Velocity Anomaly of Campbell Glacier, East Antarctica, Observed by Double-Differential Interferometric SAR and Ice Penetrating Radar
Abstract
:1. Introduction
2. Materials
2.1. Study Area
2.2. COSMO-SkyMED One-Day Tandem DDInSAR
2.3. Helicopter-Borne Ice Penetrating Radar Survey
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Allison, I.; Alley, R.B.; Fricker, H.A.; Thomas, R.H.; Warner, R.C. Ice sheet mass balance and sea level. Antarct. Sci. 2009, 21, 413–426. [Google Scholar] [CrossRef] [Green Version]
- Hanna, E.; Navarro, F.J.; Pattyn, F.; Domingues, C.M.; Fettweis, X.; Ivins, E.R.; Nicholls, R.J.; Ritz, C.; Smith, B.; Tulaczyk, S.; et al. Ice-sheet mass balance and climate change. Nature 2013, 498, 51–59. [Google Scholar] [CrossRef] [PubMed]
- DeConto, R.M.; Pollard, D. Contribution of Antarctica to past and future sea-level rise. Nature 2016, 531, 591–597. [Google Scholar] [CrossRef] [PubMed]
- Bennett, R.M.; Glasser, N.F. Glacial Geology: Ice Sheets and Landforms, 2nd ed.; John Wiley & Sons Ltd.: Chichester, UK, 2009; pp. 69–79. [Google Scholar]
- Rignot, E.; Vaughan, D.G.; Schmeltz, M.; Dupont, T.; MacAyeal, D. Acceleration of Pine Island and Thwaites Glaciers, West Antarctica. Ann. Glaciol. 2002, 34, 189–194. [Google Scholar] [CrossRef] [Green Version]
- Weertman, J.; Birchfield, G.E. Basal water film, basal water pressure, and velocity of traveling waves on glaciers. J. Glaciol. 1983, 29, 20–27. [Google Scholar] [CrossRef] [Green Version]
- Zwally, H.J.; Abdalati, W.; Herring, T.; Larson, K.; Saba, J.; Steffen, K. Surface melt-induced acceleration of Greenland Ice-Sheet flow. Science 2002, 297, 218–222. [Google Scholar] [CrossRef]
- Macgregor, K.R.; Riihimaki, C.A.; Anderson, R.S. Spatial and temporal evolution of rapid basal sliding on Bench Glacier, Alaska, USA. J. Glaciol. 2005, 51, 49–63. [Google Scholar] [CrossRef] [Green Version]
- Stearns, L.A.; Smith, B.E.; Hamilton, G.S. Increased flow speed on a large East Antarctic outlet glacier caused by subglacial floods. Nat. Geosci. 2008, 1, 827–831. [Google Scholar] [CrossRef]
- Thoma, M.; Grosfeld, K.; Mayer, C.; Pattyn, F. Interaction between ice sheet dynamics and subglacial lake circulation: A coupled modelling approach. Cryosphere 2010, 4, 1–12. [Google Scholar] [CrossRef]
- Bartholomew, I.; Nienow, P.; Sole, A.; Mair, D.; Cowton, T.; King, M.A. Short-term variability in Greenland Ice Sheet motion forced by time-varying meltwater drainage: Implications for the relationship between subglacial drainage system behavior and ice velocity. J. Geophy. Res. 2012, 117, F03002. [Google Scholar] [CrossRef]
- Bell, R.E.; Studinger, M.; Shuman, C.A.; Fahnestock, M.A.; Joughin, I. Large subglacial lakes in East Antarctica at the onset of fast-flowing ice streams. Nature 2007, 445, 904–907. [Google Scholar] [CrossRef]
- Han, H.; Lee, H. Tide-corrected flow velocity and mass balance of Campbell Glacier Tongue, East Antarctica, derived from interferometric SAR. Remote Sens. Environ. 2015, 160, 180–192. [Google Scholar] [CrossRef]
- Han, H.; Lee, H. Surface strain rates and crevassing of Campbell Glacier Tongue in East Antarctica analysed by tide-corrected DInSAR. Remote Sens. Lett. 2017, 8, 330–339. [Google Scholar] [CrossRef]
- Gray, L.; Joughin, I.; Tulaczyk, S.; Spikes, V.B.; Bindschadler, R.; Jezek, K. Evidence for subglacial water transport in the West Antarctic Ice Sheet through three-dimensional satellite radar interferometry. Geophy. Res. Lett. 2005, 32, L03501. [Google Scholar] [CrossRef] [Green Version]
- Palmer, S.; McMillan, M.; Morlighem, M. Subglacial lake drainage detected beneath the Greenland ice sheet. Nat. Commun. 2015, 6, 8408. [Google Scholar] [CrossRef] [Green Version]
- Rignot, E. Tidal motion, ice velocity and melt rate of Petermann Gletscher, Greenland, measured from radar interferometry. J. Glaciol. 1996, 42, 476–485. [Google Scholar] [CrossRef] [Green Version]
- Rignot, E.; Mouginot, J.; Scheuchl, B. Antarctic grounding line mapping from differential satellite radar interferometry. Geophy. Res. Lett. 2011, 38, L10504. [Google Scholar] [CrossRef] [Green Version]
- Han, H.; Lee, H. Tide deflection of Campbell Glacier Tongue, Antarctica, analyzed by double-differential SAR interferometry and finite element method. Remote Sens. Environ. 2014, 141, 201–213. [Google Scholar] [CrossRef]
- Han, S.; Han, H.; Lee, H. Grounding line change of Ronne Ice Shelf, West Antarctica, from 1996 to 2015 observed by using DDInSAR. Korean J. Remote Sens. 2018, 34, 17–24. [Google Scholar]
- Lyon, G.L. Stable isotope stratigraphy of ice cores and the age of the last eruption at Mount Melbourne, Antarctica. N. Z. J. Geol. Geophy. 1986, 29, 135–138. [Google Scholar] [CrossRef] [Green Version]
- Han, H.; Lee, H. Glacial and tidal strain of landfast sea ice in Terra Nova Bay, East Antarctica, observed by interferometric SAR techniques. Remote Sens. Environ. 2018, 209, 41–51. [Google Scholar] [CrossRef]
- Covello, F.; Battazza, F.; Coletta, A.; Lopinto, E.; Fiorentino, C.; Pietranera, L.; Valentini, G.; Zoffoli, S. COSMO-Skymed an existing opportunity for observing the Earth. J. Geodyn. 2010, 49, 171–180. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.W.; Zebker, H.A. Two-dimensional phase unwrapping with use of statistical models for cost functions in nonlinear optimization. J. Opt. Soc. Am. A 2001, 18, 338–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindzey, L.E.; Beem, L.H.; Young, D.A.; Quartini, E.; Blankenship, D.D.; Lee, C.K.; Lee, W.S.; Lee, J.I.; Lee, J.H. Aerogeophysical characterization of an active subglacial lake system in the David Glacier catchment, Antarctica. Cryosphere 2020, 14, 2217–2233. [Google Scholar] [CrossRef]
- Young, D.A.; Schroeder, D.M.; Blankenship, D.D.; Kempf, S.D.; Quartini, E. The distribution of basal water between Antarctic subglacial lakes from radar sounding. Philos. Trans. R. Soc. A 2016, 374, 20140297. [Google Scholar] [CrossRef] [PubMed]
- Greenbaum, J.S.; Blankenship, D.D.; Young, D.A.; Richter, T.G.; Roberts, J.L.; Aitken, A.R.A.; Legresy, B.; Schroeder, D.M.; Warner, R.C.; van Ommen, T.D.; et al. Ocean access to a cavity beneath Totten Glacier in East Antarctica. Nat. Geosci. 2015, 8, 294–298. [Google Scholar] [CrossRef]
- Peters, M.E.; Blankenship, D.D.; Carter, S.P.; Kempf, S.D.; Young, D.A.; Holt, J.W. Along-track focusing of airborne radar sounding data from West Antarctica for improving basal reflection analysis and layer detection. IEEE Trans. Geosci. Remote Sens. 2007, 45, 2725–2736. [Google Scholar] [CrossRef]
- Peters, M.E.; Blankenship, D.D.; Morse, D.L. Analysis techniques for coherent airborne radar sounding: Application to West Antarctic ice streams. J. Geophys. Res. 2005, 110, B06303. [Google Scholar] [CrossRef]
- Peters, M.E.; Blankenship, D.D.; Smith, D.E.; Holt, J.W.; Kempf, S.D. The distribution and classification of bottom crevasses from radar sounding of a large tabular iceberg. IEEE Geosci. Remote Sens. Lett. 2007, 4, 142–146. [Google Scholar] [CrossRef]
- Borgorodsky, V.V.; Bentley, C.R.; Gudmandsen, P.E. Radioglaciology, D; Reidel Publishing Company: Dordrecht, The Netherlands, 1985. [Google Scholar]
- Reynolds, J.M. Dielectric behaviour of firn and ice from the Antarctic Peninsula, Antarctica. J. Glaciol. 1985, 31, 253–262. [Google Scholar] [CrossRef] [Green Version]
- Matheron, G. Principles of geostatistics. Econ. Geol. 1963, 58, 1246–1266. [Google Scholar] [CrossRef]
- Vaughan, D.G.; Rivera, A.; Woodward, J.; Corr, H.F.J.; Wendt, J.; Zamora, R. Topographic and hydrological controls on Subglacial Lake Ellsworth, West Antarctica. Geophy. Res. Lett. 2007, 34, L18501. [Google Scholar] [CrossRef] [Green Version]
- Cuffey, K.M.; Paterson, W.S.B. The Physics of Glaciers, 4th ed.; Elsevier: Burlington, MA, USA, 2010. [Google Scholar]
- Carter, S.P.; Blankenship, D.D.; Peters, M.E.; Young, D.A.; Holt, J.W.; Morse, D.L. Radar-based subglacial lake classification in Antarctica. Geochem. Geophy. Geosy. 2007, 8, Q03016. [Google Scholar] [CrossRef]
- Rivera, A.; Uribe, J.; Zamora, R.; Oberreuter, J. Subglacial Lake CECs: Discovery and in situ survey of a privileged research site in West Antarctica. Geoph. Res. Lett. 2015, 42, 3944–3953. [Google Scholar] [CrossRef]
- Fretwell, P.; Pritchard, H.D.; Vaughan, D.G.; Bamber, J.L.; Barrand, N.E.; Bell, R.; Bianchi, C.; Bingham, R.G.; Blankenship, D.D.; Casassa, G.; et al. Bedmap2: Improved ice bed, surface and thickness datasets for Antarctica. Cryosphere 2013, 7, 375–393. [Google Scholar] [CrossRef] [Green Version]
- Bahr, D.B.; Rundle, J.B. Stick-slip statistical mechanics at the bed of a glacier. Geophy. Res. Lett. 1996, 23, 2073–2076. [Google Scholar] [CrossRef]
- Fischer, U.H.; Clarke, G.K. Stick–slip sliding behaviour at the base of a glacier. Ann. Glaciol. 1997, 24, 390–396. [Google Scholar] [CrossRef]
- Jordan, T.M.; Williams, C.N.; Schroeder, D.M.; Martos, Y.M.; Cooper, M.A.; Siegert, M.J.; Paden, J.D.; Huybrechts, P.; Bamber, J.L. A constraint upon the basal water distribution and thermal state of the Greenland Ice Sheet from radar bed echoes. Cryosphere 2018, 12, 2831–2854. [Google Scholar] [CrossRef] [Green Version]
- Gambino, S.; Aloisi, M.; Falzone, G.; Ferro, A. Tilt signals at Mount Melbourne, Antarctica: Evidence of a shallow volcanic source. Polar Res. 2016, 35, 28269. [Google Scholar] [CrossRef] [Green Version]
One-Day DInSAR Pair (YYYYMMDD_YYYYMMDD) | Perpendicular BASELINE (m) | |
---|---|---|
20100616_20100617 | 31.60 | −241.56 |
20100702_20100703 | −52.53 | 145.08 |
20101225_20101226 | 47.70 | −160.03 |
20110126_20110127 | 18.93 | −402.59 |
20110331_20110401 | −39.28 | 193.83 |
20110502_20110503 | −93.97 | 81.24 |
20110518_20110519 | 79.84 | −95.64 |
20110603_20110604 | −54.79 | 139.39 |
20110705_20110706 | −282.33 | 27.03 |
20110822_20110823 | 193.11 | −39.54 |
20111009_20111010 | −44.79 | 170.51 |
20111025_20111026 | −112.63 | 67.82 |
20111110_20111111 | −93.39 | 81.81 |
20111126_20111127 | −35.09 | 217.74 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.; Seo, H.; Han, H.; Ju, H.; Lee, J. Velocity Anomaly of Campbell Glacier, East Antarctica, Observed by Double-Differential Interferometric SAR and Ice Penetrating Radar. Remote Sens. 2021, 13, 2691. https://doi.org/10.3390/rs13142691
Lee H, Seo H, Han H, Ju H, Lee J. Velocity Anomaly of Campbell Glacier, East Antarctica, Observed by Double-Differential Interferometric SAR and Ice Penetrating Radar. Remote Sensing. 2021; 13(14):2691. https://doi.org/10.3390/rs13142691
Chicago/Turabian StyleLee, Hoonyol, Heejeong Seo, Hyangsun Han, Hyeontae Ju, and Joohan Lee. 2021. "Velocity Anomaly of Campbell Glacier, East Antarctica, Observed by Double-Differential Interferometric SAR and Ice Penetrating Radar" Remote Sensing 13, no. 14: 2691. https://doi.org/10.3390/rs13142691
APA StyleLee, H., Seo, H., Han, H., Ju, H., & Lee, J. (2021). Velocity Anomaly of Campbell Glacier, East Antarctica, Observed by Double-Differential Interferometric SAR and Ice Penetrating Radar. Remote Sensing, 13(14), 2691. https://doi.org/10.3390/rs13142691