Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = tandem helicopter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 13241 KiB  
Article
Experimental Investigation of Aerodynamic Interaction in Non-Parallel Tandem Dual-Rotor Systems for Tiltrotor UAV
by He Zhu, Yuhao Du, Hong Nie, Zhiyang Xin and Xi Geng
Drones 2025, 9(5), 374; https://doi.org/10.3390/drones9050374 - 15 May 2025
Viewed by 649
Abstract
The distributed electric tilt-rotor Unmanned Aerial Vehicle (UAV) combines the vertical take-off and landing (VTOL) capability of helicopters with the high-speed cruise performance of fixed-wing aircraft, offering a transformative solution for Urban Air Mobility (UAM). However, aerodynamic interference between rotors is a new [...] Read more.
The distributed electric tilt-rotor Unmanned Aerial Vehicle (UAV) combines the vertical take-off and landing (VTOL) capability of helicopters with the high-speed cruise performance of fixed-wing aircraft, offering a transformative solution for Urban Air Mobility (UAM). However, aerodynamic interference between rotors is a new challenge to improving their flight efficiency, especially the dynamic interactions during the transition phase of non-parallel tandem dual-rotor systems, which require in-depth investigation. This study focuses on the aerodynamic performance evolution of the tilt-rotor system during asynchronous transition processes, with an emphasis on quantifying the influence of rotor tilt angles. A customized experimental platform was developed to investigate a counter-rotating dual-rotor model with fixed axial separation. Key performance metrics, including thrust, torque, and power, were systematically measured at various tilt angles (0–90°) and rotational speeds (1500–3500 RPM). The aerodynamic coupling mechanisms between the front and rear rotor disks were analyzed. The experimental results indicate that the relative tilt angle of the dual rotors significantly affects aerodynamic interference between the rotors. In the forward tilt mode, the thrust of the aft rotor recovers when the tilt angle reaches 45°, while in the aft tilt mode, it requires a tilt angle of 75°. By optimizing the tilt configuration, the aerodynamic performance loss of the aft rotor due to rotor-to-rotor aerodynamic interference can be effectively mitigated. This study provides important insights for the aerodynamic performance optimization and transition control strategies of the distributed electric tilt-rotor UAV. Full article
(This article belongs to the Special Issue Dynamics Modeling and Conceptual Design of UAVs)
Show Figures

Figure 1

19 pages, 9774 KiB  
Article
Numerical Study on Tandem-Rotor Autorotation in Forward Flight
by Jiayu Wen, Yanguo Song, Huanjin Wang and Dong Han
Aerospace 2023, 10(1), 15; https://doi.org/10.3390/aerospace10010015 - 24 Dec 2022
Cited by 3 | Viewed by 2761
Abstract
This work presents a systematic approach to analyzing the aerodynamic characteristics of tandem rotor forward autorotation considering rotor-to-rotor interference. The single-rotor computational model trimmed from a generic helicopter flight dynamics analysis program was used as the baseline model. The effectiveness of the baseline [...] Read more.
This work presents a systematic approach to analyzing the aerodynamic characteristics of tandem rotor forward autorotation considering rotor-to-rotor interference. The single-rotor computational model trimmed from a generic helicopter flight dynamics analysis program was used as the baseline model. The effectiveness of the baseline model is demonstrated by a comparison with data from wind tunnel tests performed in this work. The rotor disk angle of attack and driven moment distribution obtained by the modified model indicate the fact that the rotor acceleration is primarily caused by the higher angle of attack region of the disk. This is of great significance in the rotor blade design, in terms of the drag-to-lift ratio characteristics of the airfoil under different angle-of-attack ranges. The influence of wind speed, rotor shaft angle, and collective pitch on the steady-state rotor speed was then studied. The results show a nonlinear nature of the variation of steady rotor speed with collective pitch, which can cause a thrust control reverse problem during flight operations. To reveal the flow field details of rotor-to-rotor interference, the flow field Navier–Stokes equations of tandem rotor autorotation were solved. Computational results of both rotors’ inflow velocities were considered when deriving the empirical model of interference. The refined interference model was compared to the wind tunnel test data of the tandem rotor autorotation and showed good performance. This synthetical methodology, which combines mechanism analysis with CFD-aided refinement and experiment verification, achieves a balance between computational costs and accuracy and thus can be readily applied to engineering practices. Full article
Show Figures

Figure 1

13 pages, 4787 KiB  
Technical Note
Velocity Anomaly of Campbell Glacier, East Antarctica, Observed by Double-Differential Interferometric SAR and Ice Penetrating Radar
by Hoonyol Lee, Heejeong Seo, Hyangsun Han, Hyeontae Ju and Joohan Lee
Remote Sens. 2021, 13(14), 2691; https://doi.org/10.3390/rs13142691 - 8 Jul 2021
Cited by 9 | Viewed by 4140
Abstract
Regional changes in the flow velocity of Antarctic glaciers can affect the ice sheet mass balance and formation of surface crevasses. The velocity anomaly of a glacier can be detected using the Double-Differential Interferometric Synthetic Aperture Radar (DDInSAR) technique that removes the constant [...] Read more.
Regional changes in the flow velocity of Antarctic glaciers can affect the ice sheet mass balance and formation of surface crevasses. The velocity anomaly of a glacier can be detected using the Double-Differential Interferometric Synthetic Aperture Radar (DDInSAR) technique that removes the constant displacement in two Differential Interferometric SAR (DInSAR) images at different times and shows only the temporally variable displacement. In this study, two circular-shaped ice-velocity anomalies in Campbell Glacier, East Antarctica, were analyzed by using 13 DDInSAR images generated from COSMO-SkyMED one-day tandem DInSAR images in 2010–2011. The topography of the ice surface and ice bed were obtained from the helicopter-borne Ice Penetrating Radar (IPR) surveys in 2016–2017. Denoted as A and B, the velocity anomalies were in circular shapes with radii of ~800 m, located 14.7 km (A) and 11.3 km (B) upstream from the grounding line of the Campbell Glacier. Velocity anomalies were up to ~1 cm/day for A and ~5 cm/day for B. To investigate the cause of the two velocity anomalies, the ice surface and bed profiles derived from the IPR survey crossing the anomalies were analyzed. The two anomalies lay over a bed hill along the glacial valley where stick-slip and pressure melting can occur, resulting in temporal variation of ice velocity. The bright radar reflection and flat hydraulic head at the ice bed of A observed in the IPR-derived radargram strongly suggested the existence of basal water in a form of reservoir or film, which caused smaller friction and the reduced variation of stick-slip motion compared to B. Crevasses began to appear at B due to tensile stress at the top of the hill and the fast flow downstream. The sporadic shift of the location of anomalies suggests complex pressure melting and transportation of the basal water over the bed hill. Full article
Show Figures

Figure 1

18 pages, 3809 KiB  
Article
Modeling and Analysis of a Generic Internal Cargo Airdrop System for a Tandem Helicopter
by Guozhi Li, Yihua Cao and Maosheng Wang
Appl. Sci. 2021, 11(11), 5109; https://doi.org/10.3390/app11115109 - 31 May 2021
Cited by 2 | Viewed by 2527
Abstract
This article describes the results of modeling and analysis of a generic internal cargo system using a discretization method of the vector mechanics. The model can be easily incorporated into a tandem helicopter model and is intended for use of simulation and investigating [...] Read more.
This article describes the results of modeling and analysis of a generic internal cargo system using a discretization method of the vector mechanics. The model can be easily incorporated into a tandem helicopter model and is intended for use of simulation and investigating the problems of flight dynamics, control, etc., both in flight operation loading a cargo and flight operation in the process of airdrops. The model is derived by considering the main descriptions of the cargo, including the linear and rotational dynamics, the kinematics, and the forces and moments acting on the helicopter. A simulation method embedded with a numerical trim algorithm is developed for the complete coupling helicopter/cargo nonlinear dynamics system. The simulation application of the model is illustrated, including the case of flight operation loading a cargo by considering three mass configurations of 3000, 4500, and 6000 kg, and the case of flight operation in the process of airdrops at velocities of 0, 40, 80, 120, and 160 knots. Stabilities of the helicopter in the process of airdrops are also analyzed. The major conclusions drawn are: (i) the tandem helicopter has a good attitude maintaining ability in the whole flight velocity envelope when it conducts a flight operation loading a cargo; (ii) in the process of airdrops, the increase in flight velocity will constantly decrease the helicopter pitching attitude and increases the total airdrop time and decreases the backward moving velocity of the cargo, and helicopter flying at a velocity between 80 and 120 knots might be acceptable; (iii) the stabilities of both the longitudinal and lateral periodic modes are continuing to decrease during the backward movement of the cargo. Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

18 pages, 7809 KiB  
Article
X-Band Radar Cross-Section of Tandem Helicopter Based on Dynamic Analysis Approach
by Zeyang Zhou and Jun Huang
Sensors 2021, 21(1), 271; https://doi.org/10.3390/s21010271 - 3 Jan 2021
Cited by 7 | Viewed by 4547
Abstract
In order to study the radar signature of a tandem helicopter in the X-band, a dynamic analysis approach (DAA) is presented to determine its radar cross-section (RCS) under different influence factors. The basic passage time, rotation speed, observation angle, rotor disk inclination, fuselage [...] Read more.
In order to study the radar signature of a tandem helicopter in the X-band, a dynamic analysis approach (DAA) is presented to determine its radar cross-section (RCS) under different influence factors. The basic passage time, rotation speed, observation angle, rotor disk inclination, fuselage attitude angle and Doppler feature are studied and discussed in detail. The results show that the dynamic characteristics of the rotor RCS will bring significant changes to the peak and average values of the helicopter RCS. Within a given observation angle range, a larger elevation angle is undesirable for helicopter stealth. The inclination of the rotor disc will affect the many small peaks and local fluctuations of the helicopter RCS. The positively increased attitude angle will have an undesirable effect on the average RCS and dynamic characteristics of the helicopter. The DAA is feasible and effective for studying the radar cross-section of a tandem helicopter. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

20 pages, 8998 KiB  
Article
An Empirical Study of Overlapping Rotor Interference for a Small Unmanned Aircraft Propulsion System
by Mantas Brazinskas, Stephen D. Prior and James P. Scanlan
Aerospace 2016, 3(4), 32; https://doi.org/10.3390/aerospace3040032 - 10 Oct 2016
Cited by 40 | Viewed by 13534
Abstract
The majority of research into full-sized helicopter overlapping propulsion systems involves co-axial setups (fully overlapped). Partially overlapping rotor setups (tandem, multirotor) have received less attention, and empirical data produced over the years is limited. The increase in demand for compact small unmanned aircraft [...] Read more.
The majority of research into full-sized helicopter overlapping propulsion systems involves co-axial setups (fully overlapped). Partially overlapping rotor setups (tandem, multirotor) have received less attention, and empirical data produced over the years is limited. The increase in demand for compact small unmanned aircraft has exposed the need for empirical investigations of overlapping propulsion systems at a small scale (Reynolds Number < 250,000). Rotor-to-rotor interference at the static state in various overlapping propulsion system configurations was empirically measured using off the shelf T-Motor 16 inch × 5.4 inch rotors. A purpose-built test rig was manufactured allowing various overlapping rotor configurations to be tested. First, single rotor data was gathered, then performance measurements were taken at different thrust and tip speeds on a range of overlap configurations. The studies were conducted in a system torque balance mode. Overlapping rotor performance was compared to an isolated dual rotor propulsion system revealing interference factors which were compared to the momentum theory. Tests revealed that in the co-axial torque-balanced propulsion system the upper rotor outperforms the lower rotor at axial separation ratios between 0.05 and 0.85. Additionally, in the same region, thrust sharing between the two rotors changed by 21%; the upper rotor produced more thrust than the lower rotor at all times. Peak performance was recorded as a 22% efficiency loss when the axial separation ratio was greater than 0.25. The performance of a co-axial torque-balanced system reached a 27% efficiency loss when the axial separation ratio was equal to 0.05. The co-axial system swirl recovery effect was recorded to have a 4% efficiency gain in the axial separation ratio region between 0.05 and 0.85. The smallest efficiency loss (3%) was recorded when the rotor separation ratio was between 0.95 and 1 (axial separation ratio was kept at 0.05). Tests conducted at a rotor separation ratio of 0.85 showed that the efficiency loss decreased when the axial separation ratio was greater than 0.25. The lower rotor outperformed the upper rotor in the rotor separation ratio region from 0.95 to 1 (axial separation ratio was kept at 0.05) at an overall system thrust of 8 N, and matched the upper rotor performance at the tested overall thrust of 15 N. Full article
(This article belongs to the Collection Unmanned Aerial Systems)
Show Figures

Graphical abstract

Back to TopTop