam-Columns
by Masoumeh Soltani, Farzaneh Atoufi, Foudil Mohri, Rossana Dimitri and Francesco Tornabene
Nanomaterials 2021, 11(8), 1936; https://doi.org/10.3390/nano11081936 - 27 Jul 2021
Cited by 11 | Viewed by 3059
Abstract
This paper addresses the flexural–torsional stability of functionally graded (FG) nonlocal thin-walled beam-columns with a tapered I-section. The material composition is assumed to vary continuously in the longitudinal direction based on a power-law distribution. Possible small-scale effects are included within the formulation according [...] Read more.
This paper addresses the flexural–torsional stability of functionally graded (FG) nonlocal thin-walled beam-columns with a tapered I-section. The material composition is assumed to vary continuously in the longitudinal direction based on a power-law distribution. Possible small-scale effects are included within the formulation according to the Eringen nonlocal elasticity assumptions. The stability equations of the problem and the associated boundary conditions are derived based on the Vlasov thin-walled beam theory and energy method, accounting for the coupled interaction between axial and bending forces. The coupled equilibrium equations are solved numerically by means of the differential quadrature method (DQM) to determine the flexural–torsional buckling loads associated to the selected structural system. A parametric study is performed to check for the influence of some meaningful input parameters, such as the power-law index, the nonlocal parameter, the axial load eccentricity, the mode number and the tapering ratio, on the flexural–torsional buckling load of tapered thin-walled FG nanobeam-columns, whose results could be used as valid benchmarks for further computational validations of similar nanosystems. Full article
(This article belongs to the Special Issue Advanced Mechanical Modeling of Nanomaterials and Nanostructures)
Show Figures

Figure 1

Back to TopTop