Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (83)

Search Parameters:
Keywords = tannery industry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3472 KiB  
Article
A Hybrid Treatment System of the Coagulation/Flocculation/Settling Stage Followed by a Membrane Bioreactor (CFS-MBR) for Superior Removal of Cr and Nutrient Pollutants from Tannery Wastewater
by Hadis Saeedikia, Minoo Ghanbarzadeh, Milad Mahmoudzadeh, Manijeh Khorsi, Masoud Barani, Saeed Bazgir, Omid Tavakoli, Amir Heidarinasab, Geoffroy Lesage, Marc Heran and Farshid Pajoum Shariati
Water 2025, 17(10), 1432; https://doi.org/10.3390/w17101432 - 9 May 2025
Viewed by 627
Abstract
The effluent from the tannery industry contains high concentrations of organic pollutants, particularly chromium (Cr), which is a priority pollutant that harms human health, plants, animals, and affects compliance with environmental standards. This study significantly reduced tannery wastewater pollution and its toxic effects [...] Read more.
The effluent from the tannery industry contains high concentrations of organic pollutants, particularly chromium (Cr), which is a priority pollutant that harms human health, plants, animals, and affects compliance with environmental standards. This study significantly reduced tannery wastewater pollution and its toxic effects through the innovative use of an integrated treatment system with a coagulation/flocculation/settling process followed by a membrane bioreactor (MBR). Experiments were conducted to maximize the removal of pollutants by evaluating the effects of pH values, coagulant doses in the chemical treatment, and the biological treatment coupled with membrane separation within the MBR. The results indicated that optimizing the parameters achieved the highest reductions during the chemical treatment step: 97% for Cr, 63% for chemical oxygen demand (COD), and 90% for turbidity. The wastewater was then treated using the MBR system, which further improved removal efficiency to 99% for Cr, 96% for COD, and 99.8% for turbidity. These outcomes demonstrate the effectiveness of the hybrid treatment process in significantly lowering pollutant concentrations in tannery wastewater, ensuring compliance with Environmental Protection Agency (EPA) standards and the regulatory obligations under European Regulation (EU) 2020/741. This hybrid approach offers promising potential for broader industrial applications. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Graphical abstract

22 pages, 4241 KiB  
Article
Impact of Alkali-Activated Tannery Sludge-Derived Geopolymer Gel on Cement Properties: Workability, Hydration Process, and Compressive Strength
by Shoukai Chen, Beiying Liu, Phu Minh Vuong Nguyen, Jinping Liu, Jialin Chen and Fei Zhou
Gels 2025, 11(5), 339; https://doi.org/10.3390/gels11050339 - 1 May 2025
Viewed by 448
Abstract
The utilization of tannery sludge (TS) in construction materials not only effectively reduces pollution and resource consumption associated with waste disposal, but also promotes low carbon transformation in the building materials sector, further advancing sustainable development of green construction. This study aims to [...] Read more.
The utilization of tannery sludge (TS) in construction materials not only effectively reduces pollution and resource consumption associated with waste disposal, but also promotes low carbon transformation in the building materials sector, further advancing sustainable development of green construction. This study aims to investigate the impact of sludge-based geopolymer gel on cementitious material performance, revealing the evolution mechanisms of material fluidity, setting time, hydration process, and compressive strength under the coupled effects of tannery sludge and alkali activation, thereby providing a reusable technical pathway to address the resource utilization challenges of similar special solid wastes. A series of alkali-activated composite cementitious materials (AACC) were prepared in the study by partially substituting cement with alkaline activators, TS, and fly ash (FA), through adjustments in TS–FA ratios and alkali equivalent (AE) variations. The workability, hydration process, and compressive strength evolution of AACC were systematically investigated. The experimental results indicated that as the TS content increased from 0% to 100%, the fluidity of fresh AACC decreased from 147 mm to 87 mm, while the initial and final setting times exhibited an exponential upward trend. The incorporation of TS was found to inhibit cement hydration, though this adverse effect could be mitigated by alkaline activation. Notably, 20–40% sludge dosages (SD) enhanced early-age compressive strength. Specifically, the compressive strength of the 0% TS group at 3 d age was 24.3 MPa, that of the 20% TS group was 25.9 MPa (an increase rate of 6.58%), and that of the 40% TS group was 24.5 MPa (an increase rate of 0.82%), whereas excessive additions resulted in the reduction of hydration products content and diminished later stage strength development. Furthermore, the investigation into AE effects revealed that maximum compressive strength (37.4 MPa) was achieved at 9% AE. These findings provide critical data support for realizing effective utilization of industrial solid wastes. Full article
(This article belongs to the Section Gel Processing and Engineering)
Show Figures

Graphical abstract

18 pages, 5238 KiB  
Article
Eco-Friendly Utilization of Phosphogypsum via Mechanical Activation for Sustainable Heavy Metal Removal from Wastewater
by Abdulrahman M. Alotaibi, Abdulrahman A. Aljabbab, Mamdoh S. Alajmi, Ayman N. Qadrouh, Mohsen Farahat, Mohamed Abdeldayem Abdel Khalek, Hassan Baioumy, Mansour S. Alhumimidi, Ramzi S. Almutairi and Sultan A. Alkhammali
Sustainability 2025, 17(7), 2817; https://doi.org/10.3390/su17072817 - 22 Mar 2025
Viewed by 1166
Abstract
This study examined significant changes in phosphogypsum, a byproduct of the phosphoric acid industry, induced via mechanical activation through intensive grinding using a planetary ball mill. Alterations in crystallinity, surface area, and zeta potential were monitored using X-ray diffraction, Brunauer–Emmett–Teller analysis, zeta potential [...] Read more.
This study examined significant changes in phosphogypsum, a byproduct of the phosphoric acid industry, induced via mechanical activation through intensive grinding using a planetary ball mill. Alterations in crystallinity, surface area, and zeta potential were monitored using X-ray diffraction, Brunauer–Emmett–Teller analysis, zeta potential measurements, X-ray photoelectron spectroscopy, and scanning electron microscopy. The severe grinding of this mining waste led to the conversion of gypsum (CaSO4·2H2O) to anhydrite (CaSO4), an increase in surface area from 5.8 m2/g to 17.8 m2/g, and a decrease in pore radius from 76.6 nm to 9.3 nm. The zeta potential shifted as the isoelectric point changed from pH 8.5 to pH 4.3. These modifications enhanced the material’s potential as a cost-effective and eco-friendly adsorbent for wastewater treatment. The enhanced adsorption capabilities for Cd and Pb were evaluated, revealing a higher adsorption capacity (~40 mg/g for both) and removal efficiency (~90% for Cd and ~80% for Pb) for activated phosphogypsum. The adsorption process followed the Freundlich isotherm and pseudo-second-order kinetic model, indicating its physisorption nature and spontaneous thermodynamic characteristics, and highlighting its potential for wastewater treatment. The mechanically activated adsorbent demonstrated over 90% desorption efficiency over five cycles, ensuring effective regeneration and reusability for Cd and Pb removal. Real tannery wastewater was treated using mechanically activated phosphogypsum at pH 6 and 70 °C for 60 min, achieving a 94% Cd and 92% Pb removal efficiency, with an overall heavy metal removal efficiency of up to 83%. This study demonstrates the sustainable utilization of phosphogypsum, contributing to green wastewater management and environmental protection. Full article
(This article belongs to the Section Health, Well-Being and Sustainability)
Show Figures

Figure 1

28 pages, 1778 KiB  
Review
Chromium Remediation from Tannery Wastewater in Arequipa, Peru: Local Experiences and Prospects for Sustainable Solutions
by Lino F. Morales-Paredes, Pablo A. Garcia-Chevesich, Giuliana Romero-Mariscal, Armando Arenazas-Rodriguez, Juana Ticona-Quea, Teresa R. Tejada-Purizaca, Gary Vanzin and Jonathan O. Sharp
Sustainability 2025, 17(3), 1183; https://doi.org/10.3390/su17031183 - 1 Feb 2025
Cited by 3 | Viewed by 2781
Abstract
The release of tannery wastewater contributes to chromium (Cr) pollution globally. Herein, we conduct a novel consolidation of research from the Arequipa region of southern Peru that integrates university theses written in Spanish alongside peer-reviewed journal articles. The objective is to provide a [...] Read more.
The release of tannery wastewater contributes to chromium (Cr) pollution globally. Herein, we conduct a novel consolidation of research from the Arequipa region of southern Peru that integrates university theses written in Spanish alongside peer-reviewed journal articles. The objective is to provide a place-based complement to existing research in English scientific journals focused on effective tools for Cr treatment from tannery wastewater. Our consolidation categorized a total of 75 publications (70 theses and five peer-reviewed) into five distinct strategies for Cr treatment: adsorption (twenty-three studies), phytoremediation (eighteen studies), bioremediation (thirteen studies), electrocoagulation (five studies), and other techniques (fifteen studies). This synthesis highlighted potentially promising approaches that could be sustainably tailored to regional resources and waste products. This includes sorptive materials derived from food waste such as native achiote peels (B. orellana) and avocado seeds (P. americana) either used directly or as a feedstock for biochar. Other technologies include phytoremediation using microalgae and resident vascular plants and microbial bioremediation that capitalizes on indigenous bacteria and fungi. Promise was also discerned in studies that incorporated a combination of abiotic and biotic mechanisms tailored toward the region, such as infiltration using selective and bioactive materials, wetlands, solar distillation, iron-based coagulation and flocculation, and bioreactors. These findings provide a sustainable complement to prior global investigations for effective attenuation strategies by adding novel materials and techniques that could be further explored to assess the viability of implementation at pilot and larger scales. These promising technologies and the ability to tailor sustainable treatments toward local resources highlight the opportunity to prioritize the treatment of tannery wastewater to ensure a cleaner environment by informing policy makers, academics, and industry on technologies that could be adopted for implementation in the region. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

14 pages, 15358 KiB  
Article
Acoustic Performance of Tufted Carpets Coupled with Underlayment Produced from Tannery Wool Waste
by Jan Broda, Katarzyna Kobiela-Mendrek, Marcin Baczek and Monika Rom
Materials 2025, 18(2), 315; https://doi.org/10.3390/ma18020315 - 12 Jan 2025
Viewed by 1050
Abstract
Sheep wool is a precious, renewable raw material that is nowadays disregarded and wasted. To better use local sources of wool, it was used to manufacture tufted carpets. The coarse wool of mountain sheep was used to form a carpet pile layer, while [...] Read more.
Sheep wool is a precious, renewable raw material that is nowadays disregarded and wasted. To better use local sources of wool, it was used to manufacture tufted carpets. The coarse wool of mountain sheep was used to form a carpet pile layer, while the waste wool from the tannery industry was applied to form carpet underlayment. During investigations, the acoustic performance of the carpets was assessed. The carpets’ sound absorption coefficients and transmission loss were determined using the impedance tube. It was revealed that the adding of underlayment improves the carpet’s sound absorption only at medium sound wave frequencies. The underlayment significantly increases transmission loss in the whole frequency range. The acoustic performance of the carpets with the wool underlayment is similar to the acoustic characteristics of the carpets with an underlayment made from polyester. It was concluded that wool nonwovens can be used as an effective, eco-friendly, sound-absorbing carpet underlayment, which can improve wool utilisation and contribute to the reduction in environmental pollution caused by plastic residues. Full article
(This article belongs to the Special Issue Novel Materials for Sound-Absorbing Applications)
Show Figures

Figure 1

17 pages, 1870 KiB  
Article
Bioaccumulation of Cr by the Buddleja Species and Schinus molle L. Grown with and Without Compost in a Sandy Soil Contaminated by Leather Industrial Effluents
by Jamilet Huarsaya-Huillca, Sheyla Callo-Sánchez, Camila Aguilar-Ccuno, Oswaldo Rodríguez-Salazar, Danny Tupayachy-Quispe, Giuliana Romero-Mariscal, Zulema Hachire-Patiño and Jonathan Almirón
Plants 2024, 13(24), 3469; https://doi.org/10.3390/plants13243469 - 11 Dec 2024
Viewed by 831
Abstract
This research aimed to assess the bioaccumulation capacity of the Buddleja species and Schinus molle L. using organic amendments to the phytoremediation of total chromium in the mid-zone of the Añashuayco Ravine, Uchumayo, Arequipa, impacted by tanneries from the Rio Seco Industrial Park. [...] Read more.
This research aimed to assess the bioaccumulation capacity of the Buddleja species and Schinus molle L. using organic amendments to the phytoremediation of total chromium in the mid-zone of the Añashuayco Ravine, Uchumayo, Arequipa, impacted by tanneries from the Rio Seco Industrial Park. Additionally, it analyzed total chromium concentrations, soil physicochemical properties, and morphological changes in plants with and without organic matter. Samples of the Buddleja species and Schinus molle L. were distributed into groups with and without compost, along with control groups. They were monitored over 6 months, every 60 days, showing significant morphological variations. The results highlight an important finding: the remarkable bioaccumulation capacity of the species studied all exceeded 30%. The samples without compost showed a lower percentage of total chromium bioaccumulation in plants compared to the samples with the organic amendment. The Buddleja species demonstrated a 39.01% chromium bioaccumulation with compost compared to 37.99% without it. Likewise, Schinus molle L. achieved 33.99% chromium accumulation with compost and 31.84% without it. These findings emphasize the superior ability of these species to bioaccumulate heavy metals, highlighting that the Buddleja species has mayor bioaccumulation capacity and more remotion of total chromium in the soil. Full article
(This article belongs to the Section Plant–Soil Interactions)
Show Figures

Figure 1

15 pages, 1447 KiB  
Article
Aqueous Waste Containing AOXs: Critical Issues in Analytical Methods and Assessment of Possible Inhibitory Effects on Mesophilic and Thermophilic Aerobic Biomasses
by Maria Cristina Collivignarelli, Stefano Bellazzi, Giorgia Grecchi, Marco Baldi and Alessandro Abbà
Appl. Sci. 2024, 14(24), 11546; https://doi.org/10.3390/app142411546 - 11 Dec 2024
Viewed by 894
Abstract
This paper offers an in-depth review of adsorbable organic halogens (AOXs), a group of halogenated organic compounds that can be adsorbed from water onto activated carbon. AOXs are emerging contaminants derived from various industrial and household products containing active halogens. Significant concentrations of [...] Read more.
This paper offers an in-depth review of adsorbable organic halogens (AOXs), a group of halogenated organic compounds that can be adsorbed from water onto activated carbon. AOXs are emerging contaminants derived from various industrial and household products containing active halogens. Significant concentrations of AOXs are commonly detected in wastewater originating from industries such as the paper and pulp, textile, tannery, chemical and pharmaceutical industries. The standard method for AOX determination is defined in UNI EN ISO 9562:2004. The technical literature indicates that the reliability of AOX measurements can be affected by various factors. This study investigated the possible toxicity of AOXs on wastewater treatment plants, an aspect that has received limited attention in terms of its impact on aerobic biological processes. To bridge this gap, respiratory tests were performed on different aerobic biomasses sourced from large-scale wastewater treatment facilities to evaluate potential inhibitory effects. The results underscore the importance of adopting a case-by-case approach when assessing the risks associated with these contaminants. Full article
(This article belongs to the Special Issue Advances in Bioprocess Monitoring and Control)
Show Figures

Figure 1

18 pages, 5734 KiB  
Article
Using Differential Scanning Calorimetry to Measure the Energetic Properties of Residual Sludge and Catalysts from the Textile, Tannery, and Galvanic Industries
by Ghem Carvajal-Chávez, Josselyn Cazar, Gilda Gordillo, Andrés De-La-Rosa, Gonzalo Chiriboga and Carolina Montero-Calderón
ChemEngineering 2024, 8(6), 123; https://doi.org/10.3390/chemengineering8060123 - 3 Dec 2024
Viewed by 1236
Abstract
This research delved into the energetic properties of catalysts synthesized from residual sludge from the textile, galvanic, and tannery industries. The experimental process consisted of an initial heat treatment to activate their catalytic properties and a thermal analysis employing differential scanning calorimetry (DSC). [...] Read more.
This research delved into the energetic properties of catalysts synthesized from residual sludge from the textile, galvanic, and tannery industries. The experimental process consisted of an initial heat treatment to activate their catalytic properties and a thermal analysis employing differential scanning calorimetry (DSC). This technique permitted the investigation of the materials’ thermal behavior as a function of temperature, ranging from 142 to 550 °C, effectively controlling the heating rates and pressure conditions. The data gathered were the input for constructing specific heat models through polynomial regression employing the least squares method. These models were subsequently used to estimate variations in the enthalpy and entropy for both the sludge and catalysts through integration. Third-degree polynomials primarily characterized the specific heat models that accurately represented the samples’ thermal behavior, considering variations in their physicochemical properties that influenced it. The catalysts derived from residual sludge from the textile industry exhibited the models with the most robust statistical fit. Concurrently, the catalysts from the galvanic industry displayed noteworthy similarities with the bibliographic data across various temperature points. The mathematical models determined the specific heat (Cp) as a function of temperature, which, in turn, was used to estimate the enthalpy and entropy variations in the sludge and catalysts under study. The highest enthalpy value corresponded to the sludge and catalyst obtained from the tannery industry, with a Cp of 5.60 J/g-K at 603 K and 2.45 J/g-K at 445.6 K. Finally, the third-degree polynomials showed the best mathematical models since (1) they considered the variations in the physicochemical properties that intervened in the behavior of Cp as a function of temperature; (2) they presented a better statistical fit; and (3) they showed consistency with the existing information in the literature for the textile industry and the galvanic industries. Full article
(This article belongs to the Special Issue Innovative Approaches for the Environmental Chemical Engineering)
Show Figures

Figure 1

16 pages, 3008 KiB  
Article
Adsorption of Cr(VI) Using Organoclay/Alginate Hydrogel Beads and Their Application to Tannery Effluent
by Mayra X. Muñoz-Martinez, Iván F. Macías-Quiroga and Nancy R. Sanabria-González
Gels 2024, 10(12), 779; https://doi.org/10.3390/gels10120779 - 28 Nov 2024
Cited by 3 | Viewed by 1322
Abstract
The tanning industry is among the most environmentally harmful activities globally due to the pollution of lakes and rivers from its effluents. Hexavalent chromium, a metal in tannery effluents, has adverse effects on human health and ecosystems, requiring the development of removal techniques. [...] Read more.
The tanning industry is among the most environmentally harmful activities globally due to the pollution of lakes and rivers from its effluents. Hexavalent chromium, a metal in tannery effluents, has adverse effects on human health and ecosystems, requiring the development of removal techniques. This study assessed the efficacy of organobentonite/alginate hydrogel beads in removing Cr(VI) from a fixed-bed adsorption column system. The synthesized organobentonite (OBent) was encapsulated in alginate, utilizing calcium chloride as a crosslinking agent to generate hydrogel beads. The effects of the volumetric flow rate, bed height, and initial Cr(VI) concentration on a synthetic sample were analyzed in the experiments in fixed-bed columns. The fractal-like modified Thomas model showed a good fit to the experimental data for the asymmetric breakthrough curves, confirmed by the high R2 correlation coefficients and low χ2 values. The application of organoclay/alginate hydrogel beads was confirmed with a wastewater sample from an artisanal tannery industry in Belén (Nariño, Colombia), in which a Cr(VI) removal greater than 99.81% was achieved. Organobentonite/alginate hydrogels offer the additional advantage of being composed of a biodegradable polymer (sodium alginate) and a natural material (bentonite-type clay), resulting in promising adsorbents for the removal of Cr(VI) from aqueous solutions in both synthetic and real water samples. Full article
Show Figures

Graphical abstract

20 pages, 4455 KiB  
Article
Forecasting Raw Material Yield in the Tanning Industry: A Machine Learning Approach
by Ismael Cristofer Baierle, Leandro Haupt, João Carlos Furtado, Eluza Toledo Pinheiro and Miguel Afonso Sellitto
Forecasting 2024, 6(4), 1078-1097; https://doi.org/10.3390/forecast6040054 - 20 Nov 2024
Cited by 2 | Viewed by 1919
Abstract
This study presents an innovative machine learning (ML) approach to predicting raw material yield in the leather tanning industry, addressing a critical challenge in production efficiency. Conducted at a tannery in southern Brazil, the research leverages historical production data to develop a predictive [...] Read more.
This study presents an innovative machine learning (ML) approach to predicting raw material yield in the leather tanning industry, addressing a critical challenge in production efficiency. Conducted at a tannery in southern Brazil, the research leverages historical production data to develop a predictive model. The methodology encompasses four key stages: data collection, processing, prediction, and evaluation. After rigorous analysis and refinement, the dataset was reduced from 16,046 to 555 high-quality records. Eight ML models were implemented and evaluated using Orange Data Mining software, version 3.38.0, including advanced algorithms such as Random Forest, Gradient Boosting, and neural networks. Model performance was assessed through cross-validation and comprehensive metrics, including Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), Mean Squared Error (MSE), and Coefficient of Determination (R2). The AdaBoost algorithm emerged as the most accurate predictor, achieving impressive results with an MAE of 0.042, MSE of 0.003, RMSE of 0.057, and R2 of 0.331. This research demonstrates the significant potential of ML techniques in enhancing raw material yield forecasting within the tanning industry. The findings contribute to more efficient forecasting processes, aligning with Industry 4.0 principles and paving the way for data-driven decision-making in manufacturing. Full article
Show Figures

Figure 1

23 pages, 2426 KiB  
Review
Biorefinery and Bioremediation Strategies for Efficient Management of Recalcitrant Pollutants Using Termites as an Obscure yet Promising Source of Bacterial Gut Symbionts: A Review
by Rongrong Xie, Blessing Danso, Jianzhong Sun, Majid Al-Zahrani, Mudasir A. Dar, Rania Al-Tohamy and Sameh S. Ali
Insects 2024, 15(11), 908; https://doi.org/10.3390/insects15110908 - 20 Nov 2024
Cited by 1 | Viewed by 1530
Abstract
Lignocellulosic biomass (LCB) in the form of agricultural, forestry, and agro-industrial wastes is globally generated in large volumes every year. The chemical components of LCB render them a substrate valuable for biofuel production. It is hard to dissolve LCB resources for biofuel production [...] Read more.
Lignocellulosic biomass (LCB) in the form of agricultural, forestry, and agro-industrial wastes is globally generated in large volumes every year. The chemical components of LCB render them a substrate valuable for biofuel production. It is hard to dissolve LCB resources for biofuel production because the lignin, cellulose, and hemicellulose parts stick together rigidly. This makes the structure complex, hierarchical, and resistant. Owing to these restrictions, the junk production of LCB waste has recently become a significant worldwide environmental problem resulting from inefficient disposal techniques and increased persistence. In addition, burning LCB waste, such as paddy straws, is a widespread practice that causes considerable air pollution and endangers the environment and human existence. Besides environmental pollution from LCB waste, increasing industrialization has resulted in the production of billions of tons of dyeing wastewater from several industries, including textiles, pharmaceuticals, tanneries, and food processing units. The massive use of synthetic dyes in various industries can be detrimental to the environment due to the recalcitrant aromatic structure of synthetic dyes, similar to the polymeric phenol lignin in LCB structure, and their persistent color. Synthetic dyes have been described as possessing carcinogenic and toxic properties that could be harmful to public health. Environmental pollution emanating from LCB wastes and dyeing wastewater is of great concern and should be carefully handled to mitigate its catastrophic effects. An effective strategy to curtail these problems is to learn from analogous systems in nature, such as termites, where woody lignocellulose is digested by wood-feeding termites and humus-recalcitrant aromatic compounds are decomposed by soil-feeding termites. The termite gut system acts as a unique bioresource consisting of distinct bacterial species valued for the processing of lignocellulosic materials and the degradation of synthetic dyes, which can be integrated into modern biorefineries for processing LCB waste and bioremediation applications for the treatment of dyeing wastewaters to help resolve environmental issues arising from LCB waste and dyeing wastewaters. This review paper provides a new strategy for efficient management of recalcitrant pollutants by exploring the potential application of termite gut bacteria in biorefinery and bioremediation processing. Full article
(This article belongs to the Special Issue Ecologically Important Symbioses in Insects)
Show Figures

Figure 1

11 pages, 805 KiB  
Article
Exploring Trichoderma Species in Industrial Wastewater: Morphological and Molecular Insights from Isolates
by Syeda Bint-e-Zahira, Abdul Nasir Khalid, Nousheen Yousaf, Muhammad Iqbal, Tauseef Anwar, Huma Qureshi, Saleh H. Salmen and Mohammad Javed Ansari
Life 2024, 14(6), 750; https://doi.org/10.3390/life14060750 - 12 Jun 2024
Cited by 2 | Viewed by 1784
Abstract
The genus Trichoderma holds economic significance due to its widespread distribution and diverse applications, including biological control, enzyme production, and various biotechnological uses. The accurate identification of Trichoderma species is crucial given their close association with human activities. Despite previous efforts in classification, [...] Read more.
The genus Trichoderma holds economic significance due to its widespread distribution and diverse applications, including biological control, enzyme production, and various biotechnological uses. The accurate identification of Trichoderma species is crucial given their close association with human activities. Despite previous efforts in classification, a comprehensive analysis combining morphological and molecular approaches is necessary. This study focuses on the isolation of four Trichoderma species from industrial wastewater in Pakistan, expanding on the known diversity in the region; isolation involved collecting samples from industrial wastewater effluents at specific sites in Punjab, Pakistan. Trichoderma strains were cultured and purified on solid media, with subsequent biomass production for bisorptional activity. Morphological characterization included colony features and microscopic examinations. DNA extraction, polymerase chain reaction (PCR), and sequencing of the internal transcribed spacer (ITS) region were conducted for molecular analysis. Phylogenetic analysis was performed using the Maximum Likelihood Algorithm. The study identified three Trichoderma species, viz. T. citrinoviride, T. erinaceum, and T. longibrachiatum. Each species was characterized morphologically and supported by molecular–phylogenetic analysis. Illustrations of microscopic features and a phylogenetic tree based on the ITS-nrDNA region were recorded. T. citrinoviride and T. longibrachiatum, isolated from steel mill and tanneries wastewater, respectively, were differentiated based on morphological characteristics such as phialides and conidia. The combination of morphological and molecular techniques enhances the accuracy of species identification. The study highlights the significance of Trichoderma in industrial wastewater environments and underscores the need for continued research in this area. Future research should focus on exploring the ecological roles and potential applications of the newly identified Trichoderma species. Additionally, further investigations into the biotechnological potential of these species, including enzyme production and bioremediation capabilities, would contribute to their practical applications. Full article
(This article belongs to the Special Issue Trends in Microbiology 2024)
Show Figures

Figure 1

12 pages, 7137 KiB  
Article
Valorisation of Tannery Waste to Recover Chromium with a View to Reusing It in Industrial Practise
by Anna Kowalik-Klimczak, Monika Łożyńska, Maciej Życki, Christian Schadewell, Thomas Fiehn, Bogusław Woźniak and Monika Flisek
Membranes 2024, 14(6), 136; https://doi.org/10.3390/membranes14060136 - 6 Jun 2024
Viewed by 2072
Abstract
This paper presents the basic assumptions of the concept of a new technology for the valorisation of chromium tannery waste. It assumes the use of an integrated system of the thermal pressure hydrolysis process and membrane filtration techniques for the recovery of chromium [...] Read more.
This paper presents the basic assumptions of the concept of a new technology for the valorisation of chromium tannery waste. It assumes the use of an integrated system of the thermal pressure hydrolysis process and membrane filtration techniques for the recovery of chromium compounds and the use of a separated organic matter during anaerobic fermentation. According to the assumptions of the developed technological concept, at the first stage, the crushed mixture of chromium tannery waste is decomposed in the process of thermal pressure hydrolysis using appropriate process conditions in an alkaline environment. Then, the liquid product of this process (the so-called hydrolysate) is processed using centrifugal force separation and ultrafiltration. Such activities enable the recovery of chromium compounds for rawhide currying and concentration of organic matter (fats, proteins) with energy potential. Research carried out under conditions similar to real operating conditions proved that chromium compounds recovered from waste can be successfully used in the processing of cowhides intended for the production of footwear. The industrial implementation of the developed technology for valorising chromium tannery waste would enable the transition from a linear to a circular economy. Full article
Show Figures

Figure 1

23 pages, 5076 KiB  
Article
Selective Isolation and Identification of Microorganisms with Dual Capabilities: Leather Biodegradation and Heavy Metal Resistance for Industrial Applications
by Manuela Bonilla-Espadas, Basilio Zafrilla, Irene Lifante-Martínez, Mónica Camacho, Elena Orgilés-Calpena, Francisca Arán-Aís, Marcelo Bertazzo and María-José Bonete
Microorganisms 2024, 12(5), 1029; https://doi.org/10.3390/microorganisms12051029 - 20 May 2024
Cited by 2 | Viewed by 2183
Abstract
Tanning, crucial for leather production, relies heavily on chromium yet poses risks due to chromium’s oxidative conversion, leading to significant wastewater and solid waste generation. Physico-chemical methods are typically used for heavy metal removal, but they have drawbacks, prompting interest in eco-friendly biological [...] Read more.
Tanning, crucial for leather production, relies heavily on chromium yet poses risks due to chromium’s oxidative conversion, leading to significant wastewater and solid waste generation. Physico-chemical methods are typically used for heavy metal removal, but they have drawbacks, prompting interest in eco-friendly biological remediation techniques like biosorption, bioaccumulation, and biotransformation. The EU Directive (2018/850) mandates alternatives to landfilling or incineration for industrial textile waste management, highlighting the importance of environmentally conscious practices for leather products’ end-of-life management, with composting being the most researched and viable option. This study aimed to isolate microorganisms from tannery wastewater and identify those responsible for different types of tanned leather biodegradation. Bacterial shifts during leather biodegradation were observed using a leather biodegradation assay (ISO 20136) with tannery and municipal wastewater as the inoculum. Over 10,000 bacterial species were identified in all analysed samples, with 7 bacterial strains isolated from tannery wastewaters. Identification of bacterial genera like Acinetobacter, Brevundimonas, and Mycolicibacterium provides insights into potential microbial candidates for enhancing leather biodegradability, wastewater treatment, and heavy metal bioremediation in industrial applications. Full article
(This article belongs to the Special Issue New Insights into the Diversity and Characterization of Extremophiles)
Show Figures

Figure 1

17 pages, 3685 KiB  
Article
Cleansing Tannery Effluent with Pleurotus opuntiae: A Green Solution for Environmental Restoration and Toxicity Evaluation
by Priyanka Yadav, Vartika Mishra, Tejmani Kumar, Umesh Kumar Singh, Emanuel Vamanu and Mohan Prasad Singh
Water 2024, 16(9), 1313; https://doi.org/10.3390/w16091313 - 6 May 2024
Cited by 3 | Viewed by 1794
Abstract
Heavy metal contamination has emerged as a global environmental concern, with tannery effluents serving as a significant source of these pollutants. The discharge of tannery effluents (TEs) into natural ecosystems has given rise to a spectrum of catastrophic risks, exacerbating concerns related to [...] Read more.
Heavy metal contamination has emerged as a global environmental concern, with tannery effluents serving as a significant source of these pollutants. The discharge of tannery effluents (TEs) into natural ecosystems has given rise to a spectrum of catastrophic risks, exacerbating concerns related to public health, safety, and environmental integrity. This current study focuses on the mycoremediation of the heavy metals present in TE, employing the mycelia of Pleurotus opuntiae, an environmentally sustainable solution. The toxicity of TE was rigorously characterized by evaluating a range of physicochemical parameters in accordance with the American Standard and Testing Methods. Subsequently, various diluted concentrations of effluent (25%, 50%, 75% and 100%) were incorporated into MDA media to assess the tolerance index (TI) of P. opuntiae. Notably, the highest TI was observed in the 25% and 50% TE concentrations, while no growth was observed in the 75% and 100% groups due to the exceptionally elevated heavy metal content. P. opuntiae demonstrated remarkable efficacy in heavy metal removal, with the most substantial reductions recorded in the 25% diluted effluent (91.3% Pb, 72.2% Cr and 66.5% Zn), closely followed by the 50% diluted effluent. The highest intracellular bioaccumulation was observed for Pb (17.2 µg/g), outperforming Cr (14.5 µg/g) and Zn (8.5 µg/g) in mycelia grown in 25% diluted effluent. To elucidate the detoxification mechanisms underlying metal removal, various characterizations of the mycelium were conducted, including SEM, FTIR, and XRD analyses. Furthermore, LC–MS analysis shed light on the pivotal role of metabolites in regulating heavy metals within the physiological metabolism of P. opuntiae. Moreover, an upsurge in the concentration of the stress marker, metallothionein, and augmented activity of antioxidant enzymes, like SOD, CAT, LPO and GSH, collectively suggested the significant role of antioxidants in mitigating reactive oxygen species (ROS) and heavy metal toxicity. These comprehensive findings provide a solid foundation for understanding the mechanisms responsible for heavy metal removal by P. opuntiae and pave the way for the development of effective remediation strategies for decontaminating the effluents discharged by the leather industry, contributing to the preservation of our environment and to public well-being. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

Back to TopTop