Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = tall stature

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2316 KB  
Review
Growth Without GH: A Case Series and Literature Review
by Stefana Catalina Bilha, Cristina Preda, Letitia Leustean, Nada Akad, Anca Matei and Maria-Christina Ungureanu
J. Clin. Med. 2025, 14(24), 8957; https://doi.org/10.3390/jcm14248957 - 18 Dec 2025
Viewed by 650
Abstract
Linear growth is traditionally attributed to the growth hormone (GH)/insulin-like growth factor-1 (IGF-1) axis, yet “growth without GH” is documented. We report five patients with severe GH deficiency—one congenital and four acquired, who reached normal or tall stature despite persistently low IGF-1. All [...] Read more.
Linear growth is traditionally attributed to the growth hormone (GH)/insulin-like growth factor-1 (IGF-1) axis, yet “growth without GH” is documented. We report five patients with severe GH deficiency—one congenital and four acquired, who reached normal or tall stature despite persistently low IGF-1. All patients had obesity and metabolic complications (insulin resistance, dyslipidemia, and/or fatty liver). Catch-up or sustained growth occurred before or independent of sex-steroid replacement in most cases. One patient with lifelong hypogonadism showed slow, prolonged growth with delayed epiphyseal fusion. Three patients also received recombinant human GH (rhGH), without a significant impact on overall growth velocity, but with favorable metabolic outcomes. Findings support multifactorial drivers of linear growth beyond the GH/IGF-1 pathway. Likely contributors include insulin signaling associated with adiposity, permissive thyroid hormone action, local growth-plate paracrine pathways, and, in hypogonadism, delayed epiphyseal closure. Genetic modifiers that enhance chondrogenesis or delay growth-plate fusion may contribute. We also reviewed the published literature on “growth without GH,” integrating single-case reports and series to contextualize these mechanisms and outcomes. In conclusion, profound GH deficiency does not preclude near-normal or accelerated growth. In “growth without GH,” therapeutic priorities should pivot from stature to cardiometabolic risk reduction. rhGH may be considered to improve metabolism when individualized and closely monitored, recognizing that height velocity is often adequate. Notably, rhGH consistently improved lipid profiles and steatohepatitis in two patients, suggesting a primarily metabolic benefit. Lifelong follow-up from childhood into adulthood is essential. Full article
(This article belongs to the Special Issue New Advances and Clinical Outcomes of Endocrinology)
Show Figures

Figure 1

25 pages, 3702 KB  
Article
Seed the Difference: QTL Mapping Reveals Several Major Loci for Seed Size in Cannabis sativa L.
by Stephen Eunice Manansala-Siazon, Paolo Miguel Siazon, Erwin Tandayu, Lennard Garcia-de Heer, Adam Burn, Qi Guo, Jos C. Mieog and Tobias Kretzschmar
Plants 2025, 14(24), 3853; https://doi.org/10.3390/plants14243853 - 17 Dec 2025
Viewed by 748
Abstract
Cannabis sativa L. has been cultivated for millennia as a source of food and fibre. Increasing demand for functional foods has renewed interest in C. sativa seeds (hempseeds), which are rich in essential fatty acids and amino acids. However, a near-global moratorium on [...] Read more.
Cannabis sativa L. has been cultivated for millennia as a source of food and fibre. Increasing demand for functional foods has renewed interest in C. sativa seeds (hempseeds), which are rich in essential fatty acids and amino acids. However, a near-global moratorium on C. sativa cultivation and research throughout most of the 20th century has delayed crop improvement using modern breeding approaches. As a result, genetic loci contributing to key agronomic traits, including with respect to maximizing yield as a seed crop, remain largely unknown. In this study, a feminized segregating F2 mapping population, derived from a tall parent with spacious inflorescences and large seeds and a short-stature parent with compact inflorescences and small seeds, was phenotyped for key seed and agronomic traits related to yield. A mid-density Single Nucleotide Polymorphism (SNP) genotyping panel was used to generate a genetic linkage map of 291.5 cM with 455 SNPs. Quantitative Trait Locus (QTL) mapping identified major loci for hundred-seed weight—qHSW3, 26.59 percent variance explained (PVE), seed volume—qSV1, 33.24 PVE, and plant height—qPH9, 46.99 PVE. Our results provide novel target regions, associated molecular markers, and candidate genes for future breeding efforts to improve C. sativa. Full article
Show Figures

Figure 1

17 pages, 4470 KB  
Article
Habitat Suitability and Enhancement Strategies for Waterbirds in Fishing Withdrawal Zones: An Evidence-Based Assessment
by Yiping Zuo, Yuxing Wei, Yufeng Li, Jingjing Ding, Yixin Zhao, Zhenmei Zhao, Yanan Zhang, Zaifeng Wang and Hai Cheng
Land 2025, 14(4), 870; https://doi.org/10.3390/land14040870 - 15 Apr 2025
Viewed by 1037
Abstract
The Yancheng coastal wetlands serve as a crucial stopover site along the East Asian–Australasian Flyway. The rapid expansion of aquaculture has led to a significant decline in natural wetlands, impacting both the distribution and quality of waterbird habitats. Following the designation of the [...] Read more.
The Yancheng coastal wetlands serve as a crucial stopover site along the East Asian–Australasian Flyway. The rapid expansion of aquaculture has led to a significant decline in natural wetlands, impacting both the distribution and quality of waterbird habitats. Following the designation of the region as a World Natural Heritage site in 2019, the local government has prioritized the protection of waterbird habitats, leading to the large-scale withdrawal of aquaculture from the region. Nevertheless, the impact of the fishing withdrawal on waterbird habitat selection and the ecological benefits it brought remain unknown. In this study, based on the identification of fishing withdrawal zones in the Yancheng coastal area, six waterbird groups, Anatidae, Ardeidae, Charadriiformes, Laridae, Gruidae and Ciconiidae, were selected to construct an evaluation index system for habitat suitability. The Biomod2 ensemble model was employed to analyze the spatial differences of suitable habitats for waterbirds within the fishing withdrawal zones. The result revealed the following: (1) As of 2022, the area of fishing withdrawal zones had reached 2.23 × 104 ha, primarily distributed in Beihuan and Nanhuan. Among these, the area of fishing withdrawal zones in Nanhuan was the largest, reaching 6.78 × 103 ha. (2) Unsuitable area for waterbirds was largest in the fishing withdrawal zones, with a proportion of 60% and 58% for Gruidae and Ciconiidae, respectively. (3) The rich nutrients, high coverage and tall stature of emergent vegetation in the fishing withdrawal zones led to a reduction in water surface area, resulting in significant adverse effects on the suitable habitats for Charadriiformes and Gruidae. Therefore, the results suggest that most areas after fishing withdrawal were still not suitable habitats for waterbirds. The implementation of scientific fishing withdrawal practices, along with ecological restoration and management, is crucial for improving the habitat suitability in fishing withdrawal zones. This study provides valuable insights for more purposeful selection of fishing withdrawal sites, and more scientific management and restoration of these areas to enhance their ecological benefits. Full article
(This article belongs to the Special Issue Ecosystem and Biodiversity Conservation in Protected Areas)
Show Figures

Figure 1

20 pages, 5619 KB  
Article
Interspecific Hybridization Barrier Between Paeonia ostii and P. ludlowii
by Yingzi Guo, Yan Zhang, Yanli Wang, Guodong Zhao, Wenqing Jia and Songlin He
Plants 2025, 14(7), 1120; https://doi.org/10.3390/plants14071120 - 3 Apr 2025
Viewed by 1093
Abstract
Paeonia ludlowii is a threatened and valuable germplasm in the cultivated tree peony gene pool, with distinctive traits such as tall stature, pure yellow flowers, and scarlet foliage in autumn. However, the crossability barrier limits gene transfer from P. ludlowii to cultivated tree [...] Read more.
Paeonia ludlowii is a threatened and valuable germplasm in the cultivated tree peony gene pool, with distinctive traits such as tall stature, pure yellow flowers, and scarlet foliage in autumn. However, the crossability barrier limits gene transfer from P. ludlowii to cultivated tree peony. Therefore, our study investigated the reasons for the lack of crossability between P. ludlowii and Paeonia ostii ‘Fengdan’. Distant cross pollination (DH) resulted in the formation of many calloses at the ends of the pollen tubes, which grew non-polar, twisted, entangled, and often stopped in the style. Pollen tubes elongated the fastest in self-pollination (CK), and pollen tubes elongated faster and fewer pollen tube abnormalities were observed in stigmas treated with KCl solution before pollination (KH) than in DH. During pollen–pistil interactions, the absence of stigma exudates, high levels of H2O2, O2, MDA, OH, ABA, and MeJA, and lower levels of BR and GA3 may negatively affect pollen germination and pollen tube elongation in the pistil of P. ostii ‘Fengdan’. Pollen tubes in CK and KH penetrated the ovule into the embryo sac at 24 h after pollination, whereas only a few pollen tubes in DH penetrated the ovule at 36 h after pollination. Pre-embryo abnormalities and the inhibition of free nuclear endosperm division resulted in embryo abortion in most of the fruits of DH and many fruits of KH, which occurred between 10 and 20 days after pollination, whereas embryos in CK developed well. Early embryo abortion and endosperm abortion in most of the fruits of DH and KH led to seed abortion. Seed abortion in KH and DH was mainly due to an insufficient supply of auxins and gibberellins and lower content of soluble protein and soluble sugars. The cross failure between P. ludlowii and P. ostii ‘Fengdan’ is mostly caused by a pre-fertilization barrier. KH treatment can effectively promote pollen tube growth and facilitate normal development of hybrid embryos. These findings provide new insights into overcoming the interspecific hybridization barrier between cultivated tree peony varieties and wild species. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Figure 1

16 pages, 668 KB  
Article
Latitude as a Factor Influencing Variability in Vegetational Development in Northeast England During the First (Preboreal) Holocene Millennium
by J. B. Innes and C. Orton
Quaternary 2025, 8(1), 7; https://doi.org/10.3390/quat8010007 - 5 Feb 2025
Cited by 2 | Viewed by 1649
Abstract
In the North Atlantic region, the transition from the very cold Lateglacial Stadial (GS-1) to the temperate Holocene was abrupt, with a rapid increase in temperature of several degrees, after which the low-stature, cold-tolerant Stadial vegetation was replaced through the immigration and rapid [...] Read more.
In the North Atlantic region, the transition from the very cold Lateglacial Stadial (GS-1) to the temperate Holocene was abrupt, with a rapid increase in temperature of several degrees, after which the low-stature, cold-tolerant Stadial vegetation was replaced through the immigration and rapid succession of tall herb, heath, and shrub communities towards Betula woodland of varying density. In northeast England, pollen diagrams on a south to north transect between mid-Yorkshire and the Scottish border show that there was considerable variation in the rate at which postglacial woodland was established in the first Holocene millennium. In mid-Yorkshire’s Vale of York, the development of closed Betula woodland was swift, whereas in north Northumberland, near the Scottish border, Betula presence was low for the first several centuries of the Holocene, with open vegetation persisting and with shrub vegetation dominated mostly by Juniperus. Intermediate locations on the transect show there was a gradient in post-Stadial vegetation development in northeast England, with latitude as a major factor, as well as altitude. Transitional locations on the transect have been identified, where vegetation community change occurred. Vegetation development in the first Holocene millennium in northeast England was spatially complex and diverse, with the climatic effects of latitude the main controlling environmental variable. Full article
Show Figures

Figure 1

15 pages, 1851 KB  
Article
Clinical Heterogeneity and Different Phenotypes in Patients with SETD2 Variants: 18 New Patients and Review of the Literature
by Alejandro Parra, Rachel Rabin, John Pappas, Patricia Pascual, Mario Cazalla, Pedro Arias, Natalia Gallego-Zazo, Alfredo Santana, Ignacio Arroyo, Mercè Artigas, Harry Pachajoa, Yasemin Alanay, Ozlem Akgun-Dogan, Lyse Ruaud, Nathalie Couque, Jonathan Levy, Gloria Liliana Porras-Hurtado, Fernando Santos-Simarro, Maria Juliana Ballesta-Martinez, Encarna Guillén-Navarro, Hugo Muñoz-Hernández, Julián Nevado, Spanish OverGrowth Registry Initiative, Jair Tenorio-Castano and Pablo Lapunzinaadd Show full author list remove Hide full author list
Genes 2023, 14(6), 1179; https://doi.org/10.3390/genes14061179 - 29 May 2023
Cited by 11 | Viewed by 5719
Abstract
SETD2 belongs to the family of histone methyltransferase proteins and has been associated with three nosologically distinct entities with different clinical and molecular features: Luscan–Lumish syndrome (LLS), intellectual developmental disorder, autosomal dominant 70 (MRD70), and Rabin–Pappas syndrome (RAPAS). LLS [MIM #616831] is an [...] Read more.
SETD2 belongs to the family of histone methyltransferase proteins and has been associated with three nosologically distinct entities with different clinical and molecular features: Luscan–Lumish syndrome (LLS), intellectual developmental disorder, autosomal dominant 70 (MRD70), and Rabin–Pappas syndrome (RAPAS). LLS [MIM #616831] is an overgrowth disorder with multisystem involvement including intellectual disability, speech delay, autism spectrum disorder (ASD), macrocephaly, tall stature, and motor delay. RAPAS [MIM #6201551] is a recently reported multisystemic disorder characterized by severely impaired global and intellectual development, hypotonia, feeding difficulties with failure to thrive, microcephaly, and dysmorphic facial features. Other neurologic findings may include seizures, hearing loss, ophthalmologic defects, and brain imaging abnormalities. There is variable involvement of other organ systems, including skeletal, genitourinary, cardiac, and potentially endocrine. Three patients who carried the missense variant p.Arg1740Gln in SETD2 were reported with a moderately impaired intellectual disability, speech difficulties, and behavioral abnormalities. More variable findings included hypotonia and dysmorphic features. Due to the differences with the two previous phenotypes, this association was then named intellectual developmental disorder, autosomal dominant 70 [MIM 620157]. These three disorders seem to be allelic and are caused either by loss-of-function, gain-of-function, or missense variants in the SETD2 gene. Here we describe 18 new patients with variants in SETD2, most of them with the LLS phenotype, and reviewed 33 additional patients with variants in SETD2 that have been previously reported in the scientific literature. This article offers an expansion of the number of reported individuals with LLS and highlights the clinical features and the similarities and differences among the three phenotypes associated with SETD2. Full article
(This article belongs to the Special Issue Molecular Basis of Rare Diseases)
Show Figures

Figure 1

23 pages, 2903 KB  
Article
Height-Related Polygenic Variants Are Associated with Metabolic Syndrome Risk and Interact with Energy Intake and a Rice-Main Diet to Influence Height in KoGES
by Sunmin Park
Nutrients 2023, 15(7), 1764; https://doi.org/10.3390/nu15071764 - 4 Apr 2023
Cited by 7 | Viewed by 4109
Abstract
Adult height is inversely related to metabolic syndrome (MetS) risk, but its genetic impacts have not been revealed. The present study aimed to examine the hypothesis that adult height-related genetic variants interact with lifestyle to influence adult height and are associated with MetS [...] Read more.
Adult height is inversely related to metabolic syndrome (MetS) risk, but its genetic impacts have not been revealed. The present study aimed to examine the hypothesis that adult height-related genetic variants interact with lifestyle to influence adult height and are associated with MetS risk in adults aged >40 in Korea during 2010–2014. Participants were divided into short stature (SS; control) and tall stature (TS; case) by the 85th percentile of adult height. The genetic variants linked to adult height were screened from a genome-wide association study in a city hospital-based cohort (n = 58,701) and confirmed in Ansan/Ansung plus rural cohorts (n = 13,783) among the Korean Genome and Epidemiology Study. Genetic variants that interacted with each other were identified using the generalized multifactor dimensionality reduction (GMDR) analysis. The interaction between the polygenic risk score (PRS) of the selected genetic variants and lifestyles was examined. Adult height was inversely associated with MetS, cardiovascular diseases, and liver function. The PRS, including zinc finger and BTB domain containing 38 (ZBTB38)_rs6762722, polyadenylate-binding protein-interacting protein-2B (PAIP2B)_rs13034890, carboxypeptidase Z (CPZ)_rs3756173, and latent-transforming growth factor beta-binding protein-1 (LTBP1)_rs4630744, was positively associated with height by 1.29 times and inversely with MetS by 0.894 times after adjusting for covariates. In expression quantitative trait loci, the gene expression of growth/differentiation factor-5 (GDF5)_rs224331, non-SMC condensin I complex subunit G (NCAPG)_rs2074974, ligand-dependent nuclear receptor corepressor like (LCORL)_rs7700107, and insulin-like growth factor-1 receptor (IGF1R)_rs2871865 was inversely linked to their risk allele in the tibial nerve and brain. The gene expression of PAIP2B_rs13034890 and a disintegrin and metalloproteinase with thrombospondin motifs-like-3 (ADAMTSL3)_rs13034890 was positively related to it. The PRS was inversely associated with MetS, hyperglycemia, HbA1c, and white blood cell counts. The wild type of GDF5_rs224331 (Ala276) lowered binding energy with rugosin A, D, and E (one of the hydrolyzable tannins) but not the mutated one (276Ser) in the in-silico analysis. The PRS interacted with energy intake and rice-main diet; PRS impact was higher in the high energy intake and the low rice-main diet. In conclusion, the PRS for adult height interacted with energy intake and diet patterns to modulate height and was linked to height and MetS by modulating their expression in the tibial nerve and brain. Full article
(This article belongs to the Special Issue Nutrition and Gene Interaction)
Show Figures

Figure 1

23 pages, 441 KB  
Article
Somatic Development Disorders in Children and Adolescents Affected by Syndromes and Diseases Associated with Neurodysfunction and Hydrocephalus Treated/Untreated Surgically
by Lidia Perenc, Agnieszka Guzik, Justyna Podgórska-Bednarz and Mariusz Drużbicki
Int. J. Environ. Res. Public Health 2022, 19(9), 5712; https://doi.org/10.3390/ijerph19095712 - 7 May 2022
Cited by 3 | Viewed by 2320
Abstract
Background: This study was conducted to evaluate the co-occurrence of hydrocephalus treated/untreated surgically and congenital nervous system disorders or neurological syndromes with symptoms visible since childhood, and with somatic development disorders, based on significant data obtained during admission to a neurological rehabilitation unit [...] Read more.
Background: This study was conducted to evaluate the co-occurrence of hydrocephalus treated/untreated surgically and congenital nervous system disorders or neurological syndromes with symptoms visible since childhood, and with somatic development disorders, based on significant data obtained during admission to a neurological rehabilitation unit for children and adolescents. Methods: The study applied a retrospective analysis of data collected during hospitalization of 327 children and adolescents, aged 4–18 years, all presenting congenital disorders of the nervous system and/or neurological syndromes associated with at least one neurodysfunction that existed from early childhood. To allow the identification of individuals with somatic development disorders in the group of children and adolescents with hydrocephalus treated/untreated surgically, the adopted criteria considered the z-score values for body height, body weight, head circumference, body mass index, and head circumference index. Results: Treated/untreated hydrocephalus was observed in the study group at the rates of 8% and 0.9%, respectively. Among 239 patients with cerebral palsy, 9 (3.8%) had surgically treated hydrocephalus, 17 (70.8%) of 24 patients with neural tube defects also had hydrocephalus treated with surgery, and 3 (12.5%) of 24 patients with neural tube defects had untreated hydrocephalus. This medical condition was a more frequent comorbidity in subjects with neural tube defects compared with those with cerebral palsy (p < 0.001). Subjects with untreated hydrocephalus most frequently presented macrocephaly (p < 0.001), including absolute macrocephaly (p = 0.001), and with tall stature (p = 0.007). Excessive body mass co-occurred more frequently with surgically untreated hydrocephalus, but the relationship was not statistically significant (p = 0.098). Conclusions: Surgically treated hydrocephalus occurred in patients with cerebral palsy and neural tube defects, and untreated hydrocephalus was present only in patients with neural tube defects. Untreated hydrocephalus negatively changed the course of individual development in the studied group of children, in contrast to surgically treated hydrocephalus. Full article
14 pages, 1549 KB  
Article
Rapidly Progressing to ESRD in an Individual with Coexisting ADPKD and Masked Klinefelter and Gitelman Syndromes
by Ramón Peces, Carlos Peces, Rocío Mena, Emilio Cuesta, Fe Amalia García-Santiago, Marta Ossorio, Sara Afonso, Pablo Lapunzina and Julián Nevado
Genes 2022, 13(3), 394; https://doi.org/10.3390/genes13030394 - 23 Feb 2022
Cited by 1 | Viewed by 3640
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenetic hereditary renal disease, promoting end-stage renal disease (ESRD). Klinefelter syndrome (KS) is a consequence of an extra copy of the X chromosome in males. Main symptoms in KS include hypogonadism, tall stature, [...] Read more.
Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenetic hereditary renal disease, promoting end-stage renal disease (ESRD). Klinefelter syndrome (KS) is a consequence of an extra copy of the X chromosome in males. Main symptoms in KS include hypogonadism, tall stature, azoospermia, and a risk of cardiovascular diseases, among others. Gitelman syndrome (GS) is an autosomal recessive disorder caused by SLC12A3 variants, and is associated with hypokalemia, hypomagnesemia, hypocalciuria, normal or low blood pressure, and salt loss. The three disorders have distinct and well-delineated clinical, biochemical, and genetic findings. We here report a male patient with ADPKD who developed early chronic renal failure leading to ESRD, presenting with an intracranial aneurysm and infertility. NGS identified two de novo PKD1 variants, one known (likely pathogenic), and a previously unreported variant of uncertain significance, together with two SLC12A3 pathogenic variants. In addition, cytogenetic analysis showed a 47, XXY karyotype. We investigated the putative impact of this rare association by analyzing possible clinical, biochemical, and/or genetic interactions and by comparing the evolution of renal size and function in the proband with three age-matched ADPKD (by variants in PKD1) cohorts. We hypothesize that the coexistence of these three genetic disorders may act as modifiers with possible synergistic actions that could lead, in our patient, to a rapid ADPKD progression. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

17 pages, 1091 KB  
Review
Presentation of Congenital Portosystemic Shunts in Children
by Atessa Bahadori, Beatrice Kuhlmann, Dominique Debray, Stephanie Franchi-Abella, Julie Wacker, Maurice Beghetti, Barbara E. Wildhaber, Valérie Anne McLin and on behalf of the IRCPSS
Children 2022, 9(2), 243; https://doi.org/10.3390/children9020243 - 11 Feb 2022
Cited by 29 | Viewed by 14238
Abstract
Background: Congenital portosystemic shunts (CPSS) are rare vascular anomalies resulting in communications between the portal venous system and the systemic venous circulation, affecting an estimated 30,000 to 50,000 live births. CPSS can present at any age as a multi-system disease of variable severity [...] Read more.
Background: Congenital portosystemic shunts (CPSS) are rare vascular anomalies resulting in communications between the portal venous system and the systemic venous circulation, affecting an estimated 30,000 to 50,000 live births. CPSS can present at any age as a multi-system disease of variable severity mimicking both common and rare pediatric conditions. Case presentations: Case A: A vascular malformation was identified in the liver of a 10-year-old girl with tall stature, advanced somatic maturation, insulin resistance with hyperinsulinemia, hyperandrogenemia and transient hematuria. Work-up also suggested elevated pulmonary pressures. Case B: A young girl with trisomy 8 mosaicism with a history of neonatal hypoglycemia, transient neonatal cholestasis and tall stature presented newly increased aminotransferase levels at 6 years of age. Case C: A 3-year-old boy with speech delay, tall stature and abdominal pain underwent abdominal ultrasound (US) showing multiple liver nodules, diagnosed as liver hemangiomas by hepatic magnetic resonance imaging (MRI). Management and outcome: After identification of a venous malformation on liver Doppler US, all three patients were referred to a specialized liver center for further work-up within 12 to 18 months from diagnosis. Angio-computed tomography (CT) scan confirmed the presence of either an intrahepatic or extrahepatic CPSS with multiples liver nodules. All three had a hyperintense signal in the globus pallidus on T1 weighted cerebral MRI. Right heart catheterization confirmed pulmonary hypertension in cases A and C. Shunts were closed either using an endovascular or surgical approach. Liver nodules were either surgically removed if there was a risk of malignant degeneration or closely monitored by serial imaging when benign. Conclusion: These cases illustrate most of the common chief complaints and manifestations of CPSS. Liver Doppler US is the key to diagnosis. Considering portosystemic shunts in the diagnostic work-up of a patient with unexplained endocrine, liver, gastro-intestinal, cardiovascular, hematological, renal or neurocognitive disorder is important as prompt referral to a specialized center may significantly impact patient outcome. Full article
(This article belongs to the Special Issue Pediatric Vascular Anomalies: Clinical Diagnosis and Treatment)
Show Figures

Figure 1

14 pages, 2332 KB  
Article
Impact of Shrimp Ponds on Mangrove Blue Carbon Stocks in Ecuador
by Jéssica Merecí-Guamán, Fernando Casanoves, Diego Delgado-Rodríguez, Pablo Ochoa and Miguel Cifuentes-Jara
Forests 2021, 12(7), 816; https://doi.org/10.3390/f12070816 - 22 Jun 2021
Cited by 16 | Viewed by 6613
Abstract
Mangrove forests play an important role in mitigating climate change but are threatened by aquaculture expansion. The inclusion of mangroves in climate change mitigation strategies requires measuring of carbon stocks and the emissions caused by land use change over time. This study provides [...] Read more.
Mangrove forests play an important role in mitigating climate change but are threatened by aquaculture expansion. The inclusion of mangroves in climate change mitigation strategies requires measuring of carbon stocks and the emissions caused by land use change over time. This study provides a synthesis of carbon stocks in mangrove and shrimp ponds in the Gulf of Guayaquil. In this study area, we identified 134,064 ha of mangrove forest and 153,950 ha of shrimp farms. Two mangrove strata were identified according to their height and basal area: medium-statured mangrove (lower height and basal area) and tall mangrove (greater height and basal area). These strata showed statistical differences in aboveground carbon stocks. In both strata, the most abundant mangrove species was Rhizophora mangle. For both strata, trees had a maximum height (>30 m), and their density was greater than 827 ha−1. Total ecosystem level carbon stocks (measured to 1 m soil depth) were 320.9 Mg C ha−1 in medium-statured mangroves and 419.4 Mg C ha−1 in tall mangroves. The differences are attributable to higher basal area, soil organic carbon concentrations and salinity, tidal range, origin of allochthonous material, and herbivory patterns. Mangrove soils represented >80% of the total ecosystem carbon. Ecosystem carbon stocks were lower (81.9 Mg C ha−1) in the shrimp farms, 50% less than in undisturbed mangroves. Our results highlight mangroves as tropical ecosystems with extremely high carbon storage; therefore, they play an important role in mitigating climate change. This research provides a better understanding of how carbon stocks in this gulf are found and can be used for design strategies to protect global natural carbon sinks. Full article
(This article belongs to the Special Issue Carbon Cycling in Mangrove Ecosystems)
Show Figures

Figure 1

23 pages, 5648 KB  
Article
Monitoring the Structure of Regenerating Vegetation Using Drone-Based Digital Aerial Photogrammetry
by Rik J. G. Nuijten, Nicholas C. Coops, Catherine Watson and Dustin Theberge
Remote Sens. 2021, 13(10), 1942; https://doi.org/10.3390/rs13101942 - 16 May 2021
Cited by 18 | Viewed by 6732
Abstract
Measures of vegetation structure are often key within ecological restoration monitoring programs because a change in structure is rapidly identifiable, measurements are straightforward, and structure is often a good surrogate for species composition. This paper investigates the use of drone-based digital aerial photogrammetry [...] Read more.
Measures of vegetation structure are often key within ecological restoration monitoring programs because a change in structure is rapidly identifiable, measurements are straightforward, and structure is often a good surrogate for species composition. This paper investigates the use of drone-based digital aerial photogrammetry (DAP) for the characterization of the structure of regenerating vegetation as well as the ability to inform restoration programs through spatial arrangement assessment. We used cluster analysis on five DAP-derived metrics to classify vegetation structure into seven classes across three sites of ongoing restoration since linear disturbances in 2005, 2009, and 2014 in temperate and boreal coniferous forests in Alberta, Canada. The spatial arrangement of structure classes was assessed using land cover maps, mean patch size, and measures of local spatial association. We observed DAP heights of short-stature vegetation were consistently underestimated, but strong correlations (rs > 0.75) with field height were found for juvenile trees, shrubs, and perennials. Metrics of height and canopy complexity allowed for the extraction of relatively tall and complex vegetation structures, whereas canopy cover and height variability metrics enabled the classification of the shortest vegetation structures. We found that the boreal site disturbed in 2009 had the highest cover of classes associated with complex vegetation structures. This included early regenerative (22%) and taller (13.2%) wood-like structures as well as structures representative of tall graminoid and perennial vegetation (15.3%), which also showed the highest patchiness. The developed tools provide large-scale maps of the structure, enabling the identification and assessment of vegetational patterns, which is challenging based on traditional field sampling that requires pre-defined location-based hypotheses. The approach can serve as a basis for the evaluation of specialized restoration objectives as well as objectives tailored towards processes of ecological succession, and support prioritization of future inspections and mitigation measures. Full article
(This article belongs to the Special Issue Drones for Ecology and Conservation)
Show Figures

Graphical abstract

11 pages, 292 KB  
Communication
Moderate Grazer Density Stabilizes Forage Availability More Than Patch Burning in Low-Stature Grassland
by Edward J. Raynor, Devan Allen McGranahan, James R. Miller, Diane M. Debinski, Walter H. Schacht and David M. Engle
Land 2021, 10(4), 395; https://doi.org/10.3390/land10040395 - 9 Apr 2021
Cited by 7 | Viewed by 3750
Abstract
Spatially patchy fire creates landscape-level diversity that in turn stabilizes several rangeland ecosystem services, including forage production and habitat availability. To enhance biodiversity and livestock production, efforts are underway to restore fire regimes in rangelands throughout the Great Plains. However, invasive species such [...] Read more.
Spatially patchy fire creates landscape-level diversity that in turn stabilizes several rangeland ecosystem services, including forage production and habitat availability. To enhance biodiversity and livestock production, efforts are underway to restore fire regimes in rangelands throughout the Great Plains. However, invasive species such as tall fescue Schedonorus arundinaceus syn. Festuca arundinacea, initially introduced for forage production, hamper prescribed fire use. Grazer density, or stocking rate, modulates the effect of patchy fire regimes on ecological patterns in invaded, semi-natural rangeland pastures. We compare three diversity–stability responses—temporal variability in aboveground plant biomass, portfolio effects among plant functional groups, and beta diversity in plant functional group composition—in pastures managed with two different fire regimes through three periods of heavy, light, and moderate stocking rate in southern Iowa, USA. Pastures were either burned in patches, with one-third of the pasture burned each year, or completely burned every third year. The period of moderate grazer density had the least temporal variability in aboveground plant biomass, regardless of fire regime. We also found statistical evidence for a portfolio effect under moderate stocking, where diversification of plant communities through varying cover of functional groups can stabilize communities by reducing year-to-year variability. Beta diversity among plant functional groups was greatest during the moderate grazer density period as well. The short stature of tall fescue prevented the patch-burning regime to create contrast in vegetation structure among patches, and there was no difference in any diversity–stability mechanism response across the two different patterns of burning. Although longitudinal, these data suggest that temporal variability in aboveground plant biomass declines with diversity–stability mechanisms that underlie ecosystem function. Our results also support a decades-old principle of range management: moderate grazing intensity enhances diversity and stability, which has been shown to buffer forage shortfalls during drought. Full article
Show Figures

Figure 1

9 pages, 602 KB  
Article
Relationship between Dietary Creatine and Growth Indicators in Children and Adolescents Aged 2–19 Years: A Cross-Sectional Study
by Darinka Korovljev, Valdemar Stajer and Sergej M. Ostojic
Nutrients 2021, 13(3), 1027; https://doi.org/10.3390/nu13031027 - 23 Mar 2021
Cited by 16 | Viewed by 11761
Abstract
A possible role of dietary creatine for ensuring proper growth and development remains unknown. The main aim of this cross-sectional study was to quantify the amount of creatine consumed through regular diet among U.S. children and adolescents aged 2 to 19 years and [...] Read more.
A possible role of dietary creatine for ensuring proper growth and development remains unknown. The main aim of this cross-sectional study was to quantify the amount of creatine consumed through regular diet among U.S. children and adolescents aged 2 to 19 years and investigate the relationship between creatine intake and growth indicators, using data from the 2001–2002 National Health and Nutrition Examination Survey (NHANES). We included data for NHANES 2001–2002 respondents (4291 participants, 2133 boys and 2158 girls) aged 2 to 19 years at the time of screening, who provided valid dietary information and examination measures (standing height and weight). Individual values for total grams of creatine consumed per day for each participant were computed using the average amount of creatine (3.88 g/kg) across all sources of meat-based foods. All participants were categorized for height-for-age and BMI-for-age categories. The average daily intake of creatine across the whole sample was 1.07 ± 1.07 g (95% CI, from 1.04 to 1.10). Height, weight, and BMI were significantly different across creatine quartiles (p < 0.001), with all measures significantly higher in the 4th quartile of creatine intake (≥1.5 g/day) than those in other quartiles (p < 0.05). The participants from the 3rd quartile of creatine intake (0.84–1.49 g/day) were significantly different from others with respect to having lower rates of normal stature and higher rates of tall stature (p < 0.05). Each additional 0.1 g of creatine consumed per day increases height by 0.60 cm (simple model) or 0.30 cm (adjusted model). The daily intake of creatine from a regular diet in taller children and adolescents was higher than in shorter peers aged 2–19 years. Future research has to monitor temporal changes in growth and dietary creatine and validate our findings in interventional studies across pediatric populations. Full article
(This article belongs to the Special Issue Creatine Supplementation for Health and Clinical Diseases)
Show Figures

Figure 1

12 pages, 3025 KB  
Article
Aboveground Biomass Allocation of Boreal Shrubs and Short-Stature Trees in Northwestern Canada
by Linda Flade, Christopher Hopkinson and Laura Chasmer
Forests 2021, 12(2), 234; https://doi.org/10.3390/f12020234 - 18 Feb 2021
Cited by 3 | Viewed by 3677
Abstract
In this follow-on study on aboveground biomass of shrubs and short-stature trees, we provide plant component aboveground biomass (herein ‘AGB’) as well as plant component AGB allometric models for five common boreal shrub and four common boreal short-stature tree genera/species. The analyzed plant [...] Read more.
In this follow-on study on aboveground biomass of shrubs and short-stature trees, we provide plant component aboveground biomass (herein ‘AGB’) as well as plant component AGB allometric models for five common boreal shrub and four common boreal short-stature tree genera/species. The analyzed plant components consist of stem, branch, and leaf organs. We found similar ratios of component biomass to total AGB for stems, branches, and leaves amongst shrubs and deciduous tree genera/species across the southern Northwest Territories, while the evergreen Picea genus differed in the biomass allocation to aboveground plant organs compared to the deciduous genera/species. Shrub component AGB allometric models were derived using the three-dimensional variable volume as predictor, determined as the sum of line-intercept cover, upper foliage width, and maximum height above ground. Tree component AGB was modeled using the cross-sectional area of the stem diameter as predictor variable, measured at 0.30 m along the stem length. For shrub component AGB, we achieved better model fits for stem biomass (60.33 g ≤ RMSE ≤ 163.59 g; 0.651 ≤ R2 ≤ 0.885) compared to leaf biomass (12.62 g ≤ RMSE ≤ 35.04 g; 0.380 ≤ R2 ≤ 0.735), as has been reported by others. For short-stature trees, leaf biomass predictions resulted in similar model fits (18.21 g ≤ RMSE ≤ 70.0 g; 0.702 ≤ R2 ≤ 0.882) compared to branch biomass (6.88 g ≤ RMSE ≤ 45.08 g; 0.736 ≤ R2 ≤ 0.923) and only slightly better model fits for stem biomass (30.87 g ≤ RMSE ≤ 11.72 g; 0.887 ≤ R2 ≤ 0.960), which suggests that leaf AGB of short-stature trees (<4.5 m) can be more accurately predicted using cross-sectional area as opposed to diameter at breast height for tall-stature trees. Our multi-species shrub and short-stature tree allometric models showed promising results for predicting plant component AGB, which can be utilized for remote sensing applications where plant functional types cannot always be distinguished. This study provides critical information on plant AGB allocation as well as component AGB modeling, required for understanding boreal AGB and aboveground carbon pools within the dynamic and rapidly changing Taiga Plains and Taiga Shield ecozones. In addition, the structural information and component AGB equations are important for integrating shrubs and short-stature tree AGB into carbon accounting strategies in order to improve our understanding of the rapidly changing boreal ecosystem function. Full article
(This article belongs to the Special Issue Forest Biomass and Carbon Estimation)
Show Figures

Figure 1

Back to TopTop